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Global existence of solutions for the water wave equation

in higher space dimensions
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1 Introduction

In this communication we are concerned with the initial value problem for the water
wave equation in general (n + 1)-dimensional space, especially, the existence of solutions
globally in time. The water wave equation is a model system for the motion of water with
free surface. It is formulated as the irrotational flow of incompressible ideal fluid in the
gravitational field.

We assume that the domain §2(¢) occupied by the fluid and the free surface I'(t) at time
t > 0 are of the forms

Qt)={z € R"™; 2,1 < F(t, 21, . .. 2 Zn) }s
F(t) = {Z € Rn+l; Zn+1 = F(t, S T ,zn)},

where z = (z3,... , Zn, 2nt1) and F is the unknown. The motion of the fluid is described
by the velocity v = (v1,... ,Un,Un+1) and the pressure p satisfying the equations
0 p(ve+ (v- V)v) + Vp = —pgeni1,

divv=0, rotv=0 in Q(¢t), t >0,

(% tou V) (zn.—f-l - F(t’zl’ e szn)) = Oa
D=Do on F(t), t> 0,

(2)

(3) Fitz() = FO on Rn, Vit=0 = Vo in Q(O),
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where p is a constant density and g is the gravitational constant assumed to be positive.
po is the atmospheric pressure assumed to be constant, and e;,11 is the unit vector in the
vertical direction zn41. In multi-dimensional cases, the rotation is defined as the twice
anti-symmetric part of the Jacobian matrix, that is, rotv = (Ov;/0z; — Ov;/0z). The
initial data Fp and v in (3) should satisfy the compatibility conditions

divig =0, rtotwe=0 in  €(0).

Our purpose is to show the existence of solution to the initial value problem (1)-(3).

A rigorous existence theorem for the solutions of the initial value problem was ini-
tially investigated in the framework of analytic functions by using an abstract Cauchy-
Kowalevski theorem in a scaled Banach space introduced by Ovsjannikov. Then, in con-
nection with the well-posedness of the problem the solvability in a class of Sobolev spaces
were studied. More precisely, in his pioneering work [11] V.I. Nalimov investigated the
well-posedness of the problem in the case where the motion of the fluid is two-dimensional
and the fluid has infinite depth. He showed that if the initial data are sufficiently small in
a suitable Sobolev space, namely, if the initial surface is almost flat and the initial move-
ment of the fluid is sufficiently small, then there exists a unique solution of the problem
locally in time in a suitable Sobolev space. Then, H. Yosihara [14] extended the Nalimov’s
result to the case of presence of almost horizontal bottom. Moreover, H. Yosihara [15]
gave an existence theorem for the initial value problem by taking the surface tension into
account on the free surface. He also studied the convergence of solutions as the surface
tension coefficient tends to zero. We remark that the water waves with surface tension
on the free surface are also called capillary-gravity waves. The two-phose problem for
water waves was investigated in [7], where we showed that the corresponding initial value
problem is well-posed if we take the surface tension into account and the initial data are
sufficiently small, while the problem is ill-posed if there is no surface tension on the free
surface. All these results dealt with sufficiently small initial data. S. Wu [12] studied
the problem in exactly the same situation as Nalimov’s and gave the existence theorem
locally in time without assuming the initial data to be small. In [6] the author studied the
initial value problem for capillary-gravity waves with rough bottom and gave an existance
theorem for large initial data, where we merely assume for the bottom that it is a graph
of a Lipchitz continous function. The problem of well-posedness for the three-dimensional
water waves was resolved by S. Wu in her nice paper [13]. Although she considered only
the three-dimensional case, her analysis can be directly extended for multi-dimensinal sur-
face waves without any difficulties. Until now no one gives the existence theorem globally
in time even if it is assumed that the initial data are sufficiently small. However, thanks
of Wu’s result we can now treat the multi-dimensinal water waves and, as we will see
later, we have nice decay properties in time of solutions for the linearized equation if the
space dimension is appropriately large. By making use of such decay property as well as
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Wu'’s analysis where she used Clifford analysis, we will give a partial result for the global
existence in time of solutions. We should also mention that the well-posedness locally in
time for capillary-gravity waves in the three-dimensional case is still open.

2 Reformulation of the problem

Following S. Wu [13], we will use the Clifford analysis (see, for example, [5]). Let 214
be the Clifford algebra associated with the Euclidean space R™™ and ey, ... , e, €,41 the
normalized basis, that is,

el =-1, ee;=—ee; (i#7)

The Euclidean space R™™! can be included in the Clifford algebra 2,1, under the embed-
ding

v=(Vi,... yUn,Unt1) > Vi€1 + *** Un€n + Unt1€nt1.
The Dirac operator ® associated with the Clifford algebra %,,,, is the first order differ-
ential operator defined by

which acts on the functions with the value in 2, ;.

Let 2 be a domain in R**! with the boundary I' := 0% of C*-class. For f € C1(Q; Uny1)
we say that f is Clifford analytic in Q if f is a kernal of the Dirac operator, namely, © f = 0
in Q. Since D? = —A, where A is the Laplacian in R, the components of any Clifford
analytic function are always harmonic. In the case where f is a 1-vector, that is, f is in the
form f(z) = Z?:ll fi(z)e;, where f; is a real-valued function, then f is Clifford analytic
in € if and only if div f = 0 and rot f = 0 in 2. Therefore, the velocity v embedded in
the Clifford algebra is Clifford analytic in Q(t) due to the second and the third equations
in (1). The following proposition is a Clifford version of well-known Cauchy’s integral
theorem.

Proposition 1. Suppose that f is a Clifford analytic function in Q. Then, for any
subdomain w € Q with C'-boundary Ow we have the identity

| n@r@asc—o

where n = " nse; is the outward unit normal to Hw.

Although the Clifford analysis was originally developed for analysis of Dirac operator,
we can regard it as one of extensions of complex variable theory to a multi-dimensional
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complex variables theory thanks to this proposition. To state the next proposition we
introduce a linear transform H' as a singular integral operator on the boundary I' in the

form
HEf(E) = v, /F K(E - m(€)f(¢)dSe for €T,
where 2 ¢
K@) =Ki(fe1+ - + Knpr(E)ent1 = —;W’ ~

¢, is the surface area of the unit ball in R™"! and n is the outward unit normal to T.
This is called the Hilbert transform for Q and defined for functions on I' = 952

Proposition 2. Suppose that f is a C-function in Q with the value in Unyy. Then,
f is Clifford analytic in Q if and only if the trace of f onI'=0Q is a fized point of the
Hilbert Transform for Q, that is, f(§) = H' f(§) for € T.

We now reformulate the initial value problem (1)—(3) to that on the free surface by
using the Lagrangian coordinates. In the following it is asssumed that the Euclidean
space R"*! is embedded in the Clifford algebra A,4+1. Let

L) : z=¢(,z) = (51(t,a:), ... ,§n(t,x),§n+1(t,;c)), r€R"
be the parameter-representation of the free surface such that
&(t,z) =v(t,&(t,z)) for z€R™ ¢>0.

Then, the problem is reduced to find this unknown parametrization § = £(t,z). In
fact, once we find such a parametrization, we determine the unknown fluid domain Q(t)
together with the free surface I'(t). By regarding the above relation as the boundary
condition for v, we solve the first order elliptic system (1)z,s for the velocity v. Then,
by integrating the equation (1); we obtain the pressure p, so that we can determine all
the physical quantities. Therefore, it is sufficient to determine £ = (¢, z) from the initial
data. To this end we have to derive the evolution equations for §.

Differentiating the above relation with respect to t and using the first equation in (1)
we see that

€tt(t? 97) = 'Ut(t,f(t,x)) + (Et(tvz) ’ V)U(t,f(t,.’l}))
= (v+(v- V)¢ (7))
= —gent1— p VD
On the other hand, the pressure p is constant on the free surface I'(t) because of the

second equation in (2) so that the gradient Vp is parallel to the normal vector n on I'(t).
Therefore, there should exists a scalar valued function a such that &+ geny1 = an. As we
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mentioned before, the velocity v is Clifford analytic in 2(¢) because of the second and the
third equations in (1). Hence, Proposition 2 says that the trace of the velocity v on the
free surface, which is equal to &, should be a fixed point of the Hilbert transform for Q(t),
so that we have & = Hr)§:, where Hr; is the Hilbert transform under the Lagrangian
coordinates. More precisely, it can be written in the form

(Hru) (@) = = p.v. /R K y) — € 2) (TG (6 31) A+ A (1)) July)dy,

Cn
where 11 is a linear transform from the space 2[,(1'21 of n-multivectors to the space 2[531 of
1-vectors defined by the relation
(e €161 €nt1) = (—1) e (1<i<n+1).

Now, the problem is reduced equivalently to the following initial value problem for new
unknown £ = £(t, z).

it + geny1 =an  for z€R" t>0,
(4) & = Hrué: for z€R" t>0,

(&,Et)lt:O = (50’61) for z € R",

where @ is an unknown scalar function, n is the unit outward normal vector to I'(¢) and
Hry is the Hilbert transform under the Lagrangian coordinates. The initial data &° and
¢! should satisfy the compatibility condition ' = Hr)¢'. In the following we concentrate
our attention on the analysis of the initial value problem (4).

3 Local existence

In order to understand basic propertities of the equations in (4), it would be bet-
ter first to study a linearized problem. To this end we introduce new unknowns X =

(X1, X2,...,Xne1) by
Et,z) = o+ X(t,z)
= (m+Xa(t,z))er + - + (@n + Xa(t, 2))en + Xnt1(t, T)entr.
It is easy to check that X = 0 is a solution of the equations (4). This solution corresponds
to the trivial flow, which means that the free surface is flat and the fluid does not move.

Linearizing the equations in (4) around this trivial solution X = 0 we can obtain the
following system of equations.

th + an+1:r:j =0,
KXnt1t = BaXpe + - + Ra X,
th = “'Ran-f-lt, Rfi.th = Rint for ’L,j = 1, 2, cee N,
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where R = (Ry, Ra, ... , R,) is the Riesz transform. By setting I := Xp11 and u:= X; =
(X1ty -+ s Xnts Xni1¢), it follows from the above equations that

Ftt—{"nglF?O, utt+g|D[u::0,
where we used the notation of Fourier multiplier, that is, the operator |D| is defined by

ID|F = F[E[(FF)©)] (= V-AF)

with the Fourier transform F. From the above equation for F we obtain the energy
identity

d

7 (IE@)I3+ gD FOI) =0,
which implies that if g > 0, then the corresponding initial value problem is well-posed in

the class C¥([0, T; H*+'/2-3/2) where H® is the usual Sobolev spaces of order s and | - ||,
is a norm of H*. Conversely, if g < 0, then the problem becomes ill-posed.

Remark 1. (i) | D] coincides with the Dirichlet-to-Neumann mapping for the Laplacian
A in the lower half-space R

(i) X;, 7 = 1,2,... ,n, does not satisfy the evolution equation Xy + g|D|X; = 0 in
general.

The following is a local existence theorem for the initial value problem (4) itself, which
is essentially due to S. Wu [13].

Theorem 1. Suppose that the gravitational constant g is positive and that the initial
data £° and &' satisfy the conditions
(8,8 —e; e H* (1< j<n), § € H™12, m > [n/2] +4,
182,60 = erllm + -+ 1820” — €l + € lmiza < Cr < Ho0,
¢ 108 @) A - A (82,8°) (@) 2 1> 0,
€°(z) — £°(y)| 2 ple —y| for =,y €R",
( §! = Hrof

Then, there ezists T = T(m,n,u,C1,g) > 0 such that the initial value problem (4) has a
unique solution £ = £(t,x) satisfying

& € Ci([0,T); H™?=3%) j=0,1,2.



The proof of this theorem is based on the derivation of a corresponding quasi-linear
system of equations for (4) and suitable energy estimates. By setting u = &;, the quasi-
linear system has the form

uw + aA(VEu = f(§,u,us) for z€R™, £>0,
t
(5) E=¢€+ / u(r)dr for zeR", t>0,
0
(u7 ut)lt:O = (§17€2) fOI' S Rna

where a = |us + gent1|, A(VE) is the Dirichlet-to-Neumann mapping for A in Q(t) and
F(&, u, us) is the collection of lower order terms. Introducing the singular integral operator
K* by

(@ =pv. [ (KE -9 mO)E)dse for €T
we can express explicitely the Dirichlet-to-Neumann mapping A(V§) as

AVES = T+K) Y (- / (MK~ &) ~m(OKE - )
s

x 8(6117 aaa'-' aé\;'a"' 7&:&1)

'
~ d
Oy yTks -+ 1 Yn) fyk Y,

where £ = £(t,2), & =§&(t,y), f' = f(y) and

(ylv"' az’/\k:"' ,yn) = (yl,‘-' y Yk—1) Ykt+1y - - - ayn)v etc.,

and similar notations will be used in the following without any comments. Note that for
scalar valued function f we have the identity

K*f = R(nHr (nf)),

where Rv is the scalar part of v € Uny1. Moreover, if £ = £(t,z) is a solution of the
problem (4), then we have n = (& + gent1)/|€ + gen+1|. Taking these relations into
account we define linear operators K* and L = L(£, &) by

&t t g€nta

K*f .= R(BHre(8f)), #:= ,
f (n I‘(t)(nf)) n ,gtt+gen+1l

and

L €u) — -(1+|Di'>-1{(1+ic*>*1—ijjuwc*)-l(w,-)

i=1

+ f: R;(I + K*)™iD;, K*)(I + zc*)-l},

=1

52



respectively, where [-, -] denotes the commutator. Then, we see that if £ is a solution of
(4), then it holds that K* = K* and L(§,6x) = (I + K*)~1. Using this operator we can
write the collection of lower order terms f(&,&:, &) in (5) as

f(f,ft,ﬁtt) - L(ga §tt)h(§a ftwftt),

where
h(&a&t’&t)
= Z(—l)"{2p-V- /Rﬂ K(€ - OM((E &) NE N AE N NE, Vb, dy

+2p.v. - KE - OI((& — L) NE N A é‘.‘;l; Ao Ny )iy, By
j-1 — '
+Zp‘v~/Rn K(€/ - é)H((& - gt) /\51,/1 A /\géyi ASEN /\6;1 A Agi’ﬂ)&yjdy
=1

+ 2 p.v.AnK<s'—s>H((£:—£t>AﬁzlA---AEZA---A&:%-A---Afzn)ﬁiwdy

i=j+1

-pvf K(E — OT(Ey, A& A A & N NE,)((E &) Ve)edy

—p-v. (€ — ON((& — &) NE, A NE A NE) (&, Ve)bidy

R»

—pv. [ KE QTG - &) A, A AG A A ) (6 =6 ay,.ve)szdy}.

The operator V¢ in the above expression is defined as follows. For a scalar valued function
u = u(t,z) we let U = U(t,n),n € Qt), be the harmonic function in Q(t) satisfing the
boundary condtion U(t,&(t, z)) = u(t, z), namely,

AU(t,)=0 in Q(t),
Ut,") =u(t,-) on I'(t).

Then, we set

Vfu(ta ZE) = (VU) (t’ f(ta z)),

where VU is the gradient of U with respect to 7. By making use of the Dirichlet-to-
Neumann mapping A(V€) and the Hilbert transform Hryy), we can express this operator
VE as

Vfu = —(I + Hp(t))(n(—l -+ ’C*)_IA(Vé)U)
Here, we also mention that the definition of the Dirichlet-to-Neumann mapping is as

follows:
A(VEyu(t, z) := n(£(¢,2)) - Veult, z).
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4 Global existence

We proceed to discuss the existence globally in time of solution for the initial value
problem (4). In order to construct the solution we will use the decay property in time of
solutions for the linearlized equation, so that let us consider the initial value problem for

the linearized equation:

Ftt—f"lD'F:O for € R" t>0,
(F, Ft)lt:() = (FQ,Fl) for z € Rn,

where we have put g = 1 for simplicity. By using the Fourier multiplier the solution of
this problem can be written explicitly as

sin(|D|"/?t)

F(t) = cos(| D|*/*t) Fo + |D[1/2

F for t>0.

Therefore, to study the decay property of the solution it is sufficient to investigate the

. ; 1/2 . .
evolution operator eP"?, which can be written as

(©) o) = g [ N (Fu)(Eya
JR"?

where
Y(Ey) =[P +y-¢ y=a/t

For any y € R™ (y # 0) this phase function has only one stationary point § = —y/ (4]yl®)
and the Hessian of this phase function at the stationary point & can be caluculated as

det (Hess U(&o; y)) = _ —92n=1,(3n

—2n+ll§0‘3n/2 -
Therefore, by the stationary phase method yields that if y # 0, then the above integral (6)
decays to the order n/2 as the time ¢ tends to infty. Although the determinant vanishes
when y = 0, the corresponding stationary point is infinity. Hence, it is natural to expect
that the integral (6) decays to the order n/2 uniformly with respect to the space variables.
In fact, we have the following proposition.

Proposition 3. Let2<qg< oo, 1/p+1/g=1and N > (n+1)(1/p—1/q). Then,
there ezists a constant C = C(n,q, N) > 0 such that for any t € R and any v € Cg°(R”)

we have
1 1

itIDII/'zuq <Cc(+ |t])_%(;_5)|“|N.pa

e

where | - |; and | - |np are the norms of the Lebesgue space LY(R™) and the Sobolev space
WNP(R™), respectively.
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Proof. It is sufficient to show the estimate
s / \—n/%
1P ulee < C(L A+ [8]) ™ ulntr,

because by interpolating this inequality with |e1P*u| = |lu|| we obtain the desired
estimate. Now, let us recall the following lemma due to W. Littman [10].

Lemma 1. Let Q be a domain in R™ and suppose that

b€ C>(Q), u e CP(R™), suppu C 0,
|det (Hess ¢(€))| = c1>0 for V€ € suppu.

Theh, there ezists a constant C > 0 such that for any t € R we have

|F )]0 < C(1+ [t]) ™2

Take 1 € C§°(R") such that
o suppy C {{ € R"; 1/2 < [¢] < 2}

o Setting ;(£) := ¥ (2¢) for j € Z, we have

D vil§)=1 for VEER"({#0)

jEZ
Then, we can decompose the integral as

f_l[e“|"1/2.7-'u] = ZF‘I[ei"|'|1/2goj.7-'u]

jez
=) F [ ;] xu+ Y F! [e“"‘l/zl—('?_’—i] * (|D|*u),
=0 j=1

where * denotes the convolution operator. Here, we have

F! [eitl-ll/zw](w) = (2) " F! [ei2_j/2t|‘|l/2¢] (22)

7o e o] ) = e [ | ),

Therefore, by Lemma 1 we see that

| e ;] ()]

o0

(2)™C(1 + 2712 [t)) ™2
0(2371/4)—_’] [tl—ﬂ./z

IN A
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and that
[ [e'“f—d (@)] < @)7C(+ 278
< O(2a-3n/4)=i|g| /2,
where the constant C does not depend on ¢ nor j. Hence, if @ > 3n/4, then we get

|7 [ Ful| | < ClI2(jul + 11D|ul:).

On the other hand, if 3 > n, then we see that
- {e,u.lm o-i } (@) < / |(Fu)(€)|de
Rn

BE
1B &«
1Fules /|§|<1 a1l fuloo/|e|>1 |18

< O(fuls + |DPuls).

INA

The above two inequalities yield the desired estimate. O
By using this decay property we can show the following main theorem.
Theorem 2. Suppose that
(7) g>0, n>5 I1I>[n/4+3 m>2l+[n+1)/2]+2.
Then, there exist positive constants § and C such that if ihe initial data satisfy the con-

ditions

Eo =) 1105, = ellm + I DIV?E |m < 6,

=1
Ey = |Fi|m-14/3 + ||D|1/2F0Fm—1,4/3 <4,
then the initial value problem (4) has a unique solution £ = £(t,x) globally in time satis-

fying
& € C7([0, 00); H™H/27902), - j=0,1,2

Moreover, for any t > 0 we have

{ 1€2(t) lm + || DI*2&:(t) || m < CEn,
|F(t)1a+ [IDIY2F(t) e < CEy(1 + t)™/4,

where | - |1 is a norm of the Sobolev space W'?(R™) and || - |lm = | - |m,2-

The proof of this theorem is based on the energy estimates with the time-decay estimates
in L*(R™). Here, we should note that the quentities appearing in the equations does not



always decay as time tends to infinity. As we state in Remark 1, the quentitie Xj,
j=1,2,...,n, does not satisfy the evolution equation Xj: + g|D|X; = 0 in the linerized
case, so that we do not know any decay properties for quentities X;, j = 1,2,...,n,
themselves. Actually, such quentities represent the pertubation in the horizontal direction,
and hence it is natural that the quentities do not decay to zero but decay to non-zero
constants as time tends to infinity. Therefore, in order to use the decay properties stated
in Proposition 3 effecitively, it would be better to use the Eulerian coordinates. However,
in order to control the energy norms we are forced to use the Lagrangian coordinates. That
is the reason why we will use the both coordinates in order to obtain a priori estimates.

Now, let us consider the relations between the Lagrangian coordinates and the Eulerian
coordinates. Note that the free surface I'(¢) was represented as

T(t) : z=¢&(tz) =&t z)er+ -+ &alt, 2)en + énra(t, T)ents, 2 E€R
Taking this into account we introduce a mapping ®(-;t) with a parameter ¢ by
®(z;t) = (&4(t,),... ,6nlt,x)) for zER™

It is easy to see that there exists a constant € > 0 such that if the function £ = £(t, )
satisfies the conditions

02;6(t, ) —ej| <e for zeR", j=12,...,m,
then ®(;t) : R” — R™ is a diffeomorphism. Now, we define the function F' = F(t,y) by
(8) F(t,y) :=bapr(t, @7 (%51)) = (Enr1 0 7)) (t,y)-
Then, the free surface I'(t) can also be represented as
T(t) : z2=mn(t,y) =yie1+ -+ Ynen + F(t,z)eny1, y€ER"™

Therefore, this parametrization y in (8) is the Eulerian coordinates and that the relation
(8) represents the relation between the Lagrangian and Eulerian coordinates.

We proceed to derive an evolution equation for F = F(t,z). Let us introduce new
function V = V(t,y) by

V{y,t) :=v(t,nt,y) = &(t, @ (y,1),

which is the boundary value on the free surface I'(t) of the fluid velocity v. Since v is

Clifford analytic in £(t), Proposition 2 says again that the trace of the velocity v on the

free surface , which is equal to V, should be a fixed point of the Hilbert transform for
Q(t). Therefore, we have V = H(VF)V, where H(VF) is the Hilbert transform under
the Eulerian coordinates, that is,

(HVFR)(@) = = pv. | Kt) = n(t, ) (1 &) A+ A1) o)y
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Decomposing the operator H(VF) as
H(VF)=Ho+ Hi(VF)  (H1(0) =0)
and writing V as
V=Vier+ -+ Vaen + Voti€ns1 = Vian + Voti€at1,

we obtain the relations
Vian = Zej (e;H1(VF)Viun) — Zej i+ R (e Hy(VF)ent1)) Vasa.
j=1
In view of this relation we introduce operators A;(VF) and A3(VF') depending on VF
by

Ay (VF)u:= 2”: e;R(e; Hi(VF)u),

j=1
Ay(VF)f = ei(Rif +R(e;Hi(VF)en f)).
Then, we get
(9) Vian = K(VF) Vo,

where
K(VF)=K)(VF)es+ -+ K,(VF)ey,

K;(VF) = R(e;(1 + AI(VF))-lAz(VF», 1<j<n.
It follows from (8) that
Fi+ (Vian - V)F = Voy,
which together with (9) implies the relations
(10) { Va1 = (1= (VF)- K(VF))"'F,
Vien = K(VF)(1 - (VF)- K(VF))™

Hence, the trace of the velocity v on the free surface can be expressed in temrs only of F.
On the other hand, in the Eulerian coordinates the first equation in (4) can be written in
the form

V;:ant + (‘/ta.n * v)‘/tan + (VF)(Vn+1t + (%an : V)Vn-{-l) + QVF =0.

Putting (10) into the above equation we see after some caluculation that that the function
F = F(t,z) should be a solution of the initial value problem

{ Fy 4+ g|D|F = N(F,,VF) in R" t>0,

(11)
(F, Ft)|t=0 = (Fo, F1) in R",
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where

N(F:, VF) = (1—(VF)-K(VF))(1+R- (K:(VF) + VF)) Ni(F, VF)
+((VF)-K(VF))(1+ R (Ki(VF) + VF)) " (g|D|F)
(R (K1y(VF)+ VF))(1+ R- (Ky(VF) + VF)) ™ (g|DIF)

and

N](Ft, VF) - —R ’ {[6tK(VF)]Vn+1 + (V;,an * V)‘/tam + (VF)(‘/tan . V)Vn+1
+(K(VF)+ VF)(1 = (VF)- K(VF)) [0, (VF) - K(VF)|Vian}.

In the above equation V should be replaced by a suitable function of F according to
(10). We note that N(F;, VF) is the collection of non-linear terms, however, it contains
the highest order terms. Therefore, we can not obtain a nice energy estimates from the

equation in (11).

5 A priori estimates

We will sketch the outline of the proof of Theorem 2, which is, of course, based on
suitable a priori estimates. We first note the following lemma.

Lemma 2. For any u,v € C°(R™) we have
(u, NA(VE)v) = (NA(VE)u, v),
where (-, ) is the inner product in L*(R™) and N = |&, Aoy A+ N &aal-
Taking this identity into account we define the energy norm En, (t) by

En(t) = (J&, &) + gll|DI"2 (&0 @717
F(NA(VE) ™€, A(VE)™Er) + (NaA(VE)™ &, A(VE) &),

where J = det ((0¢;/ 8a:i)15,-,j5n). Since the Dirichlet-to-Neumann mapping A(V£) is an
operator of order 1, this energy norm is almost equivalent to the norm

om() = ()15 + 1 DI2E) 7

Taking the derivative with respect to ¢ for the energy norm we see that

D Binlt) = 2 ((T6wr) + gl DI (6 0 87)17)

H(NGA(VE)™ €y, A(VE)™E) + (NaA(VE)™ &, A(VE)"6x)
+2(NA(VE)™Euns, A(VE) ™€) + Ni(2),
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where I;(t) is the collection of lower order terms and written as

L(t) = (6, NAVE)™ 6w, AVE) Eu) + (NA(VE)™ut, (B0, A(VE)™|€ur)
+([0s, NaA(VE)™ &, A(VE)™&) + (NaA(VE)™E;, [0, A(VE)™]E)-

By using the equation in (5) we have

& (6w, ) + gl DI (60 87 )
= —2(J€u; gA(VE)&) + 2(J&x, (9 — a)A(VE)&:) + 2(J&se, £ (€, &ty 6xt))
+(Jibet, &) + 2((6 0 @71)s, 9| DI(&e 0 @71)).
Lemma 3. For any u € C§°(R"™) we have the identity

(A(VE)u) 0 @1 = A(Vn)(uo @71).
Proof. Let U be the harmonic extension of u in Q(t), that is,

AU(t,) =0 in Q(t),
U(t,&(t,x)) =u(x) for z€R"

Then, by definition we have

(A(VE)u) (8, ) = n((t, ) - (VU)(,£(t, ).
Since £(¢, ®1(y;t)) = n(t,y), we see that

Ut n(ty) = u(@ ' (y;t) = (uo &71)(t,y)-
Therefore, we obtain

(A(VE)u)(t, @ (y;t)) = n(n(t,y) - (VU)(t,n(t,y))
(A(Vn)(uo ®71))(t,y),

I

which is the desired identity. O
By this lemma we have
(J&u, A(VE)&) = (6t 0 @71, A(V) (& 0 @71)).
Moreover, it is easy to see that

(0@ ) =Euo® ' + (D& o ®71)(@7))..



Hence, we obtain

4 ((J&sz, 1) + gll|D)M3 (& ° 1))

dt
= 260 ® 7L, (A(VY) = [D))(& 0 7)) + 2(D& 0 ©7)(@71)e, DI 0 @71))
+2(J€tt7 f(ga ét’stt)) + (Jgtta (9 - a)A(VE)gt) + (JtEtty gtt)

=: Iy(t).
By using the equation in (5) again we see that

2ANA(VE) ™ Eust, A(VE) )
= —2NA(VE)™(aA(VE)E), A(VE)™Ew) + 2ANA(VE)™ f(§, & ), A(VE)Ext)
= —(NaA(VE)™ ey, A(VE™E) — (NaA(VE)™ &, A(VE)™Ew) + Is(),

where I3(t) is the collection of lower order terms and written as

Ii(t) = —(NA(VE)A(VE)™ ", alA(VE)&:, A(VE)"En)
—(N[A(VE)™, alA(VE)E:, A(VE)"Ext)
T2(NA(VE™ (&, &, &)y A(VE)"Est)-

Summarizing the above calculations yields that

%Em(t) = Ii(t) + Io(t) + Is(t) =: 1(2),

so that we have
t
(12) En(t) < En(0) + / 1(r)\dr.
Q0

On the other hand, it follows from (11) that

in((g|DI)**t
F(t) = cos (9l D))"/2t) Fo + Smgw B )
tsin((glDN)A(t=7) \op
o [ SOV s vy
This and Proposition 3 imply that
(13) |Fe(t) e + [|DIV2F (£)]10

< CA+t)™*(|Filitpasa + || DI Folirpays)

t
+0/ (14t — 7)"™4IN(F,, VF)(T)l14,4/3d7
0

for any t > 0, where [ > 0 and § = [(n+1)/2] + 1.
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Now, we have to estimate the non-linear terms I(t) and N(F;, VF'). However, it is not
so easy to do that because the nonlinearities come from the kernel of singular integral
operators. Therefore, we proceed to investigate the singular integral operator of the form

Tf(x)= p-V-/ K(z,y)f(y)dy

n

with the kernal

K(x:y) =

1 (IMI A() - Akm) G(&(z) - Bily)  Bul) - B~(y>>‘

w—yl*\;5 |=—vl lz—yl |z~ y]

For any € > 0 we define an (absolutely conergente) integral operator 7, by

i@ = [ Keniodw

and put
Tuf(x) :=sup

e>0

Tef(=)l;

which is called the maximal operator corresponding the singular integral operator T

Proposition 4. Let R > 0 and suppose that G € C®(Bar) and G(—2) = (—1)M11G(2)
for z € Bag, where Bag is a ball in RY with center 0 and radius 2R. Then, there ezists
a positive constant C such that under the conditions

( VA, € L*R"), k=12,..., M,
VB, € L*(R"), VBl <R, [=1,2,...,N,
l<p<oo, I1<p <00, 1 <g< o0,

L I/p=1/pm+1/p2+ - +1/pu + 1/g,

we have
IT*flp < CIVAI,m'VA?l‘pz Tt 'VAM,PMIf'Q'

Roughly speaking, this is a singular integral version of Hélder’s inequality.

The above estimate in the case n =1, p=¢g=2and py = p; = --- = py = 0 is the
result due to R.R. Coifman, A. Malntosh and Y. Meyer [3]. Their result together with
the well-known Calderén and Zygumond theory generalizes it to the case 1 < p = ¢ < .
The generalization of the results to the case n > 2 is due to the method of rotation. (See
also [2] and [4].) In [1] R.R. Coifman and Y. Meyer derived the similar estimate as above
for the commutator singular integral of Calderdn, which corresponds to the case n = 1,
M =2 and G(z) = 1. However, their thechnique can be applicable to the above operator
with slight modifications.
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Now, we turn to a priori estimates. In what follows, for simplicity, we will use the
abbreviation
|06 — €| = 02,6 —ei] + -+ [0z,6 —enl,

and similar notation will be used without any comments. Based on this Proposition 4 we
can show the following lemma.

Lemma 4. There exists a small positive constant 8; such that under the conditions

|0€ — €lat1,4 + [&tlatra + [Ettlatra < 61,
!HIQA + IVFIa,Il S 51) o= [Tb/4] + 1,

we have
En(t) < C(pm(t)® + 1106(t) — ell-1/2)
Pu(t)? < C(Bm(®) + (| Fu(t) otz + |VF ()la+1,4) 106 — ellm_r/2),
I(t)] < C(Ft)lasza+ |VFBlatr10)m(t)’
+C( Fet)laraa + |VF () ]ar1,4) |OE(E) — ellyso
and

IN(F, VE) ()543 < CUFe(t)las + IVF(t)|aa) {ps1(t)
+ (|Fe(t)]atra + V() larr,a) 106(t) — ells },

where C is a positive constant independent of the solution §.

Put
dit) = L+ )(|F() s+ [VF () 1a)

and

B(t) = sup pm(r),  thi(t):= sup ().
0<r<t o<r<t
In the following we assume that n, [ and m satisfy the conditions in (7). In view of the

estimate

106(t) —ell, < 0€ — el + / IV&(r)ldr
16€° — ells + tPsr1/a(t),

IA

we see in turn that
|I(t)| < C(l + t)—n/4¢a+2(t){90m(t)2 + ¢a+2(t)2(”6€0 - e“m—l/2 + Gm(t))z}a

En(t) < Em(0) + Cat2(O){Fm(t)* + Yas2(t)* (11906 — ellm-1/28m(t)*) }
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and that
()2 < C(Brm(0) + G1(t)Bm(t)? + Du(6)* (16 = €llm-rzz + Pm(t)))
Moreover, it follows that

IN(Fe, VE)(t)|148,4/3
< C(1+ )™ h(t){pm(t) + () (|10 — ellm-1 + Pm(?)) }

and that

$1(t) < C(|Filmoraa + | DIV Folm-1,4/3)
+ CY(t){Brm(t) + Di(t) (1O = €llmer + Em(t)) }-

Therefore, we obtain the following lemma.

Lemma 5. There exists a small positive constant §; such that if
‘Zm(t) + Jl(t) S 62a
then we have
(Em(t)z < C(Em(o) + ”86(‘ - e“m—l/Z);
hilt) < C(|Film-14/3 + || D|M2Fy)me1,4/8 + 1080 = €llm—1).

Since
En(0) < C(IIDIM2EH 2, + 110€° — el )

we can prove our main theorem by standard arguments.
The details will be published elsewhere.
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