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Anisotropic convexified Gauss curvature flow of bounded open sets:

stochastic approximation, weak solution and viscosity solution
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1 Introduction

Gauss curvature flow is known as a mathematical model of the wearing pro-
cess of a convex stone rolling on a beach (see [2]).

In [3] we proposed and studied a two dimensional random crystalline
algorithm for the curvature flow of smooth simble closed convex curves.

In [4] we studied a convexified Gauss curvature flow of compact sets by
the level set approach in the theory of viscosity solutions.

In this talk we discuss a random crystalline algorithm of and PDE on an
anisotropic convexified Gauss curvature flow of bounded open sets in R" for
any N > 2 (see [5]).

We introduce an assumption and a notation before we describe the PDE
under consideration.

(Al) Re L]'(SN_1 : [O, 00),dHN_1), and ”RHLI(SN-—I) = 1.



For p € R" and a N x N-symmetric real matrix X, put G(o, X) := 0

and

G(p, X) = |p|det+(—(I—%@ﬁ)%([—%@ﬁ)+ﬁ®%)

if p # o.
We discuss a weak solution and a viscosity solution of the following PDE

in this talk:

Du(t, x)

)a+(u,Du(t,x), t, 2)G(Du(t, z), D?u(t, 7))

(1.1)
((t,z) € (0,00) x RY). Here

ot (4, p,t, 7) = { 1 ifu(t,:) <ul(t,z) on H(p,z) and p € RV \ {0},

otherwise,

H(p,z) = {y e R"\{z}| <y—z,p >< 0}.

To introduce the notion of a weak solution to (1.1), we give several nota-
tions.

Let F be a closed convex subset of RY. For z € 8F, put

Nr(z):={pe SN Y| Fc {y|<y—=z,p><0}}.

Definition 1 Suppose that (A.1) holds. Let u : D(u)(C RN) — R be
bounded and r € R. For any B € B(RY), put



we(R,u, B) = / R(p)dH"(p),

N(co u—l([r,oo)))'-(Bna(co u"l([r,oo))))

w(R,u, B) := /Rdrw,.(R, u, B),
provided the right hand side is well defined.

Definition 2 (Weak Solutions) Suppose that (A.1) holds.
(i) A family of bounded open sets {D(t)}s>0 in RN is called an anisotropic

convezified Gauss curvature flow if

D(t) = {(co D(t)) N D(0) fort € [0, Vol(D)), )
0 for t > VoI(D)
; and for any ¢ € C,(R") and any t > 0,
AN ¢(z)(Ip()(z) — Ipw(z / ds/ e(@)wr(Ipe)(),dz).  (1.3)

(i) u € Cy([0,00) x RYN) is called a weak solution to (1.1) if the following
holds: for any ¢ € C,(RY) and any t > 0,

/ o(z)(u(0, z) — u(t, r))dz -f ds/ o(x)w(u(s,-), dr). (1.4)

Let M be a smooth oriented hypersurface in RY and K(z) denote Gauss

curvature of M at z. Define ¢ : M +— {0,1} by

1 ifz€ MNd(co M),
o(z) {

0 otherwise,
and call o(z)K (z) the convezified Gauss curvature of M at z.



Remark 1 If0D(t) is a smooth hypersurface for allt € [0, Vol(D(0))), then
t — 0D(t) is the curvature flow:

v =—R(v)oKv (1.5)

on [0, Vol(D(0))), where v denotes the unit outward normal vector on the

surface and v denotes the velocity of the surface.

Before we introduce the notion of a viscosity solution to (1.1), we intro-
duce notations. |

f € F if and only if f € C?([0, 00)), f“(r) > 0 on (0,0), and f(r)/rN —
Oasr—0.

Let O be an open subset of (0,00) x RY. f € A(Q) if and only if
@ € C?(Q), and for any (£,2) € Q for which Dy vanishes, there exists f € F
such that

lo(t, 2) — (£, 2) — Bep(, 2)(t ~1)| < f(lz—&)) +o(lt—F]) as (¢,2) — (£,2).

Definition 3 (Viscosity solution) (see [7]).
Let 0 < T < o0 and set Q := (0,T) x RV,
(i). A function u € USC(Q) is called a viscosity subsolution of (1.1) in Q if

whenever ¢ € A(Q), (s,y) € Q, and u — ¢ attains a local mazimum at (s,y),
then

Oue(s,4) + 0 (. Dol 4), 30 R(Tp 5 -0 ) GDp(o,1), Dp(sny) <0
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where

1 ifu(s,:) <u(s,y) on H(p,y) and p € RN \ {0},

0 otherwise.

o (u,p,8,y) = {

(). A function u € LSC() is called a viscosity supersolution of (1.1) in
Q if whenever p € A(Q), (s,y) € Q, and u — ¢ attains a local minimum at
(S,y), then

Dy(s,y)
DAEDNG(Dp(s,u), Diols,) 2 0

(1.7)
(i4). A function u € C(Q) is called a viscosity solution of (1.1) in Q if it is

Bup(s,y) + o7 (u, Dp(s, y), s, y)R(

both a viscosity subsolution and a viscosity supersolution of (1.1) in Q.

Next we introduce a class of stochastic processes of which continuum limit
becomes an anisotropic convexified Gauss curvature flow.

The following is an assumption on the initial set.
(A.2). D is a bounded open set in R" such that Vol(dD) = 0.
Take K > 0 so that co D C [-K + 1, K — 1]V. Put

Sni={Ia: [-K,K]¥ 0 (2% /n) = {0,1}|A C Z"/n}.

For z, z € Z¥ /n and v € S,,, put

v(z) ifz#z,

Un,(T) = {
0 ifz=z2
; and for a bounded f : S, — R, put



Anf(v) :=n" > wi(R, v, {z}){f(vnz) — F(v)}.

2€[-K,KIN(ZN /n)
Let {Yn(t,")}:>0 be & Markov process on S, (n > 1), with the generator
Ap, such that Y,(0, 2) = Ipnzn/n)(2).
For (t,z) € [0,00) X [-K, K|V, put also

Da(t) := (co Ya(t,)"1(1))° N D. (1.8)

Xn(t,z) = IDn(t) (.’L‘) (1.9)

Then {X,(t,-)}+>0 is a stochastic process on

S ={f € L*([-K,KI") : ||fllzaq-x.xamy < QK)N}

which is a complete separable metric space by the metric

S max(| < f — g,er >r2q-k.x) |, 1)
Uf.0) = 3 e 2o b,
k=1

Here {ex}x>1 denotes a complete orthonomal basis of L2([—K, K]V).
By definition, the following holds.
(1) D,(0) — D in Hausdorf metric as n — oo.
(2) Xoezd myni—k, k¥ HDaty(2) = ID,(i—)(2) = 0 or 1 for all t > 0.
(3)If |Ip, ) (2) — Ip,t-)(2)| =1, then z € 8(co Dn(t—)).
(4) Xre@V jmyn(-k, k1% HDnt)(2) — Ip,—)(2)| = 1 if and only if ¢ = o,; for
some ¢, where 0 < 0,1 < 0,1 < - - - are random variables such that {0, ;41 —

On,i}i>o are independent and that



P(0pit1— 0n; € dt) = n" exp(—nt)dt.

(5) P(IDu(00,)(2) = IDa(on-)(2) = 1) = E[wi(R, ID,(0n ) {2})]-

Remark 2 In this paper we try to minimize the number of references because

of the page limitation. One can find extensive references in [1]-[7].

2 Main reslut

In this section we give our main result from [5].
The following theorem implies that D, is a random crystalline approxi-

mation of an anisotropic convexified Gauss curvature flow.

Theorem 1 Suppose tha: (A.1)-(A.2) hold. Then there exists a unique
anisotropic converified Gauss curvature flow {D(t)}4>0 with D(0) = D, and
for any v > 0,

Jim P(Sgg’ 1 Xa(t, -) = Ine ()l a-x.xny 2 7) = 0. (2.1)
Suppose in addition that D is conver. Then for any T € [0, Vol(D)) and
7 >0,

lim P( sup dy(Da(t),D(t)) 2 7) =0, (2:2)

n—00 g<Li<T

where dy denotes Hauédorﬂ" metric.

We introduce an additional assumption.



(A.3). h € Cy(RY) and for any 7 € R, the set h~1((r,00)) is bounded or
RV,
The following corollary implies that a level set of a continuous weak so-

lution to (1.1) is determined by that at £ = 0.

Corollary 1 Suppose that (A.1) and (A.8) hold. Then there exists a unique
bounded continuous weak solution {u(t,-)}s>o to (1.1) and for any r € R,

{u(t,)~1((r, 00)) }s>0 is a unique anisotropic convezified Gauss curvature flow

with initial data u(0,-)1((r, 00)).
We state properties of anisotropic convexified Gauss curvature flows.

Theorem 2 Suppose that (A.1)-(A.2) hold. Let {D(t)}>0 be a unique anisotropic
convezified Gauss curvature flow {D(t)};>0 with D(0) = D. Then
(a) t — D(t) is nonincreasing on [0, 00).

(b) For any t € [0, Vol(D(0))),

Vol( D(0)\D(t)) = ¢. (2.3)

(c) Let {D1(t)}i>0 be an anisotropic converified Gauss curvature flow such

that D,(0) is a bounded, convez, open set which contains D. Then

D(t) C Dyi(t) for allt >0, (2.4)
where the equality holds if and only if D(0) = D,(0).
We give an additional assumption and state the result on viscosity solu-

tions to (1.1).
(A4). Re C(SN1:]0,00)).



Theorem 3 Suppose that (A.2) and (A.4) hold. Let {D(t)}t>0 be a unique
anisotropic converified Gauss curvature flow { D(t) }:>0 with D(0) = D. Then
Ipw)(z) and Ipw)-(z) are a viscosity supersolution and a viscosity subsolution

to (1.1), respectively.

The followng results imply that u € C;([0,00) x RN) is a weak solution
to (1.1) if and only if it is a viscosity solution to (1.1).

Corollary 2 Suppose that (A.8)-(A.4) hold. Then a unique weak solution
u € Cy([0,00) x RN) to (1.1) is a viscosity solution to it.

Corollary 3 (see [6]) Suppose that (A.83)-(A.4) hold. Then a continuous

viscosity solution to (1.1) is unique and is a weak solution to it.

3 Sketch of Proof

In this section we explain the main idea of proof.

(Idea of Proof of Theorem 1). We first show that {X,(t,-)}:>0 is tight in

D([0,00) : 8). By the weak convergence result on w; by Bakelman [1], we

show that any weak limit point of {X,(t,-)}:>0 is a weak solution to (1.3).
The following lemma implies the uniqueness of a weak solution to (1.3),

and hence completes the proof of (2.1).

Lemma 1 Suppose that (A.1) hold. If {Ip,w}es0 (i =1, 2) are wea]c solu-
tions to (1.8) for which D1(0) C D3(0), then Dy(t) C Dq(t) for allt > 0. In

particular,



d(D1(t), Da(2)%) 2 d(D1(0), D2(0)°), (3.1)

for t < Vol(D(0)).
(2.2) can be shown easily. O
(Sketch of Proof of Corollary 1). For r € R, let {Ip,()}:>0 denote a unique

weak solution of (1.3) with D,(0) = h~1({r, 00)).
Put

u(t, z) :=sup{r € R|z € D,(¢)}.

Then u is continuous. In particular, for all ¢ > 0 and r € R,

u(t’ ')—1(("'1 OO)) = Dr(t)'

For n > 1, put k,,, := [nsup{h(y)|ly € RV}] and kno := [ninf{h(y)|y €
R™}]. Then for any ¢ € C,(R") and any t > 0,

k
/RNSO(JB)[ >, —pgwe(@) = Ipyy (%))
kn,0<k<kn,1 "
k
- Z _(ID%(O)C(Z‘)_IDLG_#_(O)C(:B))]dx

kn,o<k<kn,1

= [asl X [ e@ho(R In (), o))

kn,0<k<kn,1 "
Letting n — 00, u is shown to be a weak solution to (1.1).
The uniqueness of u follows from that of D, (-) for all r. In fact, we can
show that for a continuous weak solution v to (1.1), {v(t,)~((r, 00))}t>0 is

an anisotropic convexified Gauss curvature flow. O

10



We omit the proof of Theorems 2 and 3. Corollary 3 is an easy conse-
quence of Corollary 2 and [6] where we give the uniqueness of a viscosity
solution to (1.1).

(Idea of Proof of Corollary 2) Let u be a weak solution to (1.1).

We first show that u is a viscosity supersolution to (1.1). Suppose that
u is smooth in ©Q and that ¢ € A(Q), (s,y) € Q, and u — ¢ attains a local
maximum at (8,y). Then, putting ¢ := ¢ — ¢ (¢ > 0),

Bs(u — ¢°)(s,9) 2 0.

Hence formally, we have, in some neighborhood of (s,y),

at(PE(t, (E)
< Owl(t,z) = —w(u(t,-),dz)/dx

< —w(yf (). do)/ds = ~R(TELI)GDe(t ), Dolt, )

In the last equality, we use the following lemma.

Lemma 2 For ¢ € C?(RN : R) for which Dyp(z,) # 0 for some z, € RY
and for which all eigenvalues of —D(Dy(z,)/|Dy(z,)|) are nonnegative,

028) G D(a,), DPp(s,)) = det(Dyi(za)) (i =1+, N),  (32)

| D (o)
where

- 050(@) s )
Yi(z) = (‘(1 - dij)[D(p(x)l + &i50( ))

Similarly one can show that u is a viscosity subsolution to (1.1). a

i=1

11
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