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Abstract

Steady flows of avapor with evaporation and condensation on the boundary consisting of the condensed
phase of the vapor are considered in the following situation: (i) the boundary is of arbitrary smooth
shape; (ii) the Knudsen number Kn, the ratio of the typical mean free path of the vapor molecules to the
characteristic length of the system, is small; (iii) asmall amount of anoncondensable gas is contained in
the system; more specifically, the amount is such that the average concentration of the noncondensable
gas is of the order of Kn in the case of aclosed domain (the case of an infinite domain is also discussed).
The steady behavior of the vapor and the noncondensable gas, in particular, that in the continuum
limit $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\cdot \mathrm{K}\mathrm{n}$ vanishes, is investigated by means of asystematic asymptotic analysis based on kinetic
theory. In this situation, the average concentration of the noncondensable gas becomes infinitely small
in the continuum limit in the case of aclosed domain. However, it is shown that the noncondensable gas
accumulates in the infinitely thin Knudsen layer on the boundary where condensation is taking place and
has asignificant effect on the global vapor flow in the continuum limit. An example demonstrating such
an effect is also given.

1Introduction
Vapor flows with evaporation or condensation on the boundary have been one of the important subjects
in rarefied gas dynamics. For single-component systems consisting of apure vapor and its condensed
phase, many successful results have been obtained. For example, anew type of gas dynamics (i.e., fluid-
dynamic equations and their boundary conditions) describing the vapor flows around the condensed phase
of arbitrary shape in the continuum limit has been established, together with its correction in the near
continuum regime, by means of asystematic asymptotic analysis of the Boltzmann equation for small
Knudsen numbers (Sone and Onishi [1], Onishi and Sone [2], Sone [3, 4, 5], Aoki and Sone [6]). As for
the vapor flows at intermediate and large Knudsen numbers, we refer to Sugimoto and Sone [7], Sone and
Sugimoto [8], and Takata et al. [9] as typical examples and to Kogan [10], Ytrehus [11], and Rebrov [12]
as review papers.

In practical situations, however, evaporation and condensation often take place in the presence of
other gases that neither evaporate nor condense (noncondensable gases). Such two or multi-component
systems (vapor-gas mixtures) have also been investigated in the literature (e.g., Pao [13], Matsushita [14],
Onishi $[15, 16]$ , Bedeaux et al. [17] $)$ . But, because of the complexity of the systems, the level of under-
standing is still unsatisfactory. For instance, the behavior of the mixtures in the continuum limit has not
fully been understood yet.

In aseries of recent papers (Aoki et al. [18], Takata et al. [19], Takata and Aoki [20], Aoki [21]),
we investigated the continuum limit of amixture of avapor and anoncondensable gas in asimple one-
dimensional problem. More specifically, we considered the mixture in the gap between two parallel plane
condensed phases of the vapor with different uniform temperatures (the condensed phases may be moving
with aconstant speed in their surfaces) and clarified the features of the continuum limit by means of a
systematic asymptotic analysis as well as an accurate numerical analysis based on kinetic theory. Let $n_{r}$

be an appropriate reference number density of the vapor molecules (e.g., the saturation number density
of the vapor molecules at the temperature of one of the condensed phases), $n_{av}^{B}$ the average number
density of the noncondensable gas in the gap, and Kn the Knudsen number with respect to the vapor,
namely, the ratio of the mean free path of the vapor molecules in the reference equilibrium state at rest
to the reference length (the width of the gap). According to Aoki et al. [18], Takata et al. [19], Takata
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and Aoki [20], and Aoki [21], there are two different situations in the continuum limit, where Kn g.oes

to zero, depending on the amount of the noncondensable gas contained in the gaP, i.e., (i) the case of

$n_{av}^{B}/n_{r}=O(1)$ , and (ii) the case of $n_{av}^{B}/n_{r}=O(\mathrm{K}\mathrm{n})$ . In case (i), evaporation and condensation stop.

However, the vanishing (or nonexisting) evaporation and condensation have an important effect on the

flow field (i.e., the profiles of the temperature, density, and flow velocity) in the continuum limit. This is

an example of the ghost effect first pointed out by Sone et al. [22] and then discussed in Sone et al. [23],

$\mathrm{s}_{011\mathrm{e}}[24,25,5]$ , and Bouchut et al. [26] for single-component systems. In case (ii), aulliform flow of the

pure vapor is caused from the evaporating to the condensing surface. Because $n_{av}^{B}/n_{r}$ vanishes in the

limit, the amount of the noncondensable gas becomes infinitely small compared with that of the vapor

(or the average concentration of the noncondensable gas becomes infinitesimal ). However, the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ of

the noncondensable gas still has asignificant effect on the vapor flow. This seemingly paradoxical result

is due to the fact that the infinitesimal amount of the noncondensable gas is concentrated in the Knudsen

layer with an infinitesimal thickness on the condensing surface by the vapor flow, so that its local number

density there becomes high enough (comparable to $n_{r}$ ) to affect the vapor flow (see Aoki et al. [18]).

Thus, the continuum limit is nothing obvious even in such asimple one dimensional problem.

The continuum limit of type (i) is discussed for the general geometry by Takata and Aoki [27]. That

is, the mixture in contact with arbitrarily shaped boundary at rest, consisting of the condensed $\mathrm{p}\mathrm{h}\mathrm{a}8\mathrm{e}$ of

the vapor, is considered (the mixture is assumed to be at rest at infinity in the case of an infinite domain),

and the correct fluid-dynamic-tyPe equations and their boundary conditions for the continuum limit are
derived from the Boltzmann equation and its boundary condition for hard-sphere molecules. From this

fluid-dynamic system, the cause of the ghost effect is clarified in the case of the mixture.

The aim of the present study is to clarify the continuum limit of type (ii) for the general geometry.

That is, we are going to carry out asystematic asymptotic analysis for small Knudsen numbers on

the basis of kinetic theory to derive an appropriate fluid-dynamic system that describes the effect of

asmall amount (or an infinitesimal average concentratioll) of a noncondensable gas in the continuum

limit. Actually, Aoki et al. [28] perform ed aMonte Carlo simulation of atwo dimensional vapor flow for

small Knudsen numbers in the case corresponding to type (ii) and found that the small amount of the

noncondensable gas changes the stream lines of the vapor flow significantly from those in the pure vapor

case. This result also supports the necessity of the present study.

2Formulation of the problem

137



138

(a $=A$ , $B$ ). Then the Boltzmann equation for abinary mixture (Kogan [29], Chapman and Cowling [30],

Hirschfelder et al. [31] $)$ in the present time-independent problem is $\mathrm{w}$ ritten as

$\zeta_{i}\frac{\partial\hat{F}^{\alpha}}{\partial x_{1}}=\frac{2}{\sqrt{\pi}}\frac{\mathrm{l}}{\mathrm{K}\mathrm{n}}\sum_{\beta=A,B}\hat{J}^{\beta\alpha}(\hat{F}^{\beta},\hat{F}^{\alpha})$, $(\alpha=A, B)$ , (1)

$\hat{J}^{\beta\alpha}(f, g)=\int[f(\zeta_{*}’)g(\zeta’)-f(\zeta_{*})g(\zeta)]\hat{B}^{\beta\alpha}(|\mathrm{e}\cdot\hat{\mathrm{V}}|, |\hat{\mathrm{V}}|)\mathrm{d}\Omega(\mathrm{e})\mathrm{d}^{3}\zeta_{*}$ , (2)

$\zeta’=\zeta+\frac{\hat{\mu}^{\beta\alpha}}{\hat{m}^{\alpha}}(\mathrm{e}\cdot\hat{\mathrm{V}})\mathrm{e}$ , $\zeta_{*}’=\zeta_{*}-\frac{\hat{\mu}^{\beta\alpha}}{\hat{m}^{\beta}}(\mathrm{e}\cdot\hat{V})\mathrm{e}$, (3a)

$\hat{\mu}^{\beta\alpha}=\frac{2\hat{m}^{\alpha}\hat{m}^{\beta}}{\hat{m}^{\alpha}+\hat{m}^{\beta}}$, $\hat{m}^{\alpha}=m^{\alpha}/m^{A}$ , (3b)

$\hat{\mathrm{V}}=\zeta_{*}-\zeta$ , $\mathrm{d}^{3}\zeta_{*}=\mathrm{d}\zeta_{*1}\mathrm{d}\zeta_{*2}\mathrm{d}\zeta_{*3}$, (3c)

Kn $=\ell_{r}/L$ , $(3\mathrm{d})$

where $\mathrm{e}$ is aunit vector, $\zeta_{*}$ is the variable of integration corresponding to $\langle$ , $\mathrm{d}\Omega(\mathrm{e})$ is the solid angle

element in the direction of $\mathrm{e}$ , and $\hat{B}^{\beta\alpha}(|\mathrm{e}\cdot\hat{\mathrm{V}}|, |\hat{\mathrm{V}}|)$ are nonnegative functions of $|\mathrm{e}\cdot$
$\hat{\mathrm{V}}|$ and $|\hat{\mathrm{V}}|$ depending

on the molecular model. The domain of integration in Eq. (2) is the whole space of $\zeta_{*}$ and all directions

of $\mathrm{e}$ . In Eq. $(3\mathrm{d})$ , $\ell_{r}$ is the mean free path of amolecule of the $A$-component(vapor) when it is in

the equilibrium state at rest with molecular number density $n_{r}$ and temperature $T_{r}$ , and Kn is the

corresponding Knudsen number, which represents the degree of rarefaction of the system. Here and in

what follows, the Greek letters $\alpha$ and $\beta$ are used to represent the labels $A$ and $B$ of the components.

Since no confusion is expected, the notes such as $\alpha=A$ , $B$ in Eq. (1) will mostly be omitted below. As

in the left-hand side of Eq. (1), the summation convention (i.e., $a_{\dot{\iota}}b_{i}= \sum_{i=1}^{3}a:b_{i}$ ) is used throughout the
paper.

It should be noted that the function $\hat{B}^{\beta\alpha}$ also depends on the dimensionless parameter $U_{r}^{\beta\alpha}/kT,$ ,

where $U_{r}^{\beta\alpha}$ is the characteristic size of the intermolecular potential for the interaction of amolecule of

the a–component with amolecule of the $\beta$-component, though it is not shown explicitly in Eq. (2). This

fact was pointed out by Sone for the collision term for asingle-component gas (Sone $[4, 5]$ , Sone and

Aoki [32] $)$ . When both of the components are hard-sphere gases, $\hat{B}^{\beta\alpha}$ and $\ell_{r}$ are given by

$\hat{B}^{\beta\alpha}=\frac{1}{4\sqrt{2\pi}}(\frac{d^{\beta}+d^{\alpha}}{2d^{A}})^{2}|\mathrm{e}\cdot\hat{\mathrm{V}}|$ , $\ell_{r}=\frac{1}{\sqrt{2}\pi(d^{A})^{2}n},$ ’
(4)

where d’ is the diameter of amolecule of the a-component. The $\hat{B}^{\beta\alpha}$ does not depend on $U_{r}^{\beta\alpha}/kT_{r}$ in

this case.
We now denote the temperature of the boundary by $T_{r}\hat{T}_{w}$ , its velocity by $(2kT_{r}/m^{A})^{1/2}\hat{v}_{wi}$ , and the

saturation pressure of the vapor at temperature $T_{r}\hat{T}_{w}$ by $p_{r}\hat{p}_{w}^{A}$ . Further, since the problem is steady,
$\hat{v}_{wi}n_{\mathrm{i}}=0$ is assumed, where $n_{i}$ is the unit vector normal to the boundary pointing to the gas region.
Then the boundary conditions are written as

$\hat{F}^{a}=\sigma_{w}^{\alpha}\hat{T}_{w}^{-\theta/2}(\frac{\hat{m}^{\alpha}}{\pi})^{3/2}\exp(-\frac{\hat{m}^{\alpha}(\zeta_{i}-\hat{v}_{w\nu})^{2}}{\hat{T}_{w}})$ , $\zeta_{\dot{l}}n_{i}>0$ , (5)

with

$\sigma_{w}^{A}=\hat{p}_{w}^{A}/\hat{T}_{w}$ , (6a)

$\sigma_{w}^{B}=-2(\frac{\pi\hat{m}^{B}}{\hat{T}_{w}})^{1/2}\int_{\zeta_{i}n_{\mathrm{i}}<0}\zeta_{\mathrm{i}}n_{i}\hat{F}^{B}\mathrm{d}^{3}\zeta$ , (6b)

where $\mathrm{d}^{3}\zeta=\mathrm{d}\zeta_{1}\mathrm{d}\zeta_{2}\mathrm{d}\zeta_{3}$. Equation (5) with $\alpha=A$ means that the vapor molecules leaving the boundary

obey the corresponding part of the Maxwellian distribution characterized by $\hat{T}_{w},\hat{v}_{wi}$ , and $\hat{p}_{w}^{A}$ (complete
condensation condition). On the other hand, Eq. (5) with $\alpha=B$ means that the noncondensabl
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gas molecules reflected by the boundary obey the corresponding part of the Maxwellian distribution

characterized by $\hat{T}_{w}$ and $vwi$ and that there is no net mass flow of this component across the boundary

(diffuse reflection).
Next, we introduce macroscopic variables as the moments of the velocity distribution functions. For

each component, we define its number density $n_{r}\hat{n}^{\alpha}$ , density $n_{r}m^{A}\hat{\rho}^{\alpha}$ , flow velocity $(2kT_{r}/m^{A})^{1/2}\hat{v}_{i}^{\alpha}$ ,

temperature $T_{r}\hat{T}^{\alpha}$ , and partial pressure $p_{r}\hat{p}^{\alpha}$ by

$\hat{n}^{\alpha}=$. $\int\hat{F}^{\alpha}\mathrm{d}^{3}\zeta$ , $\hat{\rho}^{\alpha}=\hat{m}^{\alpha}\int\hat{F}^{\alpha}\mathrm{d}^{3}\zeta(=\hat{m}^{\alpha}\hat{n}^{\alpha})$ , (7a)

$\hat{v}_{i}^{\alpha}=\frac{1}{\hat{n}^{\alpha}}\int\zeta_{i}\hat{F}^{\alpha}\mathrm{d}^{3}\zeta$ , $\hat{T}^{\alpha}=\frac{2}{3}\frac{\hat{m}^{\alpha}}{\hat{n}^{\alpha}}\int(\zeta_{i}-\hat{v}_{i}^{\alpha})^{2}\hat{F}^{\alpha}\mathrm{d}^{3}\zeta$ , (7b)

$\hat{p}^{\alpha}=\frac{2}{3}\hat{m}^{\alpha}\int(\zeta_{i}-\hat{v}_{i}^{\alpha})^{2}\hat{F}^{\alpha}\mathrm{d}^{3}\zeta(=\hat{n}^{\alpha}\hat{T}^{\alpha})$ . (7c)

Here and in what follows, the domain of integration with respect to $\zeta_{i}$ is its whole space, unless otherwise

stated. For the total mixture, the number density $n_{r}\hat{n}$ , density $n_{r}m^{A}\hat{\rho}$ , flow velocity $(2kT_{r}/m^{A})^{1/2}\hat{v}_{i}$ ,

temperature $T_{r}\hat{T}$ , and pressure $p_{r}\hat{p}$ are defined by

$\hat{n}=\int\sum_{\beta=A,B}\hat{F}^{\beta}\mathrm{d}^{3}\zeta$ , $\hat{\rho}=\int\sum_{\beta=A_{\mathrm{I}}B}\hat{m}^{\beta}\hat{F}^{\beta}\mathrm{d}^{3}\zeta$
, (8a)

$\hat{v}_{i}=\frac{1}{\hat{\rho}}\int\zeta_{i}\sum_{\beta=A,B}\hat{m}^{\beta}\hat{F}^{\beta}\mathrm{d}^{3}\zeta$
, $\hat{T}=\frac{2}{3\hat{n}}\int(\zeta_{i}-\hat{v}_{i})^{2}\sum_{\beta=A,B}\hat{m}^{\beta}\hat{F}^{\beta}\mathrm{d}^{3}\zeta$

, (8b)

$\hat{p}=\frac{2}{3}\int(\zeta_{i}-\hat{v}_{i})^{2}\sum_{\beta=A,B}\hat{m}^{\beta}\hat{F}^{\beta}\mathrm{d}^{3}\zeta(=\hat{n}\hat{T})$
. (8c)

Thus the macroscopic variables for the total mixture are expressed in terms of those for individual
components as follows:

$\hat{n}=\sum_{\beta=A,B}\hat{n}^{\beta}$
,

$\hat{\rho}=\sum_{\beta=A,B}\hat{\rho}^{\beta}$
,

$\hat{\rho}\hat{v}_{i}=\sum_{\beta=A,B}\hat{\rho}^{\beta}\hat{v}_{i}^{\beta}$

, (9a)

$\hat{p}=\sum_{\beta=A,B}[\hat{p}^{\beta}+\frac{2}{3}\hat{\rho}^{\beta}(\hat{v}_{i}^{\beta}-\hat{v}_{i})^{2}]$ . (9b)

In the literature, the temperature $\hat{T}^{\alpha}$ and partial pressure $\hat{p}^{\alpha}$ of each component are often defined in a

different way, i.e., by the second equation of Eq. (7b) and Eq. (7c) with $\hat{v}_{i}^{\alpha}$ being replaced by $\hat{v}_{\dot{l}}$ [the first

equation of Eq. (7b) $]$ (e.g., Kogan [29] and Chapman and Cowling [30]). If these definitions are adopted,

the pressure $p\wedge$ of the total mixture, defined by Eq. (8c), is expressed by the simple sum of $\hat{p}^{\alpha}$ instead of

Eq. (9b).

3Asymptotic analysis for small Knudsen numbers

In this section, we carry out asystematic asymptotic analysis of the boundary-value problem (1) and (5)

for small Knudsen numbers under the situation described in Sec. 2.1, namely,

$n_{av}^{B}/n_{r}=O(\mathrm{K}\mathrm{n})$ . (10)

The basic guideline of the analysis is the asymptotic theory developed by Sone (Sone [33, 34, 3, 4, 5],

Sone and Onishi [1], Onishi and Sone [2], Aoki and Sone [6], Sone and Aoki [32], Sone et al. $[22, 35])$ . In

the course of the analysis, we use the small parameter $\epsilon$ :

$\epsilon=(\sqrt{\pi}/2)\mathrm{K}\mathrm{n}$ , (11)

rather than the Knudsen number Kn
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3.1 Hilbert solution

Let us first seek the moderately varying solutions $\hat{F}_{H}^{\alpha}[\partial\hat{F}_{H}^{\alpha}/\partial x_{\iota}=O(\hat{F}_{H}^{\alpha})]$ of the Boltzmann equation
(1) in apower series of $\epsilon$ :

$\hat{F}_{H}^{\alpha}=\hat{F}_{H0}^{\alpha}+\hat{F}_{H1}^{\alpha}\epsilon+\cdots$ . (12)

Correspondingly, the macroscopic variables are expanded as

$h_{H}^{\alpha}=h_{H0}^{\alpha}+h_{H1}^{\alpha}\epsilon+\cdots$ , (13a)
$h_{H}=h_{H0}+h_{H1}\epsilon+\cdots$ , (13b)

where $h$ denotes $\mathrm{n},$
$\rho\wedge,\hat{v}_{\dot{1}},\hat{T}$ , or $\hat{p}$. Here, $h_{H}^{\alpha}$ and $h_{H}$ are defined by Eqs. $(7\mathrm{a})-(7\mathrm{c})$ and $(8\mathrm{a})-(8\mathrm{c})$ with $\hat{F}^{\alpha}$

replaced by $\hat{F}_{H}^{\alpha}$ , and the expansion coefficients $h_{Hm}^{\alpha}$ and $h_{Hm}$ are obtained by substituting the expansions
(12)-(13b) into the definitions of $h_{H}^{\alpha}$ and $h_{H}$ and by equating the coefficients of the same power of $\epsilon$ .
This solution (or expansion) is called the Hilbert solution (or expansion). Some examples of $h_{Hm}^{\alpha}$ azid
$h_{Hm}$ are given in Appendix A. If we substitute Eq. (12) into Eq. (1), we obtain the following sequence
of integral equations:

$\sum_{\beta=A_{1}B}\hat{J}^{\beta\alpha}(\hat{F}_{H0}^{\beta},\hat{F}_{H0}^{\alpha})=0$
, (14)

$\sum_{\beta=A,B}[\hat{J}^{\beta\alpha}(\hat{F}_{Hm}^{\beta},\hat{F}_{H0}^{\alpha})+\hat{J}^{\beta\alpha}(\hat{F}_{H0}^{\beta},\hat{F}_{Hm}^{\alpha})]$

$=$ $\zeta_{i}\frac{\partial\hat{F}_{Hm-1}^{\alpha}}{\partial x_{i}}-\sum_{\beta=A,B}\sum_{n=1}^{m-1}\hat{J}^{\beta\alpha}(\hat{F}_{Hm-n}^{\beta},\hat{F}_{Hn}^{\alpha})$ , (15)

where $m=1,2$ , $\ldots$ , and $\sum_{1}^{0}=0$ when $m=1$ in Eq. (15). Equation (14) is the system of nonlinear
integral equations for $\hat{F}_{H0}^{\alpha}$ , while Eq. (15) is that of inhomogeneous linear integral equations for $\hat{F}_{Hm}^{\alpha}$ .
The series of equations can, in principle, be solved successively from the lowest order.

The solution of Eq. (14) is given by local equilibrium distributions (Chapman and Cowling [30]),
namely, local Maxwellian distributions with common flow velocity and temperature, which can be ex-
pressed as

$\hat{F}_{H0}^{\alpha}=\hat{n}_{H0}^{\alpha}\hat{T}_{H0}^{-3/2}(\frac{\hat{m}^{\alpha}}{\pi})^{3/2}\exp(-\frac{\hat{m}^{\alpha}(\zeta_{i}-\hat{v}_{iH0})^{2}}{\hat{T}_{H0}})$ , (16)

by the use of the leading-0rder terms $\hat{n}_{H0}^{\alpha},\hat{v}_{iH0}$ , and $\hat{T}_{H0}$ of the expansions (13a) and (13b) [see Eqs. (Ala),
$(\mathrm{A}2\mathrm{b})$ , and $(\mathrm{A}2\mathrm{c})]$ . For this distribution, of course, the flow velocity and the temperature of each com-
ponent are the same as those of the total mixture, i.e.,

$\hat{v}_{iH0}^{A}=\hat{v}_{\dot{\mathrm{a}}H0}^{B}=\hat{v}_{iH0}$, $\hat{T}_{H0}^{A}=\hat{T}_{H0}^{B}=\hat{T}_{H0}$. (17)

To be consistent with Eq. (10), we need to assume that

$\hat{n}_{H0}^{B}\equiv 0$ , (i.e., $F\wedge H0B\equiv 0$), (18)

because otherwise $n_{av}^{B}/n_{r}$ becomes of $O(1)$ . Then, Eq. (15) with $\alpha=B$ and $m=1$ reduces to

$\hat{J}^{AB}(\hat{F}_{H0}^{A},\hat{F}_{H1}^{B})=0$ . (19)

The solution to this equation is given by alocal Maxwellian distribution with the same flow velocity and
temperature as $\hat{F}_{H0}^{A}$ (Cercignani [36]), i.e.,

$\hat{F}_{H1}^{B}=\hat{n}_{H1}^{B}\hat{T}_{H0}^{-3/2}(\frac{\hat{m}^{B}}{\pi})^{3/2}\exp(-\frac{\hat{m}^{B}(\zeta_{i}-\hat{v}_{iH0})^{2}}{\hat{T}_{H0}})$ , (20)
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where $\hat{n}_{H1}^{B}$ appears because the first equation of Eq. (Ala) ( $\alpha=B$ and $m=1$ ) has been used. Since
Eq. (20) also satisfies

$\hat{J}^{BA}(\hat{F}_{H1}^{B},\hat{F}_{H0}^{A})=0$ , (21)

Eq. (15) with $\alpha=A$ and $m=1$ reduces to

$\hat{J}^{AA}(\hat{F}_{H1}^{A},\hat{F}_{H0}^{A})+\hat{J}^{AA}(\hat{F}_{H0}^{A},\hat{F}_{H1}^{A})=\zeta_{i}\frac{\partial\hat{F}_{H0}^{A}}{\partial x_{i}}$ , (22)

which is the linear equation for $\hat{F}_{H1}^{A}$ and is of the same form as the corresponding equation in the pure
vapor case (Aoki and Sone [6]). The homogeneous equation of Eq. (22) has the independent nontrivial
solutions $\hat{F}_{H0}^{A}$ , $\zeta_{i}\hat{F}_{H0}^{A}$ , and $\zeta_{j}^{2}\hat{F}_{H0}^{A}$ . Therefore, the inhomogeneous term of Eq. (22) should satisfy the

following solvability condition in order for the equation to have asolution:

$\int(1, \zeta_{i}, \zeta_{j}^{2})\zeta_{\ell}\frac{\partial\hat{F}_{H0}^{A}}{\partial x_{\ell}}\mathrm{d}^{3}\zeta=0$ . (23)

If we substitute Eq. (16) with $\alpha=A$ into Eq. (23), we obtain

$\frac{\partial\hat{\rho}_{H0}^{A}\hat{v}_{jH0}}{\partial x_{j}}=0$ , (24a)

$\hat{\rho}_{H0}^{A}\hat{v}_{jH0_{\partial x_{j}}^{\mathrm{j}^{H0}}}+\frac{1}{2}\frac{\partial\hat{p}_{H0}^{A}}{\partial x_{\dot{\iota}}}=0\partial\hat{v}$ , (24b)

$\hat{v}_{jH0}\frac{\partial}{\partial x_{J}}(\frac{5}{2}\hat{T}_{H0}+\hat{v}_{lH0}^{2})=0$, (24c)

$\hat{p}_{H0}^{A}=\hat{\rho}_{H0}^{A}\hat{T}_{H0}$ , $(24\mathrm{d})$

where $\hat{\rho}_{H0}^{A}=\hat{n}_{H0}^{A}$ . The set of Eqs. $(24\mathrm{a})-(24\mathrm{d})$ is the Euler set for an ideal gas. In deriving Eqs. (24b)

alld (24c) from Eq. (23), we have used Eq. (24a). Our next task is to derive the appropriate boundary

condition for the Euler set. This will be discussed in the following subsections.
The nonzero $\hat{n}_{H1}^{B}$ does not contradict Eq. (10). However, we can consistently assume that

$\hat{n}_{Hm}^{B}\equiv 0$ , $(\mathrm{i}.\mathrm{e}.,\hat{F}_{Hm}^{B}\equiv 0)$ , $(m=1,2, \ldots)$ . (25)

That is, the analysis can be carried out consistently with Eq. (25). The reasoning of Eq. (25), which is

also related to the discussions in Sees. 3.2-3.4, is given in Appendix B.

3.2 Knudsen-layer correction
So far, we have paid no attention to the boundary condition. In order for the Hilbert solution (16) (with

a $=A$) to satisfy the boundary condition (5) (with $\alpha=A$), we have to impose the following conditions

on the boundary:

$\hat{n}_{H0}^{A}=\hat{p}_{w}^{A}/\hat{T}_{w}^{A}$, $\hat{v}_{\iota H0}=\hat{v}_{wi}$ , $\hat{T}_{H0}=\hat{T}_{w}$ . (26)

However, these conditions are too many for the Euler set of equations. In other words, we cannot

satisfy the boundary condition (5) only with the Hilbert solution. Therefore, we need to introduce the

Knudsen-layer correction. Let us seek the solution in the form

$\hat{F}^{\alpha}=\hat{F}_{H}^{\alpha}+\hat{F}_{K}^{\alpha}$ , (27)

where $\hat{F}_{K}^{\alpha}$ is the Knudsen-layer correction, which is acorrection term to the Hilbert solution near the

boundary. More precisely, $\hat{F}_{K}^{\alpha}$ is assumed to have the length scale of variation of the order of $\epsilon$ (or

the mean free path in the dimensional physical space) in the direction normal to the boundary, i.e.,

$n_{j}\partial\hat{F}_{K}^{\alpha}/\partial x_{j}=O(\hat{F}_{K}^{\alpha}/\epsilon)$ , and to be appreciable only in the thin layer with thickness of the order of

141



142

6adjacent to the boundary. In order to analyze the $\mathrm{K}\mathrm{n}\mathrm{u}\mathrm{d}\mathrm{s}\mathrm{e}\mathrm{n}rightarrow \mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}$ correction, we introduce the new
coordinate system $(\eta, \chi_{1}, \chi_{2})$ defined by

$x_{i}=\epsilon\eta n_{i}(\chi_{1}, \chi_{2})+x_{wi}(\chi_{1}, \chi_{2})$, (28)

where $xwi$ represents the boundary, $\eta$ is the coordinate normal to the boundary stretched by $1/\epsilon(\eta=0$

corresponds to the boundary), and $\chi_{1}$ and $\chi_{2}$ are the coordinates on the boundary orthogonal to each
other. We consider $\hat{F}_{K}^{\alpha}$ to be afunction of $\eta$ , $\chi_{1}$ , and $\chi_{2}[\partial\hat{F}_{K}^{\alpha}/\partial\eta=O(\hat{F}_{K}^{\alpha})]$ , as well as (., vanishing
rapidly as $\etaarrow\infty$ . We assume that $\hat{F}_{K}^{\alpha}$ is also expanded in apower series of $\epsilon$ as

$\hat{F}_{K}^{\alpha}=\hat{F}_{K0}^{\alpha}+\hat{F}_{K1}^{\alpha}\epsilon+\cdots$ . (29)

We now substitute Eq. (27) with Eq. (29) into Eq. (1) and take into account the properties of $\hat{F}_{K}^{\alpha}$ as well
as the fact that $\hat{F}_{H}^{\alpha}$ is asolution of Eq. (1). In particular, we use $\hat{F}_{H0}^{B}=\hat{F}_{H1}^{B}=0$ [Eqs. (18) and (25)]
and the following rearranged expansion of $\hat{F}_{H}^{A}$ in the Knudsen layer:

$\hat{F}_{H}^{A}=(\hat{F}_{H0}^{A})_{b}+[(\hat{F}_{H1}^{A})_{b}+(\frac{\partial\hat{F}_{H0}^{A}}{\partial x_{i}})_{b}n_{i}\eta]\epsilon+\cdots$ , (30)

where $()_{b}$ indicates that the quantity in the parentheses is evaluated on the boundary. Then, we obtain
the sequence of equations for $\hat{F}_{Km}^{\alpha}$ $(m=0,1, \ldots)$ . If we introduce the following $\hat{F}_{0}^{A}$ and $\hat{F}_{0}^{B}$ :

$\hat{F}_{0}^{A}=(\hat{F}_{H0}^{A})_{b}+\hat{F}_{K0}^{A}$ , $\hat{F}_{0}^{B}=\hat{F}_{K0}^{B}$ , (31)

the equations for $m=0$ are written as

$\zeta_{i}n_{i}\frac{\partial\hat{F}_{0}^{A}}{\partial\eta}=\hat{J}^{AA}(\hat{F}_{0}^{A},\hat{F}_{0}^{A})+\hat{J}^{BA}(\hat{F}_{0}^{B},\hat{F}_{0}^{A})$ , (32a)

$\zeta_{\dot{l}}n:\frac{\partial\hat{F}_{0}^{B}}{\partial\eta}=\hat{J}^{AB}(\hat{F}_{0}^{A},\hat{F}_{0}^{B})+\hat{J}^{BB}(\hat{F}_{0}^{B},\hat{F}_{0}^{B})$ . (32b)

The boundary conditions for Eqs. (32a) and (32b) on the boundary are, from Eqs. (5), (27) [with
Eqs. (12) and (29) $]$ , and (31), given by

$\hat{F}_{0}^{\alpha}=\sigma_{w0}^{\alpha}\hat{T}_{w}^{-3/2}(\frac{\hat{m}^{\alpha}}{\pi})^{3/2}\exp(-\frac{\hat{m}^{\alpha}(\zeta\dot{.}-\hat{v}_{wi})^{2}}{\hat{T}_{w}})$ , $\zeta_{i}n_{i}>0$ , (33)

with

$\sigma_{w0}^{A}=\hat{p}_{w}^{A}/\hat{T}_{w}$ , (34a)

$\sigma_{w0}^{B}=-2(\frac{\pi\hat{m}^{B}}{\hat{T}_{w}})^{1/2}\int_{\zeta.n_{\mathrm{i}}<0}.\zeta_{i}n_{t}\hat{F}_{0}^{B}\mathrm{d}^{3}\zeta$. (34b)

On the other hand, $\hat{F}_{K}^{\alpha}$ vanishes rapidly when $\eta$ going to infinity. Therefore, as $\etaarrow\infty$ ,

$\hat{F}_{0}^{A}arrow(\hat{F}_{H0}^{A})_{b}$

$=( \hat{n}_{H0}^{A})_{b}(\hat{T}_{H0})_{b}^{-3/2}(\frac{1}{\pi})^{3/2}\exp(-\frac{[\zeta_{t}-_{\mathfrak{l}}(\hat{v}_{jH0})_{b}]^{2}}{(\hat{T}_{H0})_{b}})$ , (35a)

$\hat{F}_{0}^{B}arrow 0$ . (35b)

Equations $(32\mathrm{a})-(35\mathrm{b})$ form ahatf-space boundary-value problem of the spatially one-dimen-
sional Boltzmann equation, which will be discussed in the next subsection. As we will see, in order for
the problem to have asolution, the boundary values $(\hat{n}_{H0}^{A})_{b}$ , $(\hat{v}_{aH0})_{b}$ , and $(\hat{T}_{H0})_{b}$ of the Hilbert part
contained in Eq. (35a) and the quantities $\hat{T}_{w},\hat{v}_{wi}$ , and $\hat{p}_{w}^{A}$ contained in Eq. (33) must satisfy certain
relations. These relations give the essential part of the boundary condition for the Euler set $(24\mathrm{a})-(24\mathrm{d})$ .
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If we integrate Eq. (32b) with respect to $\zeta_{\iota}$ over its whole space and take into account Eq. (35b), we
have

$\Phi_{iK0}n_{i}=0$ , for $0\leq\eta$ , (36)

where $\Phi_{iKm}$ denotes the particle flux corresponding to $\hat{F}_{Km}^{B}$ (note that $\hat{F}_{0}^{B}=\hat{F}_{K0}^{B}$ ), i.e.,

$\Phi_{\iota Km}=\int\zeta_{i}\hat{F}_{Km}^{B}\mathrm{d}^{3}\zeta$. (37)

Since we are interested in the behavior in the continuum limit, Eqs. $(32\mathrm{a})-(35\mathrm{b})$ play the main role.
However, we need apiece of information from the first-0rder Knudsen-layer correction. The first-0rder
equation corresponding to Eq. (32b) is given by

$\zeta_{i}n_{i}\frac{\partial\hat{F}_{K1}^{B}}{\partial\eta}=\hat{J}^{AB}((\hat{F}_{H1}^{A})_{b}+(\frac{\partial\hat{F}_{H0}^{A}}{\partial x_{i}})_{b}n_{\dot{\iota}}\eta+\hat{F}_{K1}^{A},\hat{F}_{K0}^{B})$

$+\hat{J}^{AB}((\hat{F}_{H0}^{A})_{b}+\hat{F}_{K0}^{A},\hat{F}_{K1}^{B})$

$+\hat{J}^{BB}(\hat{F}_{K1}^{B},\hat{F}_{K0}^{B})+\hat{J}^{BB}(\hat{F}_{K0}^{B},\hat{F}_{K1}^{B})$

$- \zeta_{j}[(\frac{\partial\chi_{1}}{\partial x_{j}})_{b}\frac{\partial\hat{F}_{K0}^{B}}{\partial\chi_{1}},+(\frac{\partial\chi_{2}}{\partial x_{j}})_{b}\frac{\partial\hat{F}_{K0}^{B}}{\partial\chi_{2}}]$. (38)

If we integrate this equation with respect to $\zeta_{\mathrm{i}}$ over its whole space and use Eq. (36), we have

$\frac{\partial}{\partial\eta}[\Phi_{iK1}n:]+\chi_{1,1}\frac{\partial}{\partial\chi_{1}}[\Phi_{iK0}t_{i}^{(1)}]+\chi_{2,2}\frac{\partial}{\partial\chi_{2}}[\Phi_{iK0}t^{(2)}.\cdot]$

$+g_{2}\Phi:K0t_{l}^{(1)}-g_{1}\Phi_{iK0}t_{\dot{l}}^{(2)}=0$ . (39)

Here, $t^{(1)}\dot{.}$ md $t_{i}^{(2)}$ are, respectively, unit tangential vectors to the boundary in the direction of increasing

$\chi_{1}$ and $\chi_{2}$ taken in such away that $t_{i}^{(1)}$ , $t_{i}^{(2)}$ , and ni form aright-hand system, $\chi_{1,1}$ and $\chi 2,2$ are defined
by

$\chi_{1,1}=(\frac{\partial\chi_{1}}{\partial x_{j}})_{b}t_{j}^{(1)}$ , $\chi_{2,2}=(\frac{\partial\chi_{2}}{\partial x_{j}})_{b}t_{j}^{(2)}$ , (40)

and $g_{1}$ and $g_{2}$ are, respectively, the geodesic curvatures (Kreyszig [37]) (in the dimensionless $x_{\dot{1}}$ space)

of the $\chi_{1}$ and $\chi_{2}$ coordinate lines on the boundary (see Sone et al. [35] for the details). Equation (39)

is the continuity equation for the $B$-component in the Knudsen layer. Because of the diffuse reflection

condition (5) (with $\alpha=B$ ) and (6b), the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\cdot\zeta_{i}n_{i}\hat{F}^{B}\mathrm{d}^{3}\zeta=0$ , $\mathrm{i}.\mathrm{e}.$ , /
$\cdot$

$\zeta_{i}n_{\mathrm{i}}(\hat{F}_{Hm}^{B}+\hat{F}_{Km}^{B})\mathrm{d}^{3}(=0$ ,

is always satisfied on the boundary. Therefore, it follows from Eq. (25) that $\Phi_{iKm}n_{i}=0$ at $\eta=0$ . The

same relations also hold at $\eta=\infty$ because $\hat{F}_{Km}arrow 0$ as $\etaarrow\infty$ . If we make use $\circ \mathrm{f}$ $\Phi_{iK1}n_{i}=0$ at $\eta=0$

and $\infty$ , the integration of Eq. (39) with respect to $\eta$ from $\eta=0$ to $\infty$ yields

$\chi_{1,1}\frac{\partial}{\partial\chi_{1}}(\hat{N}_{i0}t_{\dot{1}}^{(1)})+\chi_{2,2^{\frac{\partial}{\partial\chi_{2}}(\hat{N}_{i0}t_{i}^{(2)})+g_{2}\hat{N}_{i0}t_{i}^{(1)}}}-g_{1}\hat{N}_{\dot{\iota}0}t_{f}^{(2)}=0$
, (41)

where

$\hat{N}_{\dot{\iota}0}=\int_{0}^{\infty}\Phi:K0\mathrm{d}\eta=\int_{0}^{\infty}(\int\zeta_{i}\hat{F}_{0}^{B}\mathrm{d}^{3}\zeta)\mathrm{d}\eta$. (42)

(Note that $\hat{F}_{K0}^{B}=\hat{F}_{0}^{B}.$ ) Incidentally, $\hat{N}_{i0}n_{i}=0$ because of Eq. (36).

In the tw0-dimensional case, we may assume the physical quantities to be independent of $\chi_{2}$ . For

simplicity, let us denote $\chi_{1}$ by $\chi$ and $t!^{1)}$.by $t_{i}$ . Then, because $g_{1}=g_{2}=0$ in this case, it follows from

Eq. (41) that

$\hat{N}_{i0}t_{i}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ . (43)
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As we will see, Eq. (41) or (43) (in the tw0-dimensional case) is apart of the boundary condition for the
Euler set of equations $(24\mathrm{a})-(24\mathrm{d})$ on the condensing surface.

For convenience of the later use, we introduce the following $\tilde{\Gamma}$ and $\hat{N}_{i0}^{*}$ :

$\tilde{\Gamma}=\int_{0}^{\infty}(\int\hat{F}_{0}^{B}\mathrm{d}^{3}\zeta)\mathrm{d}\eta=\int_{0}^{\infty}\hat{n}_{0}^{B}\mathrm{d}\eta$, (44)

$\hat{N}_{i0}^{*}=\int_{0}^{\infty}[\int(\zeta_{i}-\hat{v}_{wi})\hat{F}_{0}^{B}\mathrm{d}^{3}\zeta]\mathrm{d}\eta=\int_{0}^{\infty}[\Phi_{iK0}-\hat{n}_{0}^{B}\hat{v}_{wi}]$ cb7
$=\hat{N}_{i0}-\hat{v}_{wi}\tilde{\Gamma}$ , (45)

where

$\hat{n}_{0}^{B}=\int\hat{F}_{0}^{B}\mathrm{d}^{3}\zeta$, (46)

and $n_{f}\hat{n}_{0}^{B}$ is the molecular number density of the noncondensable gas in the Knudsen layer. The
$(\sqrt{\pi}/2)n_{r}\ell_{r}\tilde{\Gamma}$ , $(\sqrt{\pi}/2)m^{B}n_{r}(2kT_{f}/m^{A})^{1/2}\ell_{r}\hat{N}_{i0}$ , and $(\sqrt{\pi}/2)m^{B}n_{r}(2kT_{r}/m^{A})^{1/2}\ell_{r}\hat{N}_{\dot{\iota}0}^{\mathrm{r}}$ are, respectively,
the total number, total momentum, and total momentum based on the velocity relative to the boundary
of the $B$-molecules, contained in the Knudsen layer per unit area on the boundary.

3.3 Half-space problem of evaporation or condensation
The boundary-value problem for the Knudsen-layer correction, consisting of Eqs. (32a) and (32b) and
boundary conditions (33)-(35b), is equivalent to the following half-space problem of (strong) evaporation
or condensation.

Consider ahalf space $X_{1}>0$ filled with the vapor ($A$-component), bounded by an infinite plane
condensed phase of the vapor located at $X_{1}=0$ and at rest, where $(X_{1}, X_{2}, X_{3})$ is asystem of rectangular
space coordinates. The condensed phase is kept at temperature T5, and the saturation vapor pressure
at temperature $T_{s}$ is denoted by $p_{\mathit{8}}^{A}$ . At infinity, there is auniform equi librium flow of the vapor with
pressure $p_{\infty}^{A}$ , temperature $T_{\infty}$ , and flow velocity $(v_{1\infty}, v_{2\infty}, 0)(v_{2\infty}\geq 0)$ . On the condensed phase,
steady evaporation $(v_{1\infty}>0)$ or condensation $(v_{1\infty}<0)$ is taking place. The noncondensable gas $(B-$

component) may be present near the condensed phase. Investigate the steady behavior of the vapor
and the noncondensable gas under the complete condensation condition for the vapor and the diffuse
reflection condition for the noncondensable gas on the condensed phase.

In fact, the basic equation and the boundary condition for this problem are given by Eqs. $(32\mathrm{a})-$

$(35\mathrm{b})$ if we take into account the following correspondence between the parameters and variables of the
problem and those in Eqs. $(32\mathrm{a})-(35\mathrm{b}):T_{s}$ , $p_{s}^{A}$ , Too, $p_{\infty}^{A}$ , $v_{1\infty}$ , V200, alld $X_{1}$ correspond to $T_{r}\hat{T}_{w}$ , $p_{r}\hat{p}_{w}^{A}$ ,
$T_{r}(\hat{T}_{H0})_{b}$ , $p_{r}(\hat{p}_{H0}^{A})_{b}$ , $(2kT_{r}/m^{A})^{1/2}(\hat{v}_{jH0})_{b}n_{J}$ , $(2kT_{r}/m^{A})^{1/2}|(\hat{v}_{iH0})_{b}-\hat{v}_{wi}-(\hat{v}_{jH0})_{b}n_{g}n:|$, and $(\sqrt{\pi}/2)\ell,\eta$ ,
respectively, and the direction of the positive $X_{1}$ axis corresponds to that of $n:$ .

First we consider the case where evaporation is taking place $(v_{1\infty}>0)$ . In this case, being blown
away by the evaporating vapor flow, the noncondensable gas cannot stay near the condensed phase or
in the Knudsen layer, namely $\hat{F}_{0}^{B}=0$. This fact, which is intuitively obvious and is supported by some
numerical results (the transition process in which the noncondensable gas initially occupying the half
space is swept away by the evaporating vapor is investigated numerically in Doi et al. [38] $)$ , can be shown
rigorously (Taguchi et al. [39]) for the Boltzmann equation for the Maxwellian molecules, as well as
for the model equations based on the Maxwellian molecules, such as the model proposed by Garzo et
al. [40]. Therefore, the problem is reduced to that of an evaporating flow of the pure vapor, which has
been investigated by many authors (Kogan and Makashev [41], Murakami and Oshima [42], Ytrehus [43],
Sone $[44, 45]$ , Sone and Sugimoto [46], Aoki et al. [47], Sone et al. [48], Bobylev et al. [49] $)$ . There is
asteady solution to the half-space problem only when the parameters $Ts$ , $p_{s}^{A}$ , $T_{\infty}$ , $p_{\infty}^{A}$ , vioo, and $v_{2\infty}$

satisfy the following relations (Sone and Sugimoto [46]).

$M_{t}=0$ ,
$\frac{p_{\infty}^{A}}{p_{\epsilon}^{A}}=h_{1}(M_{n})$ ,

where

$M_{n}\leq 1$ ,
$\frac{T_{\infty}}{T_{s}}=h_{2}(M_{n})$ ,

(47)

$M_{t}=v_{2\infty}(5k.T_{\infty}/3m^{A})^{-1/2}$ , $M_{n}=v_{1\infty}(5kT_{\infty}/3m^{A})^{-1/2}$ . (41)
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The $M_{t}$ and $NI_{n}$ are, respectively, the Mach number at infinity based on the tangential flow speed and
that based on the normal flow speed. The functions $h_{1}(M_{n})$ and $h_{2}(\Lambda f_{n})$ are obtained accurately by

means of anumerical analysis of the BGK model (Bhatnagar et al. [50], Welander [51], and Kogan [52])
of the Boltzmann equation in Sone and Sugimoto [$46_{\mathrm{J}}^{1}$ . The numerical values of these functions are
given in Table I. The analytical form of these functions for $M_{n}<<1$ was obtained by Sone [44] (see also
Sone $[45, 5]$ and Sone and Aoki [32] $)$ .

The case where the condensation is taking place $(v_{1\infty}<0)$ is studied in Sone et al. [53] and Aoki
and Doi [54]. In Sone et al. [53], by considering the case where the molecule of the noncondensable
gas is mechanically identical with that of the vapor, the problem is successfully decomposed into two
problems, one for tlie total mixture and the other for the noncondensable gas. The former problem is the
same as the half-space problem of condensation for apure vapor, which has extensively been investigated
in the literature (Kogan and Makashev [41], Sone $[44, 45]$ , Sone et al. [55], Aoki et al. [56], Aoki et

al. [47], Kogan and Abramov [57], Kryukov [58], Sone et al. [59], Sone et al. [48], Bobylev et al. [49] $)$ .
For example, the condition that allows asteady solution has been clarified in aseries of analytical and
numerical studies (Sone [44, 45], Sone et al. [55], Aoki et al. [56], Aoki et al. [47], Sone et al. [59]) (see also
Sone $[4, 5])$ . Therefore, the above decomposition enables us to exploit the comprehensive results for the
pure-vapor case obtained so far. Furthermore, this approach not only reduces the necessary amount of
computation drastically, but also gives the clear understanding of the basic structure of the solution. In

Sone et al. [53] and Aoki and Doi [54], the study is concentrated on the case where the vapor is condensing

perpendicularly $(v_{2\infty}=0)$ . Recently, the same analysis was extended to the general case where the vapor
is condensing at incidence $(v_{2\infty}\neq 0)$ (Taguchi et al. [39, 60]). According to this result, under the above

condition that the molecules of the two components are identical, the solution to the half-space problem
exists only when the parameters $Ts$ , $p_{s}^{A}$ , $T_{\infty}$ , $p_{\infty}^{A}$ , $v_{1\infty}$ . and $v_{2\infty}$ satisfy the following relation.

$\frac{p_{\infty}^{A}}{p_{s}^{A}}=F_{\epsilon}$ ( $|M_{n}|$ , $NI_{t}$ , $\frac{T_{\infty}}{T_{w}}’\Gamma$), $(|M_{n}|<1)$ , (49a)

$\frac{p_{\infty}^{A}}{p_{s}^{A}}>F_{b}$ ( $|NI_{n}|$ , $NI_{t}$ , $\frac{T_{\infty}}{T_{w}}$ , $\Gamma$), $(|NI_{n}|>1)$ , (49b)

where

$\Gamma=(2/\sqrt{\pi})(N^{B}/n_{\infty}^{A}\ell_{\infty})$ , $N^{B}= \int_{0}^{\infty}n^{B}\mathrm{d}X_{1}$ . (50)

Here, $M_{t}$ and $M_{n}$ are defined by Eq. (48) ( $|M_{n}|$ is the Mach number based on the normal flow speed at
infinity); $n_{\infty}^{A}=p_{\infty}^{A}/kT_{\infty}$ is the number density of the vapor molecules at infinity; $\ell_{\infty}$ is the mean free
path of the vapor molecules in the equilibrium state at rest with number density $n_{\infty}^{A}$ and temperature
$T_{\infty};n^{B}$ is the molecular number density of the noncondensable gas; and $N^{B}$ is the total number of the
noncondensable-gas molecules contained in the semi-infinite column $(X_{1}>0)$ with the base of unit area
standing perpendicularly on the condensed phase. The $\Gamma$ is aparameter to be specified and is ameasure
of the amount of the noncondensable gas contained in the half space.

The functions $F_{s}$ and $F_{b}$ are, respectively, monotonically increasing and decreasing functions in $|M_{n}|$ .
For $0\leq\Gamma<\Gamma_{cr}$ , where $\Gamma_{cr}$ is acritical value depending on $T_{\infty}/T_{w}$ and $M_{t}$ , the $F_{s}$ and $F_{b}$ meet at
$|M_{n}|=1$ , i.e., $F_{s}(1_{-}, M_{t}, T_{\infty}/T_{w}, \Gamma)=F_{b}(1_{+}, \mathrm{A}’I_{t}, T_{\infty}/T_{w}, \Gamma)$. In this case, Eqs. (49a) and (49b) should
be supplemented by

$\frac{p_{\infty}^{A}}{p_{\epsilon}^{A}}\geq F_{B}$ ($1_{-}$ , $M_{t}$ , $\frac{T_{\infty}}{T_{w}}$ , $\Gamma$), $(|M_{n}|=1)$ . (51)

For $\Gamma\geq\Gamma_{\mathrm{c}r}$ , the $F_{\delta}$ and $F_{b}$ increase infinitely as $|M_{n}|arrow c_{S}(\leq 1)$ and $|\Lambda’I_{n}|arrow c_{b}(’-\backslash 1)$ , respectively,

where $c_{s}$ and $c_{b}$ depend on $M_{t}$ , $T_{\infty}/T_{w}$ , and $\Gamma$ , and $\mathrm{c}_{S}=c_{b}=1$ when $\Gamma=\Gamma_{cr}$ . The functions $F_{s}$ and
$F_{b}$ were constructed numerically in Sone et al. [53], Aoki and Doi [54], Taguchi et al. $[39, 60]$ , where the

numerical data of the corresponding functions for the pure-vapor case (Sone et al. [55], Aoki et al. [56],

Aoki et al. [47] $)$ , obtained by using the BGK model, were exploited, and additional computations were
carried out by the use of the model Boltzmann equation for amixture proposed by Garz6 et al. [40]. (It

should be noted that the $\Gamma$-dependence of $F_{s}$ and $F_{b}$ is obtained explicitly.) As an example, $F_{s}$ and $F_{b}$

are shown in Figs. 1and 2, respectively, as the functions of $|NI_{n}|$ for several $\Gamma$ and for $M_{t}=1$ and 3in
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the case of $T_{\infty}/T_{w}=1$ (see Taguchi et al. [39, 60] for the details). The numerical results in Taguchi et

al. $[39, 60]$ show that the dependence of $F_{\epsilon}$ and $F_{b}$ on $\mathrm{J}/I_{t}$ and $T_{\infty}/T_{w}$ is weak, as in the pure vapor case
$(\Gamma=0)$ (Aoki et al. [47]). Some data obtained by aDSMC computation for hard-sphere gases indicate
that arelation of the same form as Eq. (49a) holds in the general case where the molecules of the two

components are different (i.e., different masses and diameters) (see Taguchi et al. [39]).
The numerical results by Taguchi et al. $[39, 60]$ show that in this half-space problem of condensation, a

macroscopic flow of the noncondensable gas is caused along the condensed phase in the positive $X_{2}$ direc-
than when $v_{2\infty}>0$ , but it is not when $v_{2\infty}=0$ . That is, the direction of the flow of the noncondensable
gas along the condensed phase is the same as the direction of the component of the flow velocity of the
vapor parallel to the condensed phase at infinity. Let $N_{f}$ be the particle flow of the noncondensable gas
in the positive $X_{2}$ direction per unit time and unit width in $X_{3}$ and $\hat{N}_{f}$ be its dimensionless counterpart
defined by

$\hat{N}_{f}=(2/\sqrt{\pi})[n_{\infty}^{A}\ell_{\infty}(2kT_{\infty}/m^{A})^{1/2}]^{-1}Nf$ . (52)

Note that $m^{B}N_{f}$ is the total momentum of the $B$-molecules contained in the column used in the definition
of $N^{B}$ [see the sentence below Eq. (50)]. Since $\hat{N}_{f}$ is determined by asolution of the half-space problem,
its dependence of the parameters is given as follows.

$\hat{N}_{f}=G_{s}$ ( $|M_{n}|$ , $M_{t}$ , $\frac{T_{\infty}}{T_{w}}$ , $\Gamma$), $(|M_{n}|<1)$ , (53a)

$\hat{N}_{f}=G_{b}$ ( $|M_{n}|$ , $NI_{t}, \frac{T_{\infty}}{T_{w}})\frac{p_{\infty}^{A}}{p_{s}^{A}}$ , $\Gamma)$ , $(|M_{n}|\geq 1)$ , (53b)

where $G_{s}=G_{b}=0$ at $NI_{t}=0$ because $\hat{N}_{f}$ vanishes when $v_{2\infty}=\mathrm{C}1$ The functions $G_{s}$ and $G_{b}$ obtained
numerically are given in Taguchi et al. $[39, 60]$ . To be more precise, $G_{b}$ has been obtained in arestricted
manner because it is afunction of five variables. On the other hand, $G_{s}$ turns out to be of the form

$G_{s}=\Gamma \mathcal{G}(|l\mathcal{V}I_{n}|, M_{t}, T_{\infty}/T_{w})$ , (54)

in the case where the molecules of the two components are mechanically the same. The function $\mathcal{G}$ based
on the model Boltzmann equation by Garz6 et al., which was found to be almost independent of $|M_{n}|$

and $T_{\varphi}/T_{w}$ , is shown for $|\Lambda/I_{n}|=0.1$ and $T_{\infty}/T_{w}=1$ in Fig. 3.

3.4 Boundary condition for the Euler equations

The relations (47), (49a), and (49b) [and (51)] given in Sec. 3.3 essentially provide the boundary condition
for the Euler set of equations $(24\mathrm{a})-(24\mathrm{d})$ . One only needs to rewrite them by the use of the variables in
Sec. 3.1. First, noting that $n^{B}$ in Eq. (50) corresponds to $n_{r}\hat{n}_{0}^{B}$ , we obtain the following relation between
$\Gamma$ and $\tilde{\Gamma}$ [Eq. (44)]:

$\Gamma=\frac{\ell_{r}}{(\hat{n}_{H0}^{A})_{b}\ell_{b}}\int_{0}^{\infty}(\int\hat{F}_{0}^{B}\mathrm{d}^{3}\zeta)\mathrm{d}\eta=\frac{\ell_{r}}{(\hat{n}_{H0}^{A})_{b}\ell_{b}}\tilde{\Gamma}$, (55)

where, $\ell_{b}$ is the mean free path of the vapor molecules in the equilibrium state at rest with number
density $n_{r}(\hat{n}_{H0}^{A})_{b}$ and temperature $T_{r}(\hat{T}_{H0})_{b}$ . Since $\Gamma-$ does not depend on the local state of the vapor
[such as $(\hat{n}_{H0}^{A})_{b}$ and $l_{b}$], it is preferable to use $\tilde{\Gamma}$ rather than $\Gamma$ as aquantity related to the amount of
the noncondensable gas in the Knudsen layer. Then, the boundary conditions can be summarized in the
following form: the conditions on the evaporating surface, where $M_{n}>0$ , are

$M_{t}=0$ , $M_{n}\leq 1$ , (52)
$(\hat{p}_{H0}^{A})_{b}/\hat{p}_{w}^{A}=h_{1}(M_{n})$ , $(\hat{T}_{H0})_{b}/\hat{T}_{w}=h_{2}(M_{n})$ ,

and those on the condensing surface, where $M_{n}<0$ , are

$\frac{(\hat{p}_{H0}^{A})_{b}}{\hat{p}_{w}^{A}}=F_{\epsilon}$ ($|M_{n}|$ , $M_{t}$ , $\frac{(\hat{T}_{H0})_{b}}{\hat{T}_{w}}$ , $\frac{\ell_{r}}{(\hat{n}_{H0}^{A})_{b}\ell_{b}}\tilde{\Gamma}$), $(|M_{n}|<1)$ , (57a)

$\frac{(\hat{p}_{H0}^{A})_{b}}{\hat{p}_{w}^{A}}>F_{b}$ ( $|M_{n}|$ , $M_{t}$ , $\frac{(\hat{T}_{H0})_{b}}{\hat{T}_{w}}$ , $\frac{\ell_{r}}{(\hat{n}_{H0}^{A})_{b}\ell_{b}}\tilde{\Gamma}$), $(|M_{n}|>1)$ . (57b)
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Here ,

$\mathbb{J}I_{n}=\sqrt{6/5}(\hat{T}_{H0})_{b}^{-1/2}(\hat{v}_{jH0})_{b}n_{\gamma}$ , (58a)

$I\mathrm{v}I_{t}=\sqrt{6/5}(\hat{T}_{H0})_{b}^{-1/2}|(\hat{v}_{vH0})_{b}-\hat{v}_{wi}-(\hat{v}_{jH0})_{b}n_{j}n_{i}|$ . (58b)

Equations (57a) and (57b) are supplemented by

$\frac{(\hat{p}_{H0}^{A})_{b}}{\hat{p}_{w}^{A}}\geq F_{s}$ ( $1_{-}$ , $M_{t}$ , $\frac{(\hat{T}_{H0})_{b}}{\hat{T}_{w}}$ , $\frac{\ell_{r}}{(\hat{n}_{H0}^{A})_{b}\ell_{b}}\tilde{\Gamma}$), $(|M_{n}|=1)$ , (59)

when $\tilde{\Gamma}<(\hat{n}_{H0}^{A})_{b}\ell_{b}\ell_{r}^{-1}\Gamma_{cr}$.
In the case of apure vapor (or in the case of $\overline{\Gamma}=0$), Eqs. (56)-(57b), and (59) are known to be

consistent boundary conditions (Aoki and Sone [6], Sone [4, 5]). In the spatially $\mathrm{o}\mathrm{n}\mathrm{e}rightarrow \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ case,

such as the tw0-surface problem of evaporation and condensation, $\tilde{\Gamma}$ is aconstant that can be specified

(see Aoki et al. [18] and Aoki [21]), and therefore the situation is essentially the same as that in the pure

vapor case. However, in the general geometry, $\overline{\Gamma}$ is not a constant but a function of $\chi_{1}$ and $\chi_{2}$ , as is seen
from Eq. (44). In other words, $\tilde{\Gamma}$ varies along the boundary. Therefore, an additional relation is required

as the boundary condition on the condensing surface. This relation is provided by Eq. (41) [or Eq. (43)

for the tw0-dimensional case], i.e.,

$\chi_{1,1}\frac{\partial}{\partial\chi_{1}}(\hat{N}_{\mathrm{t}0}t_{i}^{(1)})+\chi_{2,2}\frac{\partial}{\partial\chi_{2}}(\hat{N}_{i0}t_{i}^{(2)})+g_{2}\hat{N}_{i0}t_{i}^{(1)}-g_{1}\hat{N}_{i0}t_{i}^{(2)}=0$ , (60)

if we have the relation between $\hat{N}_{i0}$ and $\tilde{\Gamma}$ .
Here, let us note the following correspondence between $\hat{N}_{i0}^{*}$ [Eq. (45)] and $\hat{N}_{f}$ [Eq. (52)]:

$(\sqrt{\pi}/2)n_{r}(2kT_{r}/m^{A})^{1/2}\ell_{r}|\hat{N}_{i0}^{*}|\Leftrightarrow(\sqrt{\pi}/2)n_{\infty}^{A}(2kT_{\infty}/m^{A})^{1/2}\ell_{\infty}\hat{N}_{f}$ . (61)

Using Eqs. (53a) and (53b) and taking into account the statement above Eq. (52), we can write

$\hat{N}_{i0}=\hat{v}_{wi}\overline{\Gamma}+\frac{\ell_{b}}{\ell_{r}}(\hat{n}_{H0}^{A})_{b}(\hat{T}_{H0})_{b}^{1/2}G_{s}(|NI_{n}|,$ $M_{t}$ , $\frac{(\hat{T}_{H0})_{b}}{\hat{T}_{w}}$ , $\frac{\ell_{r}}{(\hat{n}_{H0}^{A})_{b}\ell_{b}}\tilde{\Gamma})a_{i}$ , $(|\mathbb{J}/I_{n}|<1)$ , (62a)

$\hat{N}_{i0}=\hat{v}_{w\mathrm{i}}\tilde{\Gamma}+\frac{\ell_{b}}{\ell_{r}}(\hat{n}_{H0}^{A})_{b}(\hat{T}_{H0})_{b}^{1/2}G_{b}(|M_{n}|,$ $M_{t}$ , $\frac{(\hat{T}_{H0})_{b}}{\hat{T}_{w}}$ , $\frac{(\hat{p}_{H0}^{A})_{b}}{\hat{p}_{w}^{A}}$ , $\frac{\ell_{r}}{(\hat{n}_{H0}^{A})_{b}\ell_{b}}\overline{\Gamma})a_{i}$ , $(|M_{n}|\geq 1)$ , (62b)

where $a_{i}$ is aunit vector defined by

$a_{i}= \frac{(\hat{v}_{iH0})_{b}-\hat{v}_{w\mathrm{i}}-(\hat{v}_{jH}0)_{b}n_{j}n_{i}}{|(\hat{v}_{iH0})_{b}-\hat{v}_{wi}-(\hat{v}_{jH0})_{b}n_{j}n_{i}|}$ . (63)
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3.5 Continuum limit
Now let us discuss the continuum limit where $\epsilon$ (or Kn) goes to zero. In this limit, the thickness of the
Knudsen layer vanishes, and the velocity distribution function of each component reduces to the leading-
order term of the Hilbert expansion except on the boundary, i.e., $F\wedge Aarrow\hat{F}_{H0}^{A}$ and $\hat{F}^{B}arrow 0$ . The $\hat{n}_{H0}^{A}$

$(=\hat{\rho}_{H0}^{A}),\hat{v}_{iH0}$ , and $\hat{T}_{H0}$ occurring in $\hat{F}_{H0}^{A}$ [Eq. (16)] are determined by the Euler set, Eqs. $(24\mathrm{a})-(24\mathrm{d})$ ,
and the boundary conditions, Eqs. (56), (57a), (57b), $[(59)]$ , (60), (62a), and (62b). On the other hand,
it follows from Eq. (10) that $n_{av}^{B}/n_{r}arrow 0$ in this limit. In other words, the average concentration of the
noncondensable gas over the whole domain beco mes infinitely small. (This is consistent with $\hat{F}^{B}arrow 0.$ )
Therefore, it would seem that the effect of the noncondensable gas disappears in this limit. However,
if we look at the boundary condition on the condensing surface, Eqs. (57a), (57b), and (59), then we
notice that it depends on $\tilde{\Gamma}$ , which is related to the noncondensable gas and is of the order of unity,
independent of $\epsilon$ . This means that in the continuum limit, the overall vapor flow is still affected by the
noncondensable gas through the boundary condition on the condensing surface, in spite of the fact that
the average concentration of the noncondensable gas is infinitesimal.

The physical picture of this situation is as follows. Being blown by the overwhelming vapor flow, the
noncondensable gas of an infinitesimal concentration accumulates in athickless Knudsen layer on the
condensing surface, where its local number density becomes comparable to that of the vapor, and has a
significant effect on the condensing vapor flow. This fact was pointed out by Aoki et al. [18] for the simple
two surface problem, i.e., avapor flow caused by evaporation and condensation in the gap between two
parallel plane condensed phases. In connection with the two surface problem, it should be mentioned that
an interesting experiment to measure the temperature distribution between the two condensed phases
was performed by Shankar and Deshpande $[61, 62]$ . Their aim was to perform the measurement in apure
vapor flow, but the effect of the impurity, i.e., the presence of asmall amount of the noncondensable gas,
is also discussed in Shankar and Deshpande [62].

3.6 Case of an infinite domain
In this subsection, we give ashort comment on the case of an infinite domain. As is seen from the course
of analysis, the results obtained in Sees. 3.1-3.5 are also valid in the case of an infinite domain, more
precisely, in the case where there is aflow of the vapor in an infinite domain, and the noncondensable gas
is confined in the Knudsen layer on (a part of) the boundary where condensation is taking place. That is,
the vapor flow in this situation is described by the Euler set $(24\mathrm{a})-(24\mathrm{d})$ and the boundary conditions (56)
on the evaporating surface and $\backslash /57\mathrm{a}$) and (57b) [and (59)] with (60), (62a), and (62b) on the condensing
surface, supplemented by the boundary condition at infinity. Only the difference is that $n_{av}^{B}$ has no
more sense, so that the amount of the noncondensable gas should be specified in adifferent way. For
example, let us suppose that the noncondensable gas is present only in the part $\mathrm{S}$ with afinite area of the
boundary. Then, we can obtain such asolution of the Euler system by specifying the total number of the
noncondensable gas molecules, say $M^{B}$ . In fact, it is related to $\tilde{\Gamma}$ as $M^{B}=( \sqrt{\pi}/2)n_{r}\ell_{r}L^{2}\int_{\mathrm{S}}\tilde{\Gamma}\mathrm{d}a$ , where
da is asurface element on the boundary in the dimensionless $x_{i}$ space, and this gives aconstraint on $\tilde{\Gamma}$ .
However, as in the case of aclosed domain, aspecified value of $M^{B}$ does not guarantee aunique solution.
In the continuum limit, the average concentration of the noncondensable gas becomes infinitesimal in a
subdo main with the extent of $L$ that contains the part $\mathrm{S}$ of the boundary.

4Application
In this section we give an application of the Euler set of equations and their boundary conditions derived
in the previous section. The problem that we are going to investigate is as follows.

Consider avapor ( $A$-component)in agap between two condensed phases at rest, one is of sinusoidal
shape located at $X_{1}=A\cos(\pi X_{2}/L)$ , and the other is aplane located at $X_{1}=L$ , where Xi is a
(dimensional) coordinate system (Fig. 4). Let the temperature of the sinusoidal condensed phase be $T_{I}$

and that of the plane one be $T_{II}$ , and let the saturation vapor pressure at temperature $T_{I}$ be $pI$ and that
at temperature $T_{II}$ be $p_{II}$ . Asmall amount of anoncondensable gas ($B$-component)is contained in the
gap, as specified below. Let $n_{av}^{B}$ denote the average molecular number density of the noncondensable gas
over the gap. We investigate the steady flow of the vapor caused by evaporation and condensation on the
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condensed phases and the effect of the noncondensable gas on the vapor flow when the Knudsen number

Kn (with respect to the vapor) going to zero (continuum limit).
Here, we take $L$ as the reference length and $T/$ , $p_{I}$ , and $n_{I}=p_{I}/kT_{I}$ as the reference quantities

($T_{r}=T_{I}$ , $p_{r}=p_{I}$ , and $n_{r}=n_{I}$ ). The problem is characterized by the following dimensionless parameters:

$\frac{T_{II}}{T_{I}}$ , $\frac{p_{II}}{p_{I}}$ , $\frac{A}{L}$ , $\mathrm{K}\mathrm{n}=\frac{\ell_{r}}{L}$ , $\frac{n_{av}^{B}}{n_{I}}$ , (64)

where $\ell_{r}$ is the mean free path of the molecules of the vapor when it is in the equilibrium state at rest
with temperature $T_{I}$ and pressure $p_{I}$ . To be consistent with Eq. (10), we put

$n_{av}^{B}/n_{I}=\Delta \mathrm{K}\mathrm{n}$, (65)

and specify $\Delta$ rather than $n_{av}^{B}/n_{I}$ .
We assume that the flow field is periodic (with period $2L$ ) in the $X_{2}$ direction and is symmetric with

respect to the $X_{1}$ axis. Therefore, we may consider the problem in the closed domain

$A$ $\cos(\pi X_{2}/L)\leq X_{1}\leq L$ , $0\leq X_{2}\leq L$ , (66)

imposing the specular reflection condition on $X_{2}=0$ and $L$ .
Now let us apply the Euler set of equations and its boundary conditions to the present problem.

We consider the case where evaporation of the vapor is taking place on the plane condensed phase and
condensation on the sinusoidal condensed phase. In this two dimensional problem, Eq. (43) holds along

the latter condensed phase. But $\hat{N}_{i0}t_{t}=0$ at $X_{2}=0$ and $L$ (or $x_{2}=0$ and 1) because of the specularly
reflecting boundary. Therefore, $\hat{N}_{i0}t_{i}=0$ holds identically. It follows from Eqs. (62a) and (62b) (with

$\hat{v}_{wi}=0)$ and the property of $G_{s}$ and $G_{b}$ that $NI_{t}=0$ on the condensing surface if $\tilde{\Gamma}\neq 0$ there. Let us

restrict ourselves to the case where $|M_{n}|<1$ . Then the boundary condition for the Euler set $(24\mathrm{a})-(24\mathrm{d})$

is Eq. (56), i.e. ,

$M_{\mathrm{t}}=0$ , $( \hat{p}_{H0}^{A})_{b}arrow-\frac{p_{II}}{p_{I}}h_{1}(NI_{n})$ , $( \hat{T}_{H0})_{b}=\frac{T_{II}}{T_{I}}h_{2}(M_{n})$ , (67)

on the plane condensed phase ($x_{1}=1$ ;note that $\hat{p}_{w}^{A}=p_{II}/p_{I}$ and $\hat{T}_{w}=T_{II}/T_{I}$ there) and Eq. (57a)

with $M_{\mathrm{t}}=0$ , i.e.,

$(p_{H0}^{A})_{b}=F_{s}(|M_{n}|$ , 0, $(\hat{T}_{H0})_{b}$ , $\frac{\ell_{r}}{(\hat{n}_{H0}^{A})_{b}\ell_{b}}\tilde{\Gamma})$ , (68)

on the sinusoidal condensed phase [$x_{1}=(A/L)\cos(\pi x_{2})$;note that $\hat{p}_{w}^{A}=\hat{T}_{w}=1$ there]. It should be

noted that $\tilde{\Gamma}$ can be zero in acertain part of the sinusoidal condensed phase, where we should use

$(\hat{p}_{H0}^{A})_{b}=F_{s}(|M_{n}|$ , $M_{t}$ , $(\hat{T}_{H0})_{b}$ , $0)$ , (69)

no restriction being imposed on $M_{t}$ . These boundary conditions are supplemented by the condition
$\hat{v}_{2H0}=0$ , which corresponds to the specular reflection condition, on $x_{2}=0$ and 1. Finally we need the

relation between A and $\tilde{\Gamma}$ , which is, as described below, given by

A $= \frac{\sqrt{\pi}}{2}\int\tilde{\Gamma}\mathrm{d}\mathrm{s}$, (70)

where $\mathrm{d}s$ is the line element along the sinusoidal boundary in the dimensionless $x_{1}x_{2}$ pkne, md the

range of integration is from $x_{2}=0$ to 1. This relation is obtained by noting that $(\sqrt{\pi}/2)n_{r}\ell_{\mathrm{r}}\tilde{\mathrm{r}}$ is

the total number of the noncondensable gas in the Knudsen layer per unit area of the boundary [aee

Eq. (44) and the sentence following Eq. (46) $]$ and that its total number in the entire domain per unit

width in X3, i.e., $n_{av}^{B}L^{2}$ , is therefore given by $( \sqrt{\pi}/2)n_{r}\ell_{r}L\int\overline{\Gamma}\mathrm{d}s$ . The ratio $\ell_{r}/\ell_{b}$ occurring in Eq. (68)

depends on the molecular model; for example, $\ell_{r}/\ell_{b}=(\hat{n}_{H0}^{A})_{b}$ for hard-sphere molecules [cf. Eq. (4)],

and $\ell_{r}/\ell_{b}=(\hat{n}_{H0}^{A})_{b}/(\hat{T}_{H0})_{b}^{1/2}$ for the BGK model.
We solve this boun $\mathrm{a}\mathrm{r}\mathrm{y}$-value problem for the Euler set of equations numerically. In Fig. 5, the stream

lines of $\hat{v}.\cdot H0$ for A $=0$ (pure vapor case) and 2are shown in the case where $A/L=0.2$ , $TII/T_{I}=1$ , and
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$p_{II}/p_{I}=2$ . Figure 6, where the result for $\Delta=4$ is also included, shows the distribution of $\overline{\Gamma}$ along the
sinusoidal condensed phase in the same case as Fig. 5. Here, we have assumed that the vapor molecules
are mechanically identical with the noncondensable-gas molecules and used the numerical data of the
functions $h_{1}$ and $h_{2}$ based on the BGK model (Table I) and those of the function $F_{s}$ based on the model
Boltzmann equation by Garzo et $\mathrm{a}1$ , which is consistent with the BGK model for asingle component
case (see Fig. 1for some examples of $F_{s}$ ). Therefore, we have used the relation $\ell_{r}/\ell_{b}=(\hat{n}_{H0}^{A})_{b}/(\hat{T}_{H0})_{b}^{1/2}$

in Eq. {68). If the explicit form of the boundary is used, Eq. (70) becomes

$\Delta=\frac{\sqrt{\pi}}{2}\int_{0}^{1}\overline{\Gamma}\sqrt{1+(\pi A/L)^{2}\sin^{2}(\pi x_{2})}\mathrm{d}x_{2}$, (71)

where $\tilde{\Gamma}$ is considered to be afunction of $x_{2}$ .
Figure 5shows the leading-0rder flow field of the vapor for small Kn, which is at the same time the

flow field in the continuum limit, $\mathrm{K}\mathrm{n}arrow \mathrm{O}$ . In this limit, the average concentration of the noncondensable
gas becomes infinitesimal because of Eq. (65). However, the flow properties still depend on $\tilde{\Gamma}$ , which
is the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ of the noncondensable gas. In fact, the stream lines for $\Delta=2$ are distinct from those for
the pure vapor flow $(\Delta=0)$ . In the former case, the stream lines enter the sinusoidal condensed phase
perpendicularly because of the condition (68), i.e., $M_{t}=0$ , whereas in the latter case, they enter the
same condensed phase obliquely because of Eq. (69), which is the condition there in the pure vapor case.
The pattern of the stream lines for $\Delta=4$ , which are not shown in Fig. 5, is quite similar to that for
$\Delta=2$ , but the flow speeds at the corresponding points are different. In this way, an infinitesimal average
concentration (or the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$) of the noncondensable gas has adramatic effect on the overall vapor flow.

Adirect numerical simulation, based on the original Boltzmann system, of the same problem has
been carried out for relatively small Kn by Aoki et al. [28], where both components are assumed to be
hard-sphere gases, and the direct simulation Monte Carlo (DSMC) method (Bird [63, 64]) is employed
as the solution technique. Although it is hard to draw adefinite conclusion about the behavior in the
continuum limit from the DSMC computation, the result is consistent with the present result; in fact, it
gave aproper guideline for the asymptotic analysis in Sec. 3. The difficulty in the simulation for small
Kn in the problem arises from the fact that, as Kn becomes small, the noncondensable gas is localized
inside the Knudsen layer, the thickness of which becomes small as well. Since the overall flow field is
affected by the localized noncondensable gas, its accurate description is required. For this purpose, we
need avery fine cell near the condensing surface with asufficient number of simulation particles for the
noncondensable gas. This makes the size of the simulation system very large. This fact confirms the
usefulness of the fluid-dynamic description based on the Euler set and its boundary condition.

5Concluding remarks
In the present paper, we have investigated, on the basis of kinetic theory, steady flows of avapor with
evaporation and condensation on the boundary, consisting of the condensed phase of the vapor, in the
presence of anoncondensable gas under the condition that the Knudsen number with respect to the vapor
is small and that the average concentration of the noncondensable gas is also small and is of the order
of the Knudsen number (see Sec. 2.1). The conventional boundary condition (complete condensation
condition) for the vapor and the diffuse reflection condition for the noncondensable gas were employed
as the boundary condition on the boundary. After the formulation of the problem in Sec. 2, asystematic
asymptotic analysis for small Knudsen numbers was carried out in Sec. 3, where the fluid-dynamic
equations (the Euler set of equations) for the vapor and their appropriate boundary conditions on the
boundary were derived for the leading-0rder (or zeroth-0rder) terms in the Knudsen number. In deriving
the boundary conditions, the previously known results for half-space problems have been exploited. On
the basis of this system, we discussed the behavior of the continuum limit, i.e., the limit where the
Knudsen number vanishes, in Sec. 3.5. There, it was shown that an infinitesimal average concentration of
the noncondensable gas may have asignificant effect on the overall vapor flow. An example demonstrating
such an effect was given in Sec. 4.

The Euler set of equations and its boundary condition presented here give aclear understanding of
the behavior of the vapor and the noncondensable gas in the near continuum regime as well as in the
continuum limit. For example, the distribution of the noncondensable gas (or its $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$), which is confined
in the very thin (or infinitely thin) Knudsen layer, along the condensing surface is determined throug$\mathrm{h}$
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the boundary condition there. The Euler system is also useful in practical applications because the direct
numerical computation based on the kinetic syste$\mathrm{m}$ for this type of problem is rather hard in general. For

the moment, the available numerical boundary condition on the condensing surface has some limitations.
More specifically, the numerical values of the functions $F_{s}$ , $F_{b}$ , $G_{s}$ , and $G_{b}$ occurring in the boundary

condition are available only for amodel Boltzmann equation and in aspecial case where the molecule of

the vapor and that of the noncondensable gas are mechanically identical. But the qualitative structure of

the boundary condition is most likely to be the same in the general case. The extension and enrichment

of the numerical data for these functions would upgrade the applicability of the fluid-dynamic system.
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Appendix AHilbert expansion of the macroscopic quantities

In this appendix, we give some of the expressions of the coefficients $h_{Hm}^{\alpha}$ and $h_{Hm}$ in terms of $\hat{F}_{Hm}^{\alpha}$ .

$\hat{n}_{Hm}^{\alpha}=\int\hat{F}_{Hm}^{\alpha}\mathrm{d}^{3}\zeta$ , $\hat{\rho}_{Hm}^{\alpha}=\hat{m}^{\alpha}\hat{n}_{Hm}^{\alpha}$ , $(m=0,1, \ldots)$ , (Ala)

$\hat{v}^{\alpha_{H0}}.\cdot=(1/\hat{n}_{H0}^{\alpha})\int\zeta:\hat{F}_{H0}^{\alpha}\mathrm{d}^{3}\zeta$ , (Alb)

$\hat{p}_{H0}^{\alpha}=\hat{n}_{H0}^{\alpha}\hat{T}_{H0}^{\alpha}=\frac{2}{3}\hat{m}^{\alpha}\int(\zeta_{i}-\hat{v}_{tH0}^{\alpha})^{2}\hat{F}_{H0}^{\alpha}\mathrm{d}^{3}\zeta$ , (Alc)

$\hat{v}_{iH1}^{\alpha}=(1/\hat{n}_{H0}^{\alpha})\int\zeta_{t}\hat{F}_{H1}^{\alpha}\mathrm{d}^{3}\zeta-(\hat{n}_{H1}^{\alpha}/\hat{n}_{H0}^{\alpha})\hat{v}_{iH0}^{\alpha}$ , (Ald)

$\hat{p}_{H1}^{\alpha}=\hat{n}_{H0}^{\alpha}\hat{T}_{H1}^{\alpha}+\hat{n}_{H1}^{\alpha}\hat{T}_{H0}^{\alpha}=\frac{2}{3}\hat{m}^{\alpha}\int(\zeta_{i}-\hat{v}_{iH0}^{\alpha})^{2}\hat{F}_{H1}^{\alpha}\mathrm{d}^{3}\zeta$ , (Ale)

. . .
’

$\hat{n}_{Hm}=\sum_{\beta=A,B}\hat{n}_{Hm}^{\beta}$
,

$\hat{\rho}_{Hm}=\sum_{\beta=A,B}\hat{\rho}_{Hm}^{\beta}$
, $(m=0,1, \ldots)$ , $(\mathrm{A}2\mathrm{a})$

$\hat{v}_{iH0}=(1/\hat{\rho}_{H0})\sum_{\beta=A_{1}B}\beta_{H0}^{\beta}\hat{v}_{\dot{\iota}H0}^{\beta}$
, $(\mathrm{A}2\mathrm{b})$

$\hat{p}_{H0}=\hat{n}_{H0}\hat{T}_{H0}=\sum_{\beta=A,B}[\hat{p}_{H0}^{\beta}+\frac{2}{3}\hat{\rho}_{H0}^{\beta}(\hat{v}_{iH0}^{\beta}-\hat{v}_{\dot{n}H0})^{2}]$ , $(\mathrm{A}2\mathrm{c})$

$\hat{v}_{iH1}=(1/\hat{\rho}_{H}0)\sum_{\beta=A,B}(\hat{\rho}_{H0}^{\beta}\hat{v}_{iH1}^{\beta}+f_{H1iH0}\wedge\hat{v}^{\beta})-(\hat{\rho}H1/\hat{\rho}_{H}0)\hat{v}_{iH0}$

, $(\mathrm{A}2\mathrm{d})$

$\hat{p}_{H1}=\hat{n}_{H0}\hat{T}_{H1}+\hat{n}_{H1}\hat{T}_{H0}$

$= \sum_{\beta=A,B}\{\wedge l_{H1}+\frac{2}{3}[\hat{\rho}_{H1}^{\beta}(\hat{v}_{\dot{\iota}H0}^{\beta}-\hat{v}_{jH0})^{2}+2^{\wedge}f_{H0}(\hat{v}_{iH0}^{\beta}-\hat{v}_{\dot{\mathrm{t}}H0})(\hat{v}_{\dot{\mathrm{t}}H1}^{\beta}-\hat{v}_{iH1})]\}$
, $(\mathrm{A}2\mathrm{e})$

Here, $\hat{T}_{H0}^{\alpha},\hat{T}_{H1}^{\alpha},\hat{T}_{H0}$ , and $\hat{T}_{H1}$ are defined by Eqs. (Ale), (Ale), $(\mathrm{A}2\mathrm{c})$ , and $(\mathrm{A}2\mathrm{e})$ , respectively
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Appendix B Reasoning of assumption (25)

Suppose that the leading-0rder vapor flow $\hat{v}_{iH0}$ has been established. From Eqs. (18) and (Aid) $(\alpha=B)$

multiplied by $\hat{n}_{H0}^{B}$ , the first-0rder particle flux of the noncondensable gas is $\hat{n}_{H1}^{B}\hat{v}_{iH0}^{B}=\int\zeta_{i}\hat{F}_{H1}^{B}\mathrm{d}^{3}\zeta$ , which

turns out to be equal to $\hat{n}_{H1}^{B}\hat{v}_{iH0}$ if Eq. (20) is used. Let us suppose that $\hat{n}_{H1}^{B}$ is not identically zero.
Then, we have $\hat{v}_{iH0}^{B}=\hat{v}_{iH0}$ in the region where $\hat{n}_{H1}^{B}\neq 0$ (note that the leading-0rder flow velocity $\hat{v}_{iH0}^{B}$ is

determined through the first-0rder velocity distribution function $\hat{F}_{H1}^{B}$ ). This corresponds to the physical

situation that asmall amount of the noncondensable gas $(\hat{n}_{H1}^{B}\epsilon)$ is carried by the leading-0rder vapor
flow $(\hat{v}_{iH0})$ . If we integrate Eq. (15) with $\alpha=B$ and $m=2$ over the whole space of $\langle$ , we obtain

$\int\zeta_{J}\frac{\partial\hat{F}_{H1}^{B}}{\partial x_{J}}\mathrm{d}^{3}\zeta=0$ , (B1)

bec $\mathrm{n}\mathrm{e}\hat{J}^{\beta\alpha}$ does not contribute to this integration. [Equation (B1) is apart of the solvability condition

for the equations for $\hat{F}_{H2}^{\alpha}.$ ] Equations (20) and (B1) give the continuity equation

$\frac{\partial\hat{n}_{H1}^{B}\hat{v}_{fH0}}{\partial x_{j}}=0$. (B2)

Because of Eq. (24a), we can transform Eq. (B2) into

$\hat{v}_{jH0^{\frac{\partial}{\partial x_{j}}(\frac{\hat{n}_{H1}^{B}}{\hat{n}_{H0}^{A}})}}=0$, (B3)

which means that $\hat{n}_{H1}^{B}/\hat{n}_{H0}^{A}=const$ , along astream line. Therefore, if $\hat{n}_{H1}^{B}$ vanishes at apoint on a
stream line, then $\hat{n}_{H1}^{B}=0$ holds on the entire stream line.

Astream line of the leading-0rder vapor flow Vino either (i) starts from the evaporating surface or
(ii) forms aclosed loop in the case of aclosed domain. Let us consider the case (i). Since we have
not assumed that $\hat{n}_{H1}^{B}\equiv 0$ (or $\hat{F}_{H1}^{B}\equiv 0$) in the present discussion, the $\hat{F}_{K1}^{B}$ in the right-hand side of

Eq. (38) should be replaced by $(\hat{F}_{H1}^{B})_{b}+\hat{F}_{K1}^{B}$ . However, this replacement does not affect Eq. (39). Let
us recall that, on the evaporating surface where $v\wedge\dot{\mathrm{t}}H0n_{i}>0$ , the Knudsen layer in the leading order does

not contain the noncondensable gas, namely $\hat{F}_{K0}^{B}=0$ (see the fourth paragraph in Sec. 3.3). Therefore,

Eq. (39) reduces to $\partial(\Phi_{iK1}n:)/\partial\eta=0$, which leads to $\Phi_{iK1}n_{i}=\int\zeta_{\dot{1}}n_{i}\hat{F}_{K1}^{B}\mathrm{d}^{3}\zeta=0$ because $\hat{F}_{Km}^{B}arrow 0$ as
$\etaarrow\infty$ . Further, $\int\zeta:n_{i}(\hat{F}_{Hm}^{B}+\hat{F}_{Km}^{B})\mathrm{d}^{3}\zeta=0$ holds on the boundary because of the diffuse reflection
condition (5) (with $at=B$) and (6b). Therefore, we have

$\int\zeta_{i}n_{\iota}\hat{F}_{H1}^{B}\mathrm{d}^{3}\zeta=\hat{n}_{H1}^{B}\hat{v}_{iH0}n_{i}=0$ , (B4)

on the evaporating surface. But, since Vin\^o $i>0$ on the evaporating surface, $\hat{n}_{H1}^{B}$ should vanish there.
In consequence, $\hat{n}_{H1}^{B}=0$ holds along astream line in case (i). If we consider the problems in which there
is no closed stream lines [type (ii)] of the vapor flow or those in which closed stream lines of the vapor
flow, if any, do not carry any noncondensable gas, we can put

$\hat{n}_{H1}^{B}\equiv 0$ , (i.e., $\hat{F}_{H1}^{B}\equiv 0$). (B3)

By repeating the same argument successively for $m=2,3$ , $\ldots$ , we can show that Eq. (25) is aconsistent
assumption.

In the case of an infinite domain (Sec. 3.6), stream lines starting from infinity may also exist. But, it
is obvious that $\hat{n}_{H1}^{B}=0$ holds along such astream line because there is no noncondensable gas at infinity.
Therefore, Eq. (25) is consistent also in this case.
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Table I:The functions $h_{1}(M_{n})$ and $h_{2}(M_{n})$ .

Figure 1: $\mathcal{F}_{l}(|M_{\mathfrak{n}}|, M_{t},T_{\infty}/T_{w}, \Gamma)$ versus $|M_{n}|$ for various values of $\Gamma$ in the case $T_{\infty}/T_{w}=1$ . (a) $M_{t}=1$ ,

(b) $M_{t}=3$ . The dashed Une indicates the asymptote $(|M_{\mathfrak{n}}|=c_{*})$ of the curve for $\Gamma>\Gamma_{L\Gamma}$ . The values

of $\Gamma_{c\tau}$ are 0.080878 $(M_{\ell}=1)$ and 0.058957 (Mt $=3)$ .
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Figure 2: $F_{b}(|M_{\mathrm{n}}|,M_{t},T_{\infty}/T_{w},\Gamma)$ versus $|M_{\mathfrak{n}}|$ for various values of $\Gamma$ in the case $T_{\infty}/T_{w}=1$ . (a) $M_{t}=1$ ,
(b) $M_{t}=3$ . The dashed line indicates the asymptote $(|M_{\mathfrak{n}}|=c_{b})$ of the curve $\Gamma>\Gamma_{Cl}$ . The values of

$\Gamma_{\mathrm{c}\mathrm{r}}$ are the same as those for the corresponding $M_{t}$ in Fig. 1.

Figure 3: $\mathcal{G}(|M_{\mathfrak{n}}|, M_{t},T_{\infty}/T_{w})$ versus $M_{t}$ for
$|M_{n}|=0\cdot 1$ and $T_{\infty}/T_{w}=1$ .

(a) pure vapor $(\Delta=0)$

Figure 4: Vapor between aplane and asinusoidal
condensed phase in the presence of anoncondens-
able gas.

(b) $\Delta=2$

Figure 5: Strea lines, (a) pure vapor (A $=0$), (b) $\mathrm{A}=2$ . The stream lines in the pure vapor case $[(\mathrm{a})]$

are also shown by dashed lines in (b) for comparison.

Figure 6: Distribution of $\tilde{\Gamma}$ along the sinusoidal condensed phase
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