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Abstract

In this article we present Diophantine Approximations concerning values of
Gauf’’ hypergeometric function. Our estimate relies on a natural applica-
tion of the method of Chudnovsky used in [2] for the quantitative theory of
linear forms in elliptic logarithms. We regard GauS’ hypergeometric func-
tion as a “logarithmic function”.
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1 Introduction

Let a,b,c be rational numbers where ¢ is not zero neither a negative
integer. Denote (a)x :=a(a+1)---(a+ k —1). For |z| < 1, let us consider

(@) (b)x b ab a(la+1)b(db+1) ,
F(z) .= — —
(2) .= F(a,b,c;2) = k§=0 Ok 1+ cz+ 2+ 1) 254

the classical hypergeometric function of Gau8.
This function satisfies the linear differential equation

(l—z)——F—+(c—(a+b+1)z)%—1§—abF=0.
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Let us write also Gaufl’ continued fraction

Flab+le+L2) 1 gzl gl

e ——— —— . s+ &

F(a,b,c;2) [T T TR

G(z) := G(a,b,c;z) =

(@a+n-1)(c—b+n—1) (b+n)(c—a+n)

n — fi
ctm—2crem-1 " cten—Dictam

where ggn—1 =

neZn>l.

Arithmetical property of the values of these functions is closely related
to the monodromy group of the differential equation of F(z). It is known
that the singularities of the differential equation are 0,1 and oo, so the
fundamental group is that of the projective line P! where these points are
removed.

In 1985, J. Wolfart investigated when the function F'(z) had algebraic
values. This result relied on Wiistholz’ transcendence theorem concerning
with abelian integrals [9], since we have the integral representation

F(a,b,c; 2) /:w(a:,O) = /01 w(z, 2)

where w(z, z) denotes the rational differential form by z*~*(1 - z)* (1 -
zx)"%dzx.

F. Beukers and Wolfart gave in 1988 a condition for the algebraicity of
the value of F(z), and Wolfart also showed a condition for the algebraicity
of the value of G(2) (see [1]).

Let us recall Wolfart’s criterion in 1985 :

Theorem (Wolfart)

Let F(z) be Gauss’ hypergeometric function defined as above. We have
the following properties:

(i). Suppose that F(2) is algebraic over C(z), then F(£) € Q if€ € Q.

(ii). Suppose that the monodromy group of F(z) is an arithmetic hyper-
bolic triangle group and thatc < 1,0 <a<c,0<b<c¢l—ct+la—bl+|c—
a—b| < 1. Then there is a subset E of algebraic numbers which is dence in
C such that F(£) € Q whenever £ € E. _

(iii). In the case neither (i) nor (ii), there are only finitely many £ € Q
such that F(¢) € Q.

If the monodromy group is finite, then F(z) is an algebraic function from
well-known Schwarz’ list and there are 85 arithmetic triangle groups from
Takeuchi’s list. Then the triples (a,b,c) for the cases (i) (ii) of Wolfart’s
theorem above are determined. The statement (ii) says that the function
F(z), which is a typical example of G-function, allows algebraic values at
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algebraic points infinitely many often. Namely the analogy of Shidlovsky’s
theorem on E-function [6] [7] does not hold for G-function. '
Now consider the function G(z).

Theorem (Wolfart)
Let G(z) be Gauss’ continued fraction defined as above. If G(2) is not
algebraic over C(z), then G(£) is transcendental at almost all § € Q.
Indeed, we have the following property:
Suppose that none of a,b,a — ¢,b — c is rational integer. Then
almost all € € Q <= £ € Q- {0,1}.

Assume that none of a, b, a—c, b—c is rational integer. We note that it is
also explicitely known under which condition G(2) is an algebraic function;
both F(a,b,c;z) and F(a,b+ 1,c + 1;2) are periods of the same abelian
variety up to a normalization factor, and their monodromy groups are iso-
morphic. So

F(a,b,c; 2) is algebraic function of z <=> the monodromy group is finite
<= F(a,b+1,c+ 1; 2) is algebraic function of z.

Our aim is to give Diophantine approximation of values of F'(z) and
G(z) whenever these values are transcendental.

We even remark that the usual assumptions |z| < 1 for F(2) and z is
not a real> 1 for G(z) are not so important to state the algebraicity or the
transcendence since the integral representations of F'(z) and G(z) are valid
for any analytic continuation ; the integration path has to be moved only.
However, we need to restrict us to the case |{| < 1 to state our result,

2 Our statement
We assume that none of a,b,c,a — ¢,b — c is rational integer.

Theorem 2.1 Let B > e, D € Z,D > 1. Let B € Q with h(8) <
log B,[Q(B) : Q] < D. Then for any € € Q,£#0,[€| < 1, we have

(i). either F(a,b,c:&) =0 or

(ii). there exists C1 > 0 an effectively calculable constant depending only
on F(&) and D, independent of B, satisfying

|F(a,b,c: £) — 8| > B~
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Corollary 2.1 When the assumption of Theorem is verified, the value F(a,b,c
€) is not a Liouville number.

Concerning G(z), we have also the following. Now assume that none of
a,b,a — ¢,b — c is rational integer.

Theorem 2.2 Let B > e, D € Z,D > 1. Let B € Q with h(B) <
log B, [Q(B8) : Q) < D. Then for any £ € Q,£ #£0,[£| < 1, we have

(i). either G(a,b,c: &) =0 or

(ii). there exists C2 > 0 an effectively calculable constant depending only
on G(&) and D', independent of B, satisfying

G(a,b,c: §) — B| > B~

Corollary 2.2 When the assumption of Theorem is verified, the value G(a, b, c
€) is not a Liouville number.

Indeed, these results correspond to a refinement of our previous estimate

[5].

Idea of the proof
The proof uses then integral representation :

F(a,b,c: z) = b)/ > 1(1—z) Y (1—2zz)%dx (2 #0,]2| < 1).

B(b,c —
Consider the curve defined by

yN = xn(l —)B(1 — 22)°

where N = l.c.m. of (denominator of a, denominator of b, denominator of
c), A=(1—-b)N,B=(b+1—c)N,C =aN. Thus as before, we see

dz
y

and F(a,b,c : £) is regarded as the quatient of two periods; the one is a
quasi-period of an abelian variety defined over Q of dimension ¢(N), the
other is a quasi-period of an abelian variety defined over Q of dimension
J—l Similarly, G(a, b, c : §) is regarded as the quatient of two quasi-periods
of abelian varieties deﬁned over Q of dimension ¢(N) for both. -‘The idea
viewing our values as quotients of periods is already used in the articles of

= 2711 — 2)* 11 - 22)"%dx



Wolfart. Our contribution is regarding the hypergeometric function as a
logarithmic function of such abelian varieties, namely a local inverse map of
the exponential maps of algebraic groups. The usefulness of the logarithmic
function is showed in our previous work [2] [3]; logarithmic function has
the Taylor expansion where the height of the n-th term denominator is not
too increasing, namely of order n. However the exponential function has
the Taylor expansion where the height of the n-th term denominator is of
order n!. The hypergeometric function F'(z) has Taylor expansion whose
n-th coefficient f, verifies the following: there exists a constant C > 1 such
that l.c.m. of (denominators of f;) for ¢ = 1,-- -, n is bounded by C™, which
is nothing but the fact that it is G-function.

Remark. Recently, E. Gaudron obtained a generalization of [2] which is
valid for quasi-period of abelian varieties. From this we may also get the
same type of approximation.
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