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ON JOINT SPECTRA OF NON-COMMUTING
HYPONORMAL OPERATORS!

A. SoLTYsIAK (POLAND, A. MICKIEWICZ UNIV.)

Let H be a complex Hilbert space and let B(H) denote the Banach

algebra of all (bounded linear) operators on H.

For n-tuple T = (T4, ... ,T,) of operators on H a spectral set y(T') is defined as
follows:

n
AT) = {(A, -+, An) € R D (T} = A;)* is not invertible in B(H)}.

Jj=1

- (Here we write as usual Tj — \; instead of Tj — A; idg.) This set was introduced
by McIntosh and Pryde ([1, 2]) and has proved useful not only in the spectral
theory of self-adjoint operators but also in comparing various types of joint spectra
of commuting families of operators (see [3]). One advantage of the set v(T) over
other joint spectra is that it can be easily computed. In [4] it was shown that this
set is also useful in the multiparameter spectral theory of normal operators.

We recall some necessary definitions. An operator T € B(H) is hyponormal
(cohyponormal) if || T*z|| < |Tz| (|Tz|| < ||T*z|| respectively) for all z € H.
Clearly if an operator T is hyponormal, then T™ is cohyponormal. Moreover an
operator T is normal if it is both hypo- and cohyponormal.

Let T = (T},... ,T,) be an n-tuple of operators. A point A = (A1,...,An) €C?
is not in the left (joint) spectrum of T if there exist operators Uy, ... ,Un € B(H)
such that Y7, U;(Tj — A;) = idn. The left spectrum of T will be denoted by
01(T). The right spectrum, o.(T'), is defined analogously. The Harte spectrum of T
(in B(H ), denoted by g (T), is the union of the left and right joint spectra, i.e.

ou(T) = o(T) Vo, (T).

All these spectra are compact (possibly empty) subsets of C". Notice that for
a single operator T the Harte spectrum oy (T') coincides with the usual spectrum
o(T). It is well-known that

o(T) = {recC™ it 2=: I(T; — Azl =0}
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(the approzimate point spectrum) and

or(T) = {AeC Y ((T; - 2)(H) # H}

Jj=1

(the defect spectrum). Let us introduce the following notation. For a single
operator T symbols Re T and Im T will denote as usual its real and imaginary part.
Hence T' = ReT + iImT. If T = (Ty,...,T,) is an n-tuple of operators, then
ReT = (ReTh,...,ReTy), ImT = (ImTy,... ,ImT,), and II(T) = (ReT,ImT).
Letter p will denote the polynomial map p(z1, ... , 22n) = (21+i2n41,. .. , 2n+izan).

We present a generalisation of one of the results proved in [4] to n-tuples of (not
necessarily commuting) hyponormal operators. The result is as follows:

Theorem. IfT = (Ty,...,Ty) is an arbitrary n-tuple of hyponormal(cohyponormal)

operators, then

ou(T) = p(Y(I(T)))
(and respectively

or(T) = p(v(I(T))) )-

It is easy to see that one cannot replace in the theorem the left spectrum (or the
right spectrum) by the Harte spectrum if the operators T; are not normal.
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