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1. Introduction
Let w(z) be an arbitrary solution of the first Painlevé equation

(PI) ' w” = 6w? + z

("= d/dz). Then, w(z) is a transcendental meromorphic function, and every pole
is double. The counting function for poles is defined by

N(r,w) = /Or (n(p,w) ~ n(O,w))(%p + n(0,w)log r,

where n(r,w) denotes the number of poles inside the disk |z| < r, each counted
according to its multiplicity. By a well-known argument in the Nevanlinna theory
([4, §2.4]), we have

. . N(r,w)
1.1 —_2 —
(1.1) hrngglf T(r,) 0, namely, llilisol;lp T(r,) ,

which implies N(r,w) — oo as r — oco. Here, m(r,w) and T(r,w) are, respec-
tively, the proximity and the characteristic functions defined by

2
T(r,w) = m(r,w) + N(r,w)

2r
m(r,w) = L/ log* |w(re'®)|dé, logt z = max{0,log =},
0

(for the standard notation and basic facts in the Nevanlinna theory, see [2], [4]).
For the magnitude of N(r,w), the following is known ({1}, (5], [6], [9]):

(1.2) r*?logr < N(r,w) <K r*/?,

which implies that the growth order of w(2)

) log T'(r, w)
o(w) = hir_lil:p Tog 7
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is equal to 5/2. (We write f(r) < g(r) (or g(r) > f(r)) if f(r) = O(g(r)) as

T — 00.)
A sequence of higher order analogues of (PI) is given by the following:
(PL.) , | dyy1[w] + 4z =0, veN

(cf. [1, §16]; [3]). Here, d,[w] (v = 0,'1,2, ...) are differential polynomials in w
determined by
(1.3)  dofw] =1,
(1.4) Dd,4y[w] = (D? - 8wD — 4w')d, [w], D =d/dz, v € NU{0}.
Since

dz[’ﬂ)]/‘l = —w" + 6w2 + Clw + Co,

where C; € C (7 = 0,1) are arbitrary, equation (PI;) essentially coincides with
(PI). In general, (Pl,,) is a 2v-th order nonlinear equation; e.g. for v = 2,3,

(PL)o w™ = 20ww” + 10(w')? — 40w® + 2,
(Pl)o w® = 28ww™ + 56w'w® + 42(w”)? — 280(w’w” + w(w')? — w?) + 2,
where the arbitrary constants corresponding to C; of (PI,) are taken to be 0. Let

w,(2) be an arbitrary meromorphic solution of (PIy,). It is interesting to evaluate
the growth order of w,(z). The following result gives a lower estimate of it:

Theorem 1.1. For everyv € N,
(1.5) limsup Log N(r, w,) >3

00 logr —v+1’

namely the growth order of w,(z) is not less than (2v +3)/(v + 1).

As an immediate consequence, we have
Corollary 1.2. Equation (Ply,) admits no rational solutions.
Viewing Theorem 1.1 combined with (1.2), we pose the following:
Conjecture. The growth order of w,(z) is equal to (2v +3)/(v +1).

We sketch the proof of Theorem 1.1, illustrating the particular case v = 2.
The full proof is found in [8].

2. Sketch of the proof of Theorem 1.1 for (Pl,)
The basic idea is the same as in the proof for (PI) (cf. [7]). Suppose the
contrary:

. log N(r,wp) 7
(2.1) h?iil:p R Pr— <3



namely, for some € > 0, N(r,w;) < r7/37¢, from which it follows that
(22) n(r) = n(rywa) < 771,

because
N(2r,w,) 2 / r(n(p,wg) - n(d,wg))df > (n(r,ws) + O(1)) log 2.

Starting from (2.1), we will derive a contradiction. Let {a;}32, (or {e;}}_,,
q € N) be the sequence of all distinct poles of wy(z) arranged as |a;| < --- <
lajl <---. Tt is easy to check that, around each pole aj,

wa(2) = c(§)(z — a;)* + O(1),

where ¢(j) = 1 or 3. By this fact combined with (2.2), we write w;(2) in the form

(2.3) wa(2) = 8(2) + o(2),
(24) 8() = Y eli)((z — a) 7 — 47?),

where ¢(z) is an entire function; and in (2.4), if a; = 0 the term (z —a;)™% - a;?
should be replaced by z~2. Under (2.2), we have the following lemmas whose
proofs are similar to those of [7, Lemmas 1.1 and 1.2].

Lemma 2.1. For every r > 1, there exists z, satisfying

0.7r < |z | <, Z |z — a;]7? < rif3-¢/2, Z |z, — a;|7% < pl/2-e,
la,|<2r lajl<2r

Lemma 2.2. Let r be an arbitrary number satisfying r > 1. Then,
5 flemat -l €, Y et
la;1>2r |aji>2r

for |z| < r, and

0<Jaji<2r

By a well-known argument of the Nevanlinna theory, it is shown that @(z) is
a polynomial. Note that |®(2)| < |2|aj|<2r|+ Izla,lz% . By Lemmas 2.1 and 2.2,
for every r > 1, there exists z,, 0.7r < |z.| < r satisfying

|@(z,)| <m0z < P
87(2)] & r*0e, (@W(a)| < i

(2.5)

15



(26) wy(z) < ([wi(z)] + fwalz )W ()] + [wh(z)? + |z ]) "

< g (2) M2 + war) 2w (20) V2 + [ (20) 2 + 22,
Substituting w")(z,) = ¢®)(2,) + ®®)(z,) (k = 0,1,2,4) into (2.6) and using
|@(¥)(2,)| « r1/3++/6 (cf. (2.5)), we have

(1) le(z) < '+ (e (z)
4 (9 4 () )78 4 (2 ) 1) 4 1 4 [ ()PP,

which implies that ¢(z) = C' € C. Then, by (P1,),

0.7r < |z| & Jw(z)| + [walz) Iy (2,)] + [wh () + (2P < 7',
which is a contradiction. Thus Theorem 1.1 with v = 2 follows.

3. Genaral case

To treat the general case, we need to know some facts related to the terms
of the differential polynomial d,,[w]. Let [w,w/,...,w®)}* denote the monomial

w'e(w') - - (wP))», where ¢ = (Lo, t1,-.-,¢4p) € (N U {0})P*1. For this monomial
with ¢ = (¢, 1, ...y ¢p), We define the weight of it by

p

lell = 372 + r)ee.

x=0
Then, d,41[w] is written in the form:

Lemma 3.1. For every v € N U {0},

1 / 2
du+l[w] = ,7u+]wu+ + E : Ct[wa w, ...,’U)( U)]" L= (1'01 L1, "'-)LZU)s
[leli€2(v+1), w0<¥

where ¢, € C, 7,41 € C\ {0}.

To show Theorem 1.1 for the general case, we start from the supposifion that
N(r,w,) < r(2"+3)/(l’+1)-=,
which implies that
(31) | 'n,('r, wu) & r(2u+3)/(u+1);e

for some ¢ > 0. Let {a;}32, (or {a;}_,) be a sequence of distinct poles of w,(2).

Around a;, we have

w,(z) = ¢(a;)(z — ¢;)7 + O(1),
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where c(a;) = k(a;)(k(a;) + 1)/2 for some k(q;) € {1,...,v}. By (3.1), w,(2) is

written in the form

wy(z) = ) e(a;)((z — a;)7* = a;7) + (),

a;

where ¢(z) is an entire function. Instead of Lemmas 2.1 and 2.2, we have the
following under supposition (3.1):

Lemma 3.2. For every r > 1, there exists z, satisfying

0.7 < |z | < r, Z |z, —a;| "2 « P/ A)==/2) Z |z —a;| 7% <« /A4
lajl<2r . lajl<2r

Lemma 3.3. Let r be an arbitrary number such thatr > 1. Then
S lz—a) P —a? et N gt <
fajl>2r laj|22r

Jor|z| < r, and
S gt e

0<|aj|<2r

Using Lemmas 3.2 and 3.3 combined with Lemma 3.1, we prove Theorem 1.1
for the general case.

References

[1] Gromak, V. 1., Laine, I. and Shimomura, S., Painlevé Differential Equations in
the Compler Plane Walter de Gruyter, Berlin, New York 2002.

[2] Hayman, W. K., Meromorphic Functions Clarendon Press, Oxford, 1964.

[3] Kudryashov, N. A., The first and second Painlevé equations of higher order and
some relations between them, Phys. Lett. A 224, 353-360 (1997).

[4] Laine, 1., Nevanlinna Theory and Complez Differential Equations Walter de
Gruyter, Berlin, New York, 1993.

[5] Shimomura, S., Growth of the first, the second and the fourth Painlevé transcen-
dents, to appear in Math. Proc. Cambridge Philos. Soc.

[6] Shimomura, S., Lower estimates for the growth of Painlevé transcendents, to ap-
pear in Funkcial. Ekvac.



18

[7] Shimomura, S., On the number of poles of the first Painlevé transcendents and
higher order analogues, SirikaisekikenkytishoKokyiiroku No. 1296, 124-127 (2002).

[8] Shimomura, S., Poles and a-points of meromorphic solutions of the first Painlevé
hierarchy, Preprint (2003). ‘

[9] Steinmetz, N., Value distribution of Painlevé transcendents, Israel J. Math. 128,
29-52 (2002).



