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Abstract
In this article we present Diophantine Approximations concerning values of
GauB’ hypergeometric function. Our estimate relies on anatural applica-
tion of the method of Chudnovsky used in [2] for the quantitative theory of
linear forms in elliptic logarithms. We regard GauB’ hypergeometric func-
tion as a‘logarithmic function”
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1Introduction
Let $a,$ $b,$ $c$ be rational numbers where $c$ is not zero neither anegative

integer. Denote $(a)_{k}:=a(a+1)\cdots(a+k-1)$ . For $|z|<1$ , let us consider

$F(z):=F(a,b, c;z)= \sum_{k=0}^{\infty}\frac{(a)_{k}(b)_{k}}{(c)_{k}k!}z^{k}=1+\frac{ab}{c}z+\frac{a(a+1)b(b+1)}{2c(c+1)}z^{2}+\cdots$ ,

the classical hypergeometric function of Gaufl.
This function satisfies the linear differential equation

$z(1-z) \frac{d^{2}F}{dz^{2}}+(c-(a+b+1)z)\frac{dF}{dz}-abF=0$ .
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Let us write also Gauf3’ continued fraction

$G(z):=G(a, b, c;z)= \frac{F(a,b+1,c+1\cdot z)}{F(a,b,c\cdot z)},’=\frac{1|}{|1}-\frac{g_{1}z|}{|1}-\frac{g\mathrm{z}z|}{|1}\cdots$ ,

where $g_{2n-1}= \frac{(a+n-1)(c-b+n-1)}{(c+2n-2)(c+2n-1)},$ $g_{2n}= \frac{(b+n)(c-a+n)}{(c+2n-1)(c+2n)}$ for

$n\in \mathrm{Z},$ $n\geq 1$ .
Arithmetical property of the values of these functions is closely related

to the monodromy group of the differential equation of $F(z)$ . It is knovm
that the singularities of the differential equation are 0, 1and $\mathrm{o}\mathrm{o}$ , so the
fundamental group is that of the projective line $\mathrm{P}^{1}$ where these points are
removed.

In 1985, J. Wolfart investigated when the function $F(z)$ had algebraic
values. This result relied on Wiistholz’ transcendence theorem concerning
with abelian integrals [9], since we have the integral representation

$F(a, b, c;z) \int_{0}^{1}\omega(x, 0)=\int_{0}^{1}\omega(x, z)$

where $\omega(x, z)$ denotes the rational differential form by $x^{b-1}(1-x)^{\mathrm{c}-b-1}(1-$

$zx)^{-a}dx$ .
F. Beukers and Wolfart gave in 1988 acondition for the algebraicity of

the value of $F(z)$ , and Wolfart also showed acondition for the algebraicity
of the value of $G(z)$ (see [1]).

Let us recall Wolfart’s criterion in 1985 :

Theorem (Wolfart)
Let $F(z)$ be Gauss’ hypergeometric function defined as above. We have

the following properties:
(i). Suppose that $F(z)$ is algebraic over $\mathrm{C}(\mathrm{z})_{f}$ then $F(\xi)\in\overline{\mathrm{Q}}$ if $\xi\in\overline{\mathrm{Q}}$ .
(ii). Suppose that the monodromy group of $F(z)$ is an arithrnetic hyper-

bolic triangle group and that $c<1,0<a<c,$ $0<b<c,$ $1-c+|a-b|+|c-$

$a-b|<1$ . Then there is a subset $E$ of algebraic teumbers which is dence in
$\mathrm{C}$ such ihat $F(\xi)\in\overline{\mathrm{Q}}$ whenever $\xi\in E$ .

(iii). In the case neither (i) nor (ii), there are only finitely many $\xi\in\overline{\mathrm{Q}}$

such that $F(\xi)\in\overline{\mathrm{Q}}$.

If the monodromy group is finite, then $F(z)$ is an algebraic function from
well-known Schwarz’ list and there are 85 arithmetic triangle groups ffom
Takeuchi’s list. Then the triples $(a, b, c)$ for the cases (i) (ii) of Wolfart’s
theorem above are determined. The statement (ii) says that the function
$F(z)$ , which is atypical example of $G$-function, allows algebraic values at
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algebraic points infinitely many often. Namely the analogy of Shidlovsky’s
theorem on $E$-function[6] [7] does not hold for G-function.

Now consider the function $G(z)$ .
Theorem (Wolfart)

Let $G(z)$ be Gauss’ continued fraction defined as above. If $G(z)$ is not
algebraic over $\mathrm{C}(\mathrm{z})$ , then $G(\xi)$ is transcendental at almost all $\xi\in \mathrm{Q}$ .

Indeed, we have the following property:
Suppose that none of $a,$ $b,a-c,$ $b-c$ is rational integer. Then
almost all $\xi\in\overline{\mathrm{Q}}\Leftrightarrow\xi\in\overline{\mathrm{Q}}-\{0,1\}$ .

Assume that none of $a,$ $b,a-c,$ $b-c$ is rational integer. We note that it is
also explicitely known under which condition $G(z)$ is an algebraic function;
both $F(a,b, c;z)$ and $F(a,b+1, c+1;z)$ are periods of the same abelian
variety up to anormalization factor, and their monodromy groups are is0-
morphic. So

$F(a, b, c;z)$ is algebraic function of $z\Leftrightarrow \mathrm{t}\mathrm{h}\mathrm{e}$ monodromy group is finite
$\Leftrightarrow F(a,b+1, c+1;z)$ is algebraic function of $z$ .

Our aim is to give Diophantine approximation of values of $F(z)$ and
$G(z)$ whenever these values are transcendental.

We even remark that the usual assumptions $|z|<1$ for $F(z)$ and $z$ is
not areal $\geq 1$ for $G(z)$ are not so important to state the algebraicity or the
transcendence since the integrd representations of $F(z)$ and $G(z)$ are valid
for any analytic continuation ;the integration path has to be moved only.
However, we need to restrict us to the case $|\xi|<1$ to state our result.

2Our statement
We assume that none of $a,b,c,a-c,b-c$ is rational integer.

Theorem 2.1 Let $B\geq e,$ $D\in \mathrm{Z},$ $D\geq 1$ . Let $\beta\in\overline{\mathrm{Q}}$ with $h(\beta)\leq$

$\log B,$ $[\mathrm{Q}(\beta):\mathrm{Q}]\leq D$ . Then for any $\xi\in\overline{\mathrm{Q}},$ $\xi\neq 0,$ $|\xi|<1$ , we have
(i). either $F(a,b, c:\xi)=\beta$ or
(ii). there eists $C_{1}>0$ an effectively calculable constant depending only

on $F(\xi)$ and $D$ , independent of $B$ , satisfying

$|F(a,$ b, c: $\xi)-\beta|>B^{-C_{1}}$ .
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Corollary 2.1 When the assumption of Theorem is verified, the value $F(a,$ b, $c$

4) is not a Liouville number.

Concerning $G(z)$ , we have also the following. Now assume that none of
a, b, a-c,b-c is rational integer.

Theorem 2.2 Let $B\geq e_{f}D\in \mathrm{Z},$ $D\geq 1$ . Let $\beta\in\overline{\mathrm{Q}}$ with $h(\beta)\leq$

$\log B,$ $[\mathrm{Q}(\beta) : \mathrm{Q}]\leq D$ . Then for any $\xi\in\overline{\mathrm{Q}},$ $\xi\neq 0,$ $|\xi|<1$ , we have
(i). either $G(a, b, c:\xi)=\beta$ or
(ii). there eists $C_{2}>0$ an effectively calculable constant depending only

on $G(\xi)$ and $D$ , independent of $B$ , satisfying

$|G(a,$b, c: $\xi)-\beta|>B^{-C_{2}}$ .

Corollary 2.2 When the assumption of Theorem is verified, the value $G(a,$ $b,$ $c$

$\xi)$ is not a Liouville number.

Indeed, these results correspond to arefinement of our previous estimate
[5].

Idea of the proof
The proof uses then integral representation :

$F(a, b,c:z)= \frac{1}{B(b,c-b)}\int_{0}^{1}x^{b-1}(1-x)^{c-b-1}(1-zx)^{-a}dx$ $(z\neq 0, |z|<1)$ .

Consider the curve defined by

$y^{N}=x^{\mathrm{A}}(1-x)^{B}(1-zx)^{C}$

where $N=1.\mathrm{c}.\mathrm{m}$ . of (denominator of $a$ , denominator of $b$ , denominator of
$c),$ $A=(1-b)N,$ $B=(b+1-c)N,$ $C=aN$. Thus as before, we see

$\frac{dx}{y}=x^{b-1}(1-x)^{e-b-1}(1-zx)^{-a}dx$

and $F(a,b,c : \xi)$ is regarded as the quatient of two periods; the one is a
quasi-period of art abelian variety defined over $\overline{\mathrm{Q}}$ of dimension $\phi(N)$ , the
other is aquasi-period of an abelian variety defined over $\overline{\mathrm{Q}}$ of dimension
$\frac{\phi(N)}{2}$ . Similarly, $G(a, b, c:\xi)$ is regarded as the quatient of two quasi-periods
of abelian varieties defined over $\overline{\mathrm{Q}}$ of dimension $\phi(N)$ for both. The idea
viewing our values as quotients of periods is already used in the articles of
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Wolfart. Our contribution is regarding the hypergeometric function as a
logarithmic function of such abelian varieties, namely alocal inverse map of
the exponential maps of algebraic groups. The usefulness of the logarithmic
function is showed in our previous work [2] [3]; logarithmic function has
the Taylor expansion where the height of the $n$-th term denominator is not
too increasing, namely of order $n$ . However the exponential function has
the Taylor expansion where the height of the $n$-th term denominator is of
order $n!$ . The hypergeometric function $F(z)$ has Taylor expansion whose
$n$-th coefficient $f_{n}$ verifies the following: there exists aconstant $C>1$ such
that l.c.m. of (denominators of $f_{i}$ ) for $i=1,$ $\cdots,$ $n$ is bounded by $C^{n}$ , which
is nothing but the fact that it is G-function.

Remark. Recently, E. Gaudron obtained ageneralization of [2] which is
valid for quasi-period of abelian varieties. From this we may also get the
same type of approximation.
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