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On a crystalline approximation for an area-preserving motion*
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Abstract

An area-preserving motion of immersed, closed and convex curves by curva-
ture is approximated by so-called crystalline algorithm. We establish a conver-
gence result between a crystalline motion and the area-preserving motion. We
also construct an implicit scheme which enjoys several nice properties such as the
area-preserving and curve-shortening.

Key Words: area-preserving, motion by curvature, curve-shortening, singularity,
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1 Introduction

We concern a motion of closed plane curves I'(¢) which are evolved by the evolution

law:

2w
1 V=g
(1) k=7

Here V is the inward normal velocity, « the curvature, L the length and 7 the rotation

number of the curve I'. It can be verified that through the evolution,

is conserved, where = denotes point on I'(t), n the inward unit normal vector of I'(¢)
and s the arc-length parameter, respectively. In the case where n = 1, A(t) is the area

enclosed by I'(t). Hence, we call this problem area-preserving motion by curvature. We
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can also see that the length L(t) is monotone decreasing in time ¢. The purpose of this
article is to propose a numerical scheme for this problem.

If the curvature of initial curve, say I'y, is positive everywhere, then it holds that the
curvature of I'(t) is positive everywhere for all ¢ > 0 and the evolution is described by an
initial and periodic boundary value problem for the following nonlocal partial differential
equation (see Gage [G]):

207
(2) Ke = K2Kgo + K5 — 2%(;92, L= / k"1 df.
0

This problem possesses a classical time local solution. In the case where n = 1, the
solution of the problem (2) exists globally in time and the solution converges to a constant
function exponentially, namely I'(t) converges to a circle (Gage [G]). In the case where
n = 1 with initial curve I'y whose curvature changes sign, the solution is possible to
develop singularities, but to our knowledge such a result might not be available. In the
case where 1 > 1, the behavior of solution might not be also clarified yet.

Hereafter we only consider the case where
(A1) the curvature of Iy is positive everywhere.

Let us introduce an approximate problem for (1) which is derived by so-called crys-
talline approximation. The notions of crystalline approximation, crystalline motion and
crystalline curvature below are originally introduced by Taylor ([T, TCH]) and indepen-
dently by Angenent and Gurtin ([AGu]) for studying crystal growth mathematically. As
for the recent development in this direction, we refer [GY, KG] and references there in.

Firstly, we approximate the curve I'(¢) by so-called admissible piecewise linear closed
curve I'a (). Here the admissible piecewise linear curve is the piecewise linear curve that

satisfies the following properties:

1. there exists a finite set © that consists of unit vectors such that the all normal angles
of the curve belong to the set ©, which is called the angle set of the curve,

2. each normal angles of adjacent sides is adjacent in the angle set ©.

Let n be the number of elements in the set ©. We note that in the case where n =
1, admissible piecewise linear closed curves are n-polygon. Moreover, because of the

assumption (A1), we only need to consider convex n-polygon, if 7 = 1.
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Secondly, we define so-called crystalline curvature «; of the j-th side of the admissible

curve as follows:

Here d; denotes the length of the j-th side, Ag; the angle between the j-th side and the
(j — 1)-th side, respectively, and -y; = tan(A6;4,/2) + tan(Ag;/2). Setting AG; = A =
27 /n, we can see that the crystalline curvature is the inverse of the radius of the largest
inscribed regular polygon, while usual curvature is the inverse of the curvature radius.
In this sense crystalline curvature is a generalization of usual curvature (see appendix B
in [Y1]).

Finally, we approximate the original motion by so-called crystalline motion. Here the
crystalline motion is a motion of the admissible curve which moves keeping admissibility.
Namely, each sides of the admissible curve moves in normal direction only. Such motion

can be described by a system of ordinary differential equations (see [AGu, Gu]):

d ' .
adj = —’)’j(Ag’U +’U)j, (_] =0,1,...,qn — 1)

Here v; denotes the normal velocity of the j-th side of the piecewise linear curve 'y and

we set

_ (D4v)j = (D4v); Uil — Uy
(Aa’U)J - v ) (D+u)J = sin A0j+1 .

We note that v;, k;,d; are periodic in the index j with period nn since the curve I's is

closed. We approximate evolution law (1) by

(0) = rs(0) - T2

We note that solutions to this approximate evolution law also satisfy area-preserving
and curve-shortening properties. Substituting the approximate evolution law into the

ordinary differential equations above, we obtain the following approximate problem:

772%'

m—1
3) Kj = "2'(Aa'ﬂ)j + "? - £A n?, Lp= Z v, (G=0,1,...,mn —1).
i=0

Note that 37, % = Y ycicn¥% ~ 27 holds for large n. In the case where = 1, the
solution of (3) exists globally in time and converges to a so-called Wulf shape (Yazaki

[Y2]). To our knowledge for 7 > 1 there might be almost no result.



Let us make a comment on the relation between our problem and the classical curvature

flow:
(4) V =k.

The classical curvature flow (4) is the gradient flow of the length L of the curve, while
our problem (1) is the gradient flow of L under a constraint that the area A is constant.

In the case of the classical curvature flow (4), the crystalline approximation works very
well. The convergence results between the solution of the classical curvature flow (4) and
the solution of corresponding crystalline motion are established by several authors([FG,
GMHG?2, Gir, GirK1, IS, UY1]). Moreover, the efficiency of the numerical scheme which
based on crystalline approximation, we call it crystalline algorithm, is demonstrated in
[GirK2, UY1, UY2]. One of our motivation is to extend the class of problems to which
the crystalline algorithm is applicable. '

We establish a convergence result between (2) and (3) in §2 (Theorem 2.1). We
propose a numerical scheme based on this approximation in §3. We will see that this

scheme enjoys several nice properties. We exhibit numerical examples in §4.

2 A main result

Hereafter we only consider the case where

o
s

(A2) AG; = AG

In this case y; = v = tan(A8/2), and the equations (3) reduce to

nny?
La

Our main result is the following convergence theorem between the solution of the

(5) d; = —y(Aek + K); +

are-preserving motion (2) and the solution of the corresponding crystalline motion (5).

Theorem 2.1 Assume n =1, (A1) and (A2). We also assume that for small A8
(6)

(6,0 — Kas(8, 0)[lso = O(AF?) and max |re(jA6,0) ~ "J’*Si?l)l (;;;;(0) = 0(A6?).

For all T € (0,00) there ezists a constant C' such that

max ||.(6,t) — kas(8,1)]|lo < C(AB)>.

0<t<T

68



69

Here k(0,1t) is solution of (2), kag(8,t) is the continuous function which is derived by

linear interpolation from solution k;(t) of (5).

We will prove the theorem in appendix. We note that in the case of the classical
curvature flow, convergence results are obtained by comparison theorem. However, in
our case such comparison theorem is not available, because of the presence of the nonlocal

term.

Remark 1 In crystalline algorithm, the initial curve is usually approzrimated by circum-
scribed piecewise linear closed curve. By this way of approzimation, the assumption on
the initial data (6) is achieved (see [UY1, UY2, Y1]).

3 Numerical scheme

In this section we propose a numerical scheme based on crystalline approximation. We
assume (A1) and (A2).

In order to maintain the area-preserving property, we discretize the equation (5) as

follows:
2
~ am n
) (Ded)y = —y(Bgk + )2 4 T
L,
Here we set “
(Dyd)™ = i —ap pmtz Y
t4) 4 T ’ '] d;?i,+1/2’
d'{ﬂ-i—l +dm
+1/2 _ % 5 m+1/2 +1/2
&= L, = 3 g,
0Lj<nn

and 7, denotes the m-th time increment. By this way of discretization, the area-

preserving property holds in the following sense:

m-1 +1

dr +

(DAa)™ = 3 (___, b )v;"“/"’
=0

m-—1
+1/2 [ im+1/2 my \ _
Z d;n (k;n - Lm+1/2) =0.
A

J=0
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Here A} denotes the area enclosed by the solution curve, say I'Y. Moreover, we can also

verify the curve-shortening property, namely,

7m—1
m m+1 2 77 n? ’Y
(DtLA) = -7 Z k +/ m+1/2’
Ly
9 m—1 nn—1
_ " 2,,2 1 +1/2
= mi (7’ n Z dm+1/2 E dj’ ) <0
A j=0 @;

Here we have used summation by parts and the Schwarz inequality. Thus we have the

following proposition.

Proposition 1 The solution of equations (7) satisfies area-preserving and curve-shortening

properties.

Since the discretized problem (7) is fully implicit, to ensure the unique solvability, we

use the following adaptive time step control:

d’-"
(8) . pAby o?@“é},ﬂ
m 4+ A92 Y
Here we set

(1 = A)min{),1 - A}
1+ ’

A8y = 2(1 — cos A8) = Af? + 0(A8Y), t, Z Tiy P=
0<i<m
and ) is an appropriate constant in (0,1). Under this time step control we can prove

the following unique solvability result.

Proposition 2 The full discretized problem (7) possesses a unigque solution {d7"}o<j<nn
and there holds

(1-X) ogjugmd}" <dMt < (1+)) Oggnd;".

Proof.  Hereafter we use the notations (-)max, (‘)min and 3 ,(-); for maxogj<m(-);s
minggjcnn(-); and Y gcjcpn();r respectively. To show the solvability, we use the next
iteration: for k =0,1,2, ...

2 = 50 —72(Aa+1)( i )_E.zkz-llz.z‘.))“"

with the initial data z = d;"
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By using the variable time step (8), one can get the boundedness:
(1-X)22, < zf <1+ X022,

and the contraction map:

1

K1 _ k) < pllgk — A f =
2547 = Al < e~ 27, €= g <

1.

Here ||(-)|| denotes the maximum norm maxgc<j<yn |(-);|. Hence there exists the limit
limy o z}’ = d;-"'H and also the boundedness above leads the second assertion. O

In the case where 7 = 1, we can prove a global existence result. It is a consequence
of area-preserving and curve-shortening properties. This result can be proved in almost

same manner as the proof of Lemma 3.1 of [Y2].

Proposition 3 Assume n =1, (A1), and (A2). Let us fiz the number of sides n. The
solution of the full discretized problem (7) exists globally in the following sense:

oo
E T = OO.

m=0
Remark 2 Generally speaking, we can expect that the discretization which maintains
conservation laws such as area-preservation leads to numerical stability. So the numerical
solution k7 might be bounded uniformly in n and m.
For fized n, the convergence between the solution of (5) and (7) can be easily verified.
However, this convergence depends on n and we could not obtain satisfying convergence
result between the solution of (2) and (7), yet.

4 Numerical examples

Now let us exhibit several numerical examples which are obtained by the scheme
explained in the previous section.

Firstly, we examine the convergence of our scheme numerically, in the case where
1 = 1. In Figure 1, we show the convergence of a numerical solutions whose initial data
is an ellipse with the major axis 1.5 and the minor axis 1. Here the horizontal axis is
the number of sides n and the vertical axis error between the numerical solutions for n
and n/2, ||kae(-,t) — k2a6(:,t)||2, both in logarithmic scale. We plot the graphs at time
t = 0.0,0.5,1.0,1.5,2.0,2.5, 3.0, 3.5,4.0,4.5, and 5.0, the upper graph is corresponding
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to the smaller . From the figure we can see the rate of convergence is about O(A6?). In
Figure 2, we show a time evolution of the curve which starts from an ellipse (n = 160;

from left to right). We can observe that the curve converges to a circle (see also Table

1).

Simple( a=1b=1.5} L*2 error —4——

01 F

0.01 ¢ E

0.001 |

0.0001

Figure 1: convergence of crystalline algorithm

100000

Figure 2: time evolution of a curve

Secondly, we examine the area-preserving and the curve shortening properties of our
scheme. In Table 1, we show the time evolutions of the area and the length of the
numerical solution that is same as in Figure 2. From the table we can see that the
area-preserving property holds very precisely, and the isoperimetric ratio for polygon
(see [Y2]) IF = 2%32% converges to 1.

Thirdly, we investigate the case where 7 > 1, numerically. In Figure 3, we show
a time evolution which starts from a self-intersected initial data (n = 2; from left to
right). In Figure 4, for the same initial data, we observe the behavior of M(t) =

max; k;(t), 5, 3%, &%, and #; | numerically. Here horizontal axis is the number of
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Table 1: area-preserving and curve-shortening properties

Time(t,) | Area(AR) Length(L®) | Isoperimetric ratio(I%)
0.00 9.4900475984 | 24.2846618519 4.944587
1.00 9.4900476781 | 14.1617906947 1.681521
2.00 9.4900477791 | 11.5715060040 1.122653
3.00 9.4900477951 | 11.0190270481 1.018011
4.00 9.4900477950 | 10.9347550372 1.002499
5.00 9.4900477941 | 10.9229931726 1.000344
13.80 9.4900477933 | 10.9211168364 1.000000

time step m. We can observe M, ¥ M seems to diverge, 47k seems to be bounded, and

%& seems to decay. From these figures it seems to develop singularity in finite time, say
T, with the order O((T — t)~%/2).

O3

Figure 3: time evolution of a curve (case 7 = 2)

A Proof of the results

In this appendix we will prove Theorem 2.1. This result could be obtained from an a
priori estimate (Theorem A.1) and a rather general convergence theorem (Theorem A.2)
below. Firstly, we mention the a priori estimate. Secondly, we explain the convergence

theorem.

A.1 A priori estimate

In this subsection we explain the a priori estimate for the solution of our problem

(5). This is a discrete version of Proposition 3.6 in Gage [G]. We note that in our case
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Figure 4: time evolution of M,k M, M, M,

admissible piecewise linear closed curves are convex polygons, say I'a, since we assume
the rotation number 7 = 1 and (A1). Using isoperimetric inequality for polygons (see

[Y2]) instead of usual one, Gage’s proof also works well in our case. So we skip the proof.
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Theorem A.1 Letn = 1. Assume that k;(t) is a solution of (5). Let M be sup mnax k; ),

0<ji<n
then there exist positive constants ¢, ¢y and c3, which depend only on zmtzal polygon To

such that
clog M < ¢y + c3T.

Remark 3 Using the local existence theorem for the system of ordinary differential equa-
tions (5) and the theorem above, we can see that the solution of (5) exists globally in time
and remains bounded. Moreover, this bound does not depend on n, since the constants

1, ¢z, and c3 in the theorem depend only on the initial polygon T'y.

A.2 Convergence theorem

In this subsection we establish a convergence theorem between a nonlocal partial
differential equation (9) and a system of ordinary differential equations (10) below. Our

goal is to obtain the following theorem.

Theorem A.2 (convergence theorem) Assume (H1) to (H5). Let u be a solution

of continuous problem (9) and vy, a solution of semi-discrete problem (10). Then there
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exists a positive constant Cr such that
”u(’ t) - 'Uh('»t)HC(O,R) < CRh2’ ”uz(at) - (Dwvh)('7t)”C(O,R) < CRh2; 0 <t< T..
Here, we set T, = min{T, T}}.

Let us make clear the problems (9) and (10) and the hypotheses (H1) to (H5).

Continuous problem

We call the following one dimensional periodic boundary value problem for a nonlocal

partial differential equation the continuous problem.

u(z,t) = aug(r,t)+f, 0<z<R, 0<t<T,
) u(z,0) = u%z), 0<z <R,
u(0,t) = u(R,t), wu-(0,t) =uy(R,t), 0<t<T.

Here, we set

' R
a=a(z,t,u(z,t), f=f(z,tu(zt),Gu]), Glu]=Gult) =/O 9(u(§,t)) d€.
We make the following assumptions on this problem.
(H1) a =a(z,t,2), f(z,t,2,w), g=g(z) are smooth, bounded and

inf a(z,t,z) > 0.
0<z<R, 0<t<T, z€R

(H2) There exists a unique time local classical solution u(z, t) for the continuous problem

(9). T denotes the maximal existence time of the solution u(z, t).

Semi-discrete problem

We call the following initial value problem for a system of ordinary differential equa-
tions that is obtained via spatial discretization of the continuous problem (9) the semi-

discrete problem.

'l)j(t) = aj(Ac'u)j(t) +fi, 0<j<n, 0<t<Ty,
(10) v;(0) = ), 0<j<n,

v_1(t) = vpoa(t), wa(t) =w(t), 0<t<T;.

Here, we set

Ij= th h= R/n’ a; = a‘(xja t, vj(t))a
fi = f(zj,t,0;(t), Gav]), Galo] = Galo](t) = D g(ve(t))h.

0<k<n
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The difference operator A, for {¢;}, which is periodic in the index j with period n, is

defined as follows:
2¢; + Cj1

(AL); = (D,*¢); = ot = 22 o= o(h).
We will also use the following difference operators.
(Arl); = (Di€);s
(D()j = CGits ~ _ Ci-1 _ Cj+12;Cj—1’ (DaC); = _Cﬁ_%_;ii,
(Mi¢); = i+l ‘;‘Q‘—% _ Gt 253. + Gt

We note that (D,Mp(); = (MpDy(); = (Dy(); and (M2C)J (MhQ);-

We make the following assumptions on the semi-discrete problem (10).

(H3) There exists a unique time local solution {v;(t)} for the semi-discrete problem
(10). T} denotes the maximal existence time of the solution {v;(t)}. There exists

a constant C such that sup lvj(t)| £ C < oo and C does not depend on h.
0<j<n, 0<t<Ty

(H4) (Assumption on initial condition): There exists a positive constant Cy such that

0 A 2,0 X fuq —_ v(.)__ :
max |u’(z;) — vJ| < Coh?, max V@) = w(@im) _ Yin = Y < Cyh?.
0<ji<n 0<ji<n 2¢ 2¢

(H5) (Assumption on discretization parameter ¢ = @(h) > 0): There exists a positive
constant C, such that |p(h) — h| < C,h%. We also assume h < 1.

The solution of the ordinary differential equations (10) is a vector valued function
{v;}. From this function we can obtain a continuous function vs(z,t), which is defined
on [0, R] x (0,T}), by linear interpolation in spatial direction. We also call this function

v, the solution of the semi-discrete problem (10).

A.2.1 Proof of Theorem 2.1

Let us prove the Theorem 2.1, namely, convergence between the following two prob-

lems.

) 27
o K= K’Kgg + K® — -—TLI—”EICZ, L= / k1 d,
0

_ nmy o _ -1 _ Ad
° —n(A,n) +n —f—n LA—q';n,- , 7_2tan—2—.
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a(z,t,2) = 2%, f(z,t,z,w) =23 — gzz, g(z) = %, R=2n, (h)=2sin g,
in Theorem A.2, we can see that hypotheses (H1) and (H5) are satisfied. And the
hypothesis on the initial data (H4) is also clear (see Remark 1). As we noted in §1, the
former problem possesses a global solution and it remains bounded. The later problem
also possess a global solution and it remains bounded uniformly in n (see Remark 3).
Hence the hypotheses (H2) and (H3) are also satisfied. Therefore we obtain the Theorem
2.1. a

A.2.2 Proof of Theorem A.2

As we noted in §2, the presence of nonlocal term prevents us from the use of comparison
theorem. In stead of this powerful tool, we estimate discrete W'? norms of the error
e;(t) = u(z;,t) — v;(t) for all p > 1. Let us explain the outline of the proof. Firstly, for
p > 2 we obtain the differential inequalities for discrete L? norms of e; and (De); ((15)
and (16)). Secondly, we derive time global boundedness of (D,e); and the convergence
in discrete H' norm, using (15), (16), and time global boundedness of e;. Thirdly, we
obtain the estimate for all W' norms. Passing p to infinity, we obtain the discrete WH>
estimate (20). Finally, by linear interpolation in spatial direction, we obtain the result.
Notations and formulae

Before to proceed, let us introduce several notations.

For vector valued function {(t) = {(;(¢)} € R", ||¢||(t) and ||¢]|,(t) denote discrete
1/p

L* norm max |(;(t)| and discrete LP norm Z I€;(t)|Ph , (1 £p < ), respec-
0<s<n 0<j<n
tively. For continuous function {(z,t), ||{(:,?)||c(,r) denotes sup |((z,?)]|.
0<z<R

For the solution u(z,t) of (9) we set u;(t) = u(z;,t) and let v;(t) be the solution of
(10). From vector valued function ;(t) = u,(t)(or v;(t)), we obtain continuous function

¢n(z,t) on 0 < z < R by interpolation as follows:

Cu(z,t) = 3 L¢ia(t) + —”lh—Cj(t), r; LT <zTjy1, 0<j<n.

We also interpolate the subscripts of {;(t) = u;(t)(or v;(t)) as follows:

Girs(t) = 8Gima(t) + 1 —8)¢(t), 0<s<1, 0LZj<n.



Then we have

Uip gt u(Tijrs, 1), 0<8<1, .
u(xj+s,t)={ seoll) # ulzge 1) 0<j<n,

Ujts(t) = u(zjyst), s=0, 1,
Un(Zj40t) = Vjpslt), 0<8<1, 0<j<m

Here, we set

$j+5=$j+8h=(j+3)h, -1<s<1, 0<Lj<n.

We interpolate the first order difference of (5 = u, (or vy) as follows:
T — T Tit1— T .
(DyCn)(z, t) = A L(Dy()j41(t) + JHh (Dy€)j(t), zj<z<Tjt, 0<j<n.

We will use the following formulae many times.

(F1) (Dy£C); = (Dyf)s(Ma); + (Ma8);(DyC); = (DyCE);,
(F2) Z@(ch =“Z(D¢§)JCJ’

(F3) Z@(Acc Z(Dwé),wwop

(F4) Z(Mhe),m(nwc Zsm, Dy();-

Proof. We set e;(t) = u(z;,t) — vj(t) = u;(t) — v;(t). We note that the hypotheses (H2), .

(H3), and (H4) lead to

(11) sup |lel|oo(t) is bounded,
0<t<Ty

and

(12) llelloo(0) < Coh?,  [Dyelloo(0) < Coh.

1°.  Differential equation for e;

Differentiating e; with respect to ¢, after long calculation, we obtain
(13) €; (t) = aj(Ace)J- + Cy e + Z Csjexh + (ang,j + C4,j)h2
k
Here C;(i =1, ...,4) are given by

1
01,] = / F(.’Z}J’,t, Z,,j) d8,
0
F(z,t,2) = a,(z,t, 2)uz.(z,t) + fo(z, 1, 2, Gu]),

78
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h2 2 __ h2
C2,j = Cé’jai + %ﬁ-umm(l‘j, t),
1! '
Cé:j = __6/ (1 - S)s(uzzzz(xj-}-s, t) + uxa:xa:(-'lfj—s, t)) ds,
0

_ !
Cik,i = C3,;Cs 4

1 1
Cs,j =/ fw(mjata vjyas,h) ds, C:;,:;:‘/(; gz(za,lc) ds,
0

1
C4,j = / fw(mj,t7 vjaGs,h) ds C‘;?
0

, h 1 1 5 32
Ci=5% [ [ o959 (u(@rig.0) dsao.

Here we set z,; = su; + (1 — s)v;. Those are all bounded:
sup |C;,;(t)] < oo, sup  |Ca,(t)] < oo.
1<i<4, 0<5<n, 0<t<T, 0<k<n,0<t<T,

The differences of a;, Cy ;,C, 5, C3 j, Cy,; are in the following forms

(Dya); = K1,; + K2;(Dye)j,  (DyCh)j = K3 + Ka,j(Dye);,
(14) (DyaCa); = Ks,; + Ks,i(Dye)j, (DyCs); = Kz + Kg j(Dye);,
(DyC4); = Ky j + K10,5(Dye);.

Here all constants K; are bounded, namely,

sup ||Ki||oo(t) < 00, ¢=1,2,...,10.
0<t<T,

2°. Differential inequalities for ||e||, and ||Dye|l, (p > 2) |
Differentiating ||e||, with respect to ¢ and using (13), (14), the formulae above and

p 2> 2, after long calculation we can obtain
(15)

1d _ -
Sallels <G (Ilellﬁ‘lllDwellp + ) lejP (Dye)ih + llells + llel B2 (el + hz)) :
i

Here we set O = suPo<scr, {||K1lloo, |1 Kz2lloos [|Chlloos [|C3lloos [1aC2 loo + [|Call} -

In the same manner as above, we obtain

(16)
1ld
= IIDgelz

< Cn (Z le;ll(Dye);P~*h + Z le11(Dye);?h + |IDyelp-1A% + ||Dyel (1 + hz)) :



Here the constant Cy; depends on OiltlpT{HCl[]oo, 1K 3| 005 | K e lloos || K5l 00s || K6l 00s || K700
<t<

| Kslloos | Kolloos [[Ki0lloo}-
3°. Boundedness of |Dye||
Using the Hélder inequality, from the inequality (16) we have

1d _ _
;gt-HD«:ellﬁscn (llellplDeel 5" + llel ool IDyellf + [[Dyellp(1 + h?) + callDyel5~*A%) .
Here we set cg = max{1, R}. Hence, using (11) we have

d

EZHDcpe“p < Cn (||e|‘|,, + |lelloo] IDyellp + |[Dyellp(1 + hz) + Cha)
<Cr (crllelloo + (llelloo + 1 + h?)||Dyell, + crh?)
<Cm (||Dyellp +1).

Here we set Cir = ChiSupgeser, {l/€]loo +2,cr(1 + ||€]|)} - From the inequality above,

we have
IIDyellp(t) < (|Dyelp(0) + 1)em,

Using the Holder inequality and (12), there holds

||Dyellp(t) < Crve®™T, 0<t< T, (Crv=crCo+1),
uniformly in p. Therefore, as p — 0o, we obtain
(17) IDyellue(t) < Cryetin®

uniformlyin 0 <t < 7T, and h < 1.
4°. Convergence of ||el|2 and ||Dyell2

Setting p = 2 in (15) and (16) and using the Schwarz inequality and (11), we have

d g
Hllellz < 2Cr (”6“2”D¢e||2 + ) lesl(Dpe)h + llell3 + [lellF + ||e||1h2) )
J

e||2 + ||Dye|l? ell? + ht
e (” I+ 1D )1 oy S (D)2 + el + Rl + IEFED)
J

<G (Jlellz + 1Dyel[7 + 1*),
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a
ZIIDyel

< 2Cu (Z le511(Dye)jlh + [lelloo D _(Dye)3h + [IDyell1h® + [|Dyel 3(1 + hz)) ,
j

2

2 2
<0y (LeE+ el

<Cu(llell3 + |Dyell3 + h*).

R||Dyel|3 + h*
2

+ [lelloo|Dpel 13 +

+|[Dyel 31 + hz)) ,

Here, we set C; = C1 sup {3(1 + R),1 + 2|le||co}, Ci = Cu sup {5+ R + 2||el|oo}-
0<t<T, 0<t<Ts

Hence setting Jo(t) = ||e||3(t) + ||Dyel|3(t), we have
Lh) < Ov(B(H) +hY)  (Ov=Cl+Ch).

Therefore we obtain J5(t) < (J2(0) + h*)e“vT+, 0 < t < T, namely,

llell3(2) + [IDyel B(t) < (lell3(0) + |IDyell3(0) + Ae™™, 0<t<T.

Taking (12) into account, we can derive

(18) llell2(t) < Cvih?,  [[Dyell2(t) < Cvih®.

Here we set Cy1 = 1/2(crCo)? + 1e%vT+/2, By the Schwarz inequality, we can also obtain

(19) llells(¢) < VRCwik?,  ||Dyell1(t) < VRCyih’.

5°. Convergence of |le]|o and |Dyelco
Using (11), (17), (18), and the Holder inequality, we have

1d _ _ -
;3;”6“; <G (HCH,'; YDyell, + Y les P~ (Dpe)2h + llel2 + llel2Z1(1 el + hz)) ,
J
<Ch
(Hellﬁ_lllDwer + ||Dyelloo Y le; P~ (Dye);lh + lelf + crllel B (llell + hz)) ,
J

<Ct (llellz™IDyelly + 1D el os lel 2~ Dyell, + Ilel 2 + erllel 2~ (VRllella + 42))
< Cvar (lleliz ™ Dyelly + [lell5 + lell5h?)

Here, we set Cynr = C1supgser, {1 + ||Dyel|oo, cr (CvivVR + 1)}. Hence, we obtain

d
7€l < Cvn(llells + [Dgellp + A7)



We can also estimate as follows,
1d
};E't'HDsaeHZ

< Cn (Z lesll(Dype)iP~ h+ D _ lesll(Dye); Ph + [[Dyel fZ1A + ||Dyel f2(1 + hz))
j i
<Cn (|lellplIDyells™" + [lello| [Dyellf + crllDyel[5~A* + [[Dyell5(1 + h%)) .

Hence we obtain p
3/ 1Pwelle < Cvmn([lell, + [IDeell, + h?),
here we set Cyir = Ci1 SUPgcser, {2 + ||€]]oo, cr}. Now we can see that I(t) = |le||o(t) +
[|Dye||p(t) satisfies
d
Et-I(t) < CIx(I(t) + hz) (CIX = ma.x{C'VH, CVIII})-

Therefore I(t) < (I(0) + h?)e®*T*, 0 < t < T.. From this inequality and (12), we see
that
|lellp(t) < Cxh?,  [IDyellp(t) < Cxh?, 0<t<T,

hold uniformly in p. Here we set Cx = (2crCo+1)e“*xT+, Tending p to infinity, we obtain

(20)  llelleol®) S Cxh%  IIDyelloolt) < Cxh?, 0<t<T,,
forall h < 1.
6°. Convergence of ||enl|c(o,R)
Finally, we prove the convergence result. Forz; < z < 41, weset A = A(z) = z -;1:17,-.

Then at £ = z; + Ah we have

|u(z,t) — up(z,t)| < Crh?,

Ch= swp max sup |Bos(a,1),
0<t<T, 0SI<n g <z<zj s

Bug(e) = [ (1 8 Me(zsir0 ) — an(asen, D) do,
and
() va(@ )] < Au(zsan, ) — vyan ()] + (1 — XJu(zzy ) — vy(8)]

< Ay —=v)le(t) + (1 = A)|Ju — v]|o(t)
llu — v||o(t) < Cxh?, 0<t<T..
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Hence, we obtain

lu(z,t) — vp(z, t)| < |u(z,t) — un(z, t)| + lua(z, t) — vn(z, t))
< (Cr+Cx)h? 0<z<R, 0<t<T,.

On the other hand, we have

|uz(z,t) — (Dpun)(z,t)|
= |ug(Zjar t) — A(Dpun)jrs — (1 — X)(Dyua);]
—h —h h
< I—‘f——l|u,,.(x,~,t)| + /\hlso Ilum(:z:j, t)] + |Byj|h? + -(’;|32,1'+A|h2

2
< Crh?,

"
Chp= sup max sup |Bay(s,2),
0<t<Ty, 059<n g, <z<z;yy

1
h
Bi, =\ f (1 = )Mo (4, 8) = toza @y )} ds,
0

1
B, = —Z/ (1 - 3)2{uzm($j+sat) + uzzz(‘”j—-ﬂ t)}ds,
0

h h h
Bs,; = —Cyplug(z),t)| + Ah—Cyplugs (x4, )| + | Brj| + —|Bzj+als
v @ 7
and
|(Dgun)(z,t) — (Dyvn)(z, t)|

< Al(Dpt)+1(2) — (Dpv)j4a ()| + (1 = A)[(Dyu);(t) — (Dyv);(2)
= [|(Dyu) — (Dyv)||oo(t) < Cxh?, 0<t< T,

Hence we obtain

|uz(z,t) — (Dypvn)(z, t)]
< |uz(z,t) — (Dyun)(z,t)| + |(Dyun)(z,t) — (Dyvn)(z, t)|
< (CR+Cx)h*, 0<z<R, 0<t<T.

Therefore setting Cr = max{C%, Ck} + Cx, we finally obtain
(21)

|[u(-,2) — va(, D)llo,r) < Crh?,  ||us(-st) — (Dyun) (- t)llo,ry < CrA:, 0<t
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