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Abstract. We consider the removability of isolated singularities for the
curvature equations of the form $H_{k}[u]=0$ , which is determined by the k-
th elementary symmetric function, in an $n$-dimensional domain. We prove
that, for $l\leq k\leq n-1$ , isolated singularities of any viscosity solutions
to the curvature equations are always removable, provided the solution can
be extended continuously at the singularities. We also consider the class of
“generalized solutions” and prove the removability of isolated singularities.

1Introduction
We study the removability of the isolated singularity of solutions to the

curvature equations of the form

$H_{k}[u]=S_{k}(\kappa_{1}, \ldots, \kappa_{n})=0$ (1.1)

in $\Omega\backslash \{0\}$ , where $\Omega$ is abounded domain in $\mathbb{R}^{n}$ and $\mathrm{O}\in\Omega$ . For afunction
$u\in C^{2}(\Omega)$ , $\kappa$ $=(\kappa_{1}, \ldots, \kappa_{n})$ denotes the principal curvatures of the graph of
the function $u$ , namely, the eigenvalues of the matrix

$\mathrm{C}$ $=D( \frac{Du}{\sqrt{1+|Du|^{2}}})=\frac{1}{\sqrt{1+|Du|^{2}}}(I-\frac{Du\otimes Du}{1+|Du|^{2}})D^{2}u$ , (1.2)

and $S_{k}$ , $k=1$ , $\ldots$ , $n$ , denotes the $k$-th elementary symmetric function, that
is,

$S_{k}( \kappa)=\sum\kappa_{i_{1}}\cdots\kappa_{i_{k}}$ , (1.3)

where the sum is taken over increasing $k$-tuples, $i_{1}$ , $\ldots$ , $i_{k}\subset\{1, \ldots, n\}$ . The
mean, scalar and Gauss curvatures correspond respectively to the special
cases $k=1,2$ , $n$ in (1.3).

Our aim here is to discuss the following problem
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Problem: Is it always possible to extend a“solution” of (1.1) as
asolution of $H_{k}[u]=0$ in the whole domain $\Omega$ ?

In this paper, we consider two classes of solutions as a“solution” in our
problem. First, except for the last two sections, we consider the class of
viscosity solutions to (1.1), which are solutions in acertain weak sense. In
many nonlinear partial differential equations, the viscosity framework allows
us to obtain existence and uniqueness results under rather mild hypotheses.

We establish results concerning the removability of isolated singularities
of aviscosity solution to (1.1). Here is our main theorem.

Theorem 1.1. Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ containing the origin. Let
$1\leq k\leq n-1$ and $u$ be a viscosity solution of (1.1). We assume that $u$

can be extended to the continuous function $\tilde{u}\in C^{0}(\Omega)$ . Then $\overline{u}$ is a viscosity
solution of $H_{k}[\tilde{u}]=0$ in Q. Consequently, $\tilde{u}\in C^{0,1}(\Omega)$ .

The last part of Theorem 1.1 is aconsequence of [22]. Note that one
cannot expect much better regularity for aviscosity solution in general. In
fact, it is known that there exist an $\epsilon$ $>0$ and aviscosity solution of $H_{k}[\tilde{u_{2}}]=0$

in $B_{\epsilon}=\{|x|<\epsilon\}$ which does not belong to $C^{1,\alpha}(B_{\epsilon})$ for any $\alpha>1-\overline{k}$ .
For the case of $k=1$ , which corresponds to the minimal surface equation

in (1.1), such removability result was proved by Bers [2], Nitsche [18], and
De Giorgi and Stampacchia [12]. Serrin [19], [20] studied the same problem
for amore general class of quasilinear equations of mean curvature type. He
proved that any weak solution $u$ of the mean curvature type equation in $\Omega\backslash K$

can be extended to weak solution in $\Omega$ if the singular set $K$ is acompact set
of vanishing $(n-1)$-dimensional Hausdorff measure. For various semilinear
and quasilinear equations, such problems were extensively studied. See [3],
[4], [26] and references therein.

Here we remark that (1.1) is aquasilinear equation for $k=1$ while it is
afully nonlinear equation for $k\geq 2$ . It is much harder to study the fully
nonlinear equations’ case. To the best of our knowledge, there are no results
about the properties of isolated singularities for fully nonlinear elliptic PDEs
except for the recent work of Labutin [14], [15] (for the case of uniformly
elliptic equations), [16] (for the case of Hessian equations). So our main
result, Theorem 1.1, is new for $2\leq k\leq n-1$ .

In the results of Bers, Serrin and others, no restrictions are imposed on
the behaviour of solutions near the singularity. Therefore our result is weaker
than theirs for the case of $k=1$ , but that is because their arguments rely on
the quasilinear nature of the equation.

There is astandard notion of weak solutions to (1.1) for the case of $k=1$ ,
but it does not make sense for $k\geq 2$ . So when we study the removability
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of isolated singularities, we consider the problem in the framework of the
theory of viscosity solutions. In this framework, comparison principles play
important roles. Our idea of the proof of Theorem 1.1 is adapted from that
of Labutin [14], except that we have to deal with the extra difficulty coming
from the non-uniform ellipticity of the equations.

We note that the case $k=n$ , which corresponds to the Gauss curvature
case, is excluded from Theorem 1.1. There exist solutions of (1.1) with non-
removable singularities at 0. It is easily checked that afunction

$u(x)=a(|x|-1)$ , $x\in\Omega=B_{1}=\{|x|<1\}$ (1.4)

where $a>0$ , satisfies the equation (1.1) with $k=n$ . However, $u$ does not
satisfy $H_{n}[u]=0$ in $B_{1}$ in the viscosity sense. In fact, it follows that

$H_{n}[u]=( \frac{a}{\sqrt{1+a^{2}}})^{n}\omega_{n}\delta_{0}$ (1.5)

in the generalized sense, where $\omega_{n}$ denotes the volume of the unit ball in
$\mathbb{R}^{n}$ , and $\delta_{0}$ is the Dirac measure at 0. So there is aconsiderable difference
between the cases $1\leq k\leq n-1$ and $k=n$ .

Next, we also consider the removability of isolated singularities of the gen-
eralized solutions to (1.1), the notion of which was introduced by the author
[21]. Note that this is aweaker notion of solutions than viscosity solutions.
We prove the removability result in the class of generalized solutions.

Theorem 1.2. Let $\Omega$ be a convex domain in $\mathbb{R}^{n}$ containing the origin. Let
$1\leq k\leq n-1$ and $u$ be a continuous function in $\Omega\backslash \{0\}$ . We assume that
for any convex subdomain $\Omega’\subset\Omega\backslash \{0\}$ , $u$ is a convex function in $\Omega’$ and $a$

generalized solution of $H_{k}[u]=0$ in $\Omega’$ . Then $u$ can be defined at the origin
as a generalized solution of $H_{k}[u]=0$ in $\Omega$ .

The technique to prove this assertion is completely different from that in
the proof of Theorem 1.1. In section 4, we define the generalized solutions of
the curvature equations and discuss the removability of isolated singularities
of generalized solutions.

2The notion of viscosity solutions
In this section, we define the notion of viscosity solutions of the equation

$H_{k}[u]=\psi(x)$ in $\Omega$ , (2.1)
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where $\Omega$ is an arbitrary domain in $\mathbb{R}^{n}$ and $\psi$ $\in C^{0}(\Omega)$ is anon-negative
function. The theory of viscosity solutions to the first order equations and
the second order ones was developed in the 1980’s by Crandall, Evans, Ishii,
Lions and others. See, for example, [9], [10], [11], [17]. For the curvature
equations of the form (2.1), Trudinger [22] established existence theorems
for Lipschitz solutions in the viscosity sense.

Let 0be adomain in Rn. First, we define the admissible set of elementary
symmetric function $S_{k}$ by

$\Gamma_{k}=$ { $\kappa\in \mathbb{R}^{n}|$ Sk $(\mathrm{K}+\eta)\geq S_{k}(\kappa)$ for all $\eta_{i}\geq 0$} (2.2)
$=\{\kappa\in \mathbb{R}^{n}|S_{j}(\kappa)\geq 0, j=1, \ldots, k\}$ .

We say that afunction $u\in C^{2}(\Omega)$ is $k$ -admissible for the operator $H_{k}$ if
$\kappa=$ $(\kappa_{1}, \ldots, \kappa_{n})$ belongs to $\Gamma_{k}$ for every point $x\in\Omega$ . Except for the case
$k=1$ , equation (2.1) is not elliptic on all functions $u\in C^{2}(\Omega)$ , but Caffarelli,
Nirenberg and Spruck [5], [6] have shown that (2.1) is degenerate elliptic for
$k$-admissible functions. Obviously,

$\Gamma_{1}\supset\Gamma_{2}\supset\cdots\supset\Gamma_{n}=\Gamma_{+}=\{\kappa\in \mathbb{R}^{n}|\kappa_{i}\geq 0, i=1, \ldots, n\}$ , (2.3)

and alternative characterizations of $\Gamma_{k}$ are also known (see [13]).
We define aviscosity solution of (2.1). Afunction $u\in C^{0}(\Omega)$ is said to

be aviscosity subsolution (resp. viscosity supersolution) of (2.1) if for any
$k$-admissible function $\varphi\in C^{2}(\Omega)$ and any point $x_{0}\in\Omega$ which is amaximum
(resp. minimum) point of $u-\varphi$ , we have

$H_{k}[\varphi](x_{0})\geq\psi(x_{0})$ (resp. $\leq\psi(x_{0})$ ). (2.1)

Afunction $u$ is said to be aviscosity solution of (2.1) if it is both avis-
cosity subsolution and supersolution. We note that the notion of viscosity
subsolution does not change if all $C^{2}(\Omega)$ functions are allowed as comparison
functions $\varphi$ . One can prove that afunction $u\in C^{2}(\Omega)$ is aviscosity solution
of (2.1) if and only if it is a $k$-admissible classical solution.

The following theorem is acomparison principle for viscosity solutions of
(2.1).

Theorem 2.1. Let $\Omega$ be a bounded domain. Let $\psi$ be a non-negative con-
tinuous function in $\overline{\Omega}$ and $u$ , $v$ be $C^{0}(\overline{\Omega})$ functions satisfying $H_{k}[u]\geq\psi+\delta_{2}$

$H_{k}[v]\leq\psi$ in $\Omega$ in the viscosity sense, for some positive constant $\delta$ . Then

$\sup_{\Omega}(u-v)\leq\max(u-v)^{+}\partial\Omega^{\cdot}$ (2.3)

108



The proof of this theorem is given in [22]. In this paper we use another
type of comparison principle as follows.

Proposition 2.2. Let $\Omega$ be a bounded domain. Let $\psi$ be a non-negative
continuous function in $\overline{\Omega}$, $u\in C^{0}(\overline{\Omega})$ be a viscosity subsolution of $H_{k}[u]=\psi$ ,
and $v\in C^{2}(\overline{\Omega})$ satisfying

$\kappa[v(x)]\not\in$ {A $\in\Gamma_{k}|S_{k}(\lambda)\geq\psi(x)$ } (2.6)

for all $x\in\Omega$ , where $\kappa[v(x)]$ denotes the principal curvatures of $v$ at $x$ . Then
(2.5) holds.

Proof. We assume (2.5) does not hold. Then there exists apoint $x\in\Omega$ such
that

$\sup_{\Omega}(u-v)=u(x)-v(x)$ . (2.7)

Since $u$ is aviscosity subsolution of $H_{k}[u]=\psi$ , it follows that $H_{k}[v](x)\geq$

$\psi(x)$ . Prom (2.6) we have $\kappa[v(x)]\not\in\Gamma_{k}$ . For simplicity, we write $\kappa=$

$(\kappa_{1}, \ldots, \kappa_{n})$ instead of $\kappa[v(x)]$ . Thus it follows that there exists $i\in\{1, \ldots, n\}$

such that $S_{k-1;i}(\kappa)<0$ , where $S_{k-1_{j}i}( \kappa)=\frac{\partial S_{k}(\kappa)}{\partial\kappa_{i}}$ (for, if $S_{k}(\kappa)\geq 0$ and

$S_{k-1;i}(\kappa)\geq 0$ for all $i\in\{1, \ldots, n\}$ , we get that $S_{k}(\kappa+\eta)\geq S_{k}(\kappa)$ for all
$\eta_{i}\geq 0.)$ . Without loss of generality, we may suppose $i=1$ .

Then, we see that for $K\in \mathbb{R}$

$S_{k}(\kappa_{1}+K, \kappa_{2}, \ldots, \kappa_{n})=S_{k}(\kappa)+KS_{k-1;1}(\kappa)$ . (2.6)

Thus if we assume

$K> \frac{S_{k}(\kappa)}{-S_{k-11}(\kappa)}(>0)$ , (2.9)

it holds that $S_{k}(\kappa_{1}+K, \kappa_{2}, \ldots, \kappa_{n})<0$ , which implies $(\kappa_{1}+K, \kappa_{2}, \ldots, \kappa_{n})\not\in$

$\Gamma_{k}$ . We fix $K$ satisfying (2.9).
We denote

$X=(I- \frac{Dv(x)\otimes Dv(x)}{1+|Dv(x)|^{2}})^{1/2}$ (2.6)

Rotating the coordinate in $\mathbb{R}^{n}$ , we may suppose

$\frac{1}{\sqrt{1+|Dv(x)|^{2}}}X(D^{2}v(x))X=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\mathrm{K}\mathrm{i}, \ldots, \kappa_{n})$ . (2.11
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We find the quadratic polynomial V which satisfies $V(x)=0$ , $DV(x)=0$
and

$D^{2}V=\sqrt{1+|Dv(x)|^{2}}X^{-1}$ diag(tf, 0, . . . ’ 0) $X^{-1}$ . (2.12)

Since $V\geq 0$ in $\Omega$ and $V(x)=0$, $u-(v+V)$ attains amaximum value at $x$ .
Moreover, from asimple calculation, we get that the principal curvatures of
$v+V$ at $x$ are $\kappa_{1}+K$ , $\kappa_{2}$ , $\ldots$ , $\kappa_{n}$ . Hence

$H_{k}[v+V](x)=S_{k}(\kappa_{1}+K, \kappa_{2}, \ldots, \kappa_{n})<0\leq\psi(x)$ . (2.13)

This cannot hold since $u$ satisfies $H_{k}[u]\geq\psi$ in the viscosity sense. Therefore
we obtained the required inequality (2.5). $\square$

3Isolated singularities of viscosity solutions
-Proof of Theorem 1.1

Now we prove Theorem 1.1. Without loss of generality, we may assume
that $\Omega=B_{1}$ , the unit ball in $\mathbb{R}^{n}$ .

We show that $\tilde{u}$ is aviscosity solution of (1.1) in $B_{1}$ . For the sake of
simplicity, we denote $u$ as an extended function in $B_{1}$ .

Lemma 3.1. Let $l(x)=u(0)+ \sum_{i=1}^{n}\beta_{i}x_{iy}$ where $\beta_{1}$ , $\ldots$ , $\beta_{n}\in \mathbb{R}$ . Then there

exist sequences $\{z_{j}\}$ , $\{\tilde{z}_{j}\}\subset B_{1}\backslash \{0\}$ such that $z_{j},\tilde{z}_{j}arrow 0$ as $jarrow\infty$ and

$\lim_{jarrow}\inf_{\infty}\frac{u(z_{j})-l(z_{j})}{|z_{j}|}\leq 0$ , (1.1)

$\lim_{jarrow}\sup_{\infty}\frac{u(\tilde{z}_{j})-l(\tilde{z}_{j})}{|\tilde{z}_{j}|}\geq 0$ . (3.2)

Proof. First we prove (3.1). To the contrary, we suppose that there exists an

affine function $l(x)=u(0)+ \sum_{i=1}^{n}\beta_{i}x_{i}$ such that

$u(x)>l(x)+m|x|$ for $x\in B_{\rho}\backslash \{0\}$ , (3.3)

for some $m$ , $\rho>0$ . Rotating the coordinate system in $\mathbb{R}^{n+1}$ if necessary, we
may assume that $Dl(x)=0$ , that is, 1 $(x)\equiv u(0)$ .
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$\frac{\mathrm{C}\mathrm{a}\mathrm{s}\mathrm{e}1.k\leq\frac{n}{2}}{\mathrm{W}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{x}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{n}}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$

$\epsilon$ $>0$ and consider the auxiliary function $w_{\epsilon}$ in $\mathbb{R}^{n}\backslash B_{\epsilon}$

as follows:

$w_{\epsilon}(x)=u(0)+C_{1}+C_{2}|x|^{2}+C_{3}(\epsilon)f_{\epsilon}(x)$ , (3.4)

where $C_{1}$ , $C_{2}$ , $C_{3}(\epsilon)$ are positive constants to be determined later, and

$f_{\epsilon}(x)= \int_{r_{0}}^{|x|}\frac{ds}{\sqrt{(\frac{s}{\epsilon})^{\frac{2(n-k)}{h}}-1}}=:\int_{r_{0}}^{|x|}\frac{ds}{g(s)}$
(3.5)

is aradially symmetric solution of (1.1) where $r_{0}>0$ will be also determined
later. We write $w_{\epsilon}(x)=\tilde{w}_{\epsilon}(|x|)$ . The principal curvatures of $w_{\epsilon}$ are

$\kappa_{1}=\frac{\tilde{w}_{\epsilon}’(r)}{(1+(\tilde{w}_{\epsilon}’(r))^{2})^{3/2}}=(2C_{2}-\frac{C_{3}\frac{n-k}{k}(\frac{r}{\epsilon})^{\frac{2(n-k)}{k}}}{r\sqrt{(\frac{r}{\epsilon})^{\frac{2(n-k)}{k}}-1}^{3}})A^{-3/2}$ , (3.6)

$\kappa_{2}=\cdots=\kappa_{n}=\frac{\tilde{w}_{\epsilon}’(r)}{r(1+(\tilde{w}_{\epsilon}’(r))^{2})^{1/2}}$ (3.7)

$=(2C_{2}+ \frac{C_{3}}{r\sqrt{(\frac{r}{\epsilon})^{\frac{2(n-k)}{k}}-1}}.)A^{-1/2}$ ,

where $r=|x|$ and $A$ is defined by

$A=1+( \tilde{w}_{\epsilon}’(r))^{2}=1+(2C_{2}r+\frac{C_{3}}{\sqrt{(\frac{r}{\epsilon})^{\frac{2(n-k)}{k}}-1}})2$ (3.8)

Thus we obtain that

$H_{k}[w_{\epsilon}]=\kappa_{2}^{k-1}$ ( $(\begin{array}{ll}n -1k -1\end{array})$ $\kappa_{1}+$ $(\begin{array}{l}n-1k\end{array})$ $\kappa_{2}$) (3.9)

$\geq\kappa_{2}^{k-1}A^{-3/2}$ $(-\underline{(\begin{array}{l}n-1k-1\end{array})}$$C_{3} \frac{n-k}{g(rk}(\frac{r}{\epsilon})^{\frac{2(n-k)}{k}}r)^{3}+(\frac{(\begin{array}{l}n-1k\end{array})C_{3}}{rg(r)})A)$

$+\kappa_{2}^{k-1}A^{-3/2}$ $(\begin{array}{l}nk\end{array})$ $2C_{2}=:M_{1}+M_{2}$ .
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We claim that $M_{1}$ is positive if $C_{3}>1$ . In fact,

$M_{1}= \frac{\kappa_{2}^{k-1}A^{-3/2}(\begin{array}{l}n-1k\end{array})}{rg(r)}$$C_{3}(- \cdot+A)\overline{g(r)^{2}}\frac{2(n-k)}{k}$ (3.10)

$\geq\frac{\kappa_{2}^{k-1}A^{-3/2}(\begin{array}{l}n-1k\end{array})}{rg(r)}$$C_{3}(- \frac{(\frac{\mathrm{r}}{\epsilon})^{\frac{2(n-k)}{k}}}{g(r)^{2}}+(1+(\frac{C_{3}}{g(r)})^{2}))$

$= \frac{\kappa_{2}^{k-1}A^{-3/2}(\begin{array}{l}n-1k\end{array})}{rg(r)}$

$C_{3}$ . $\frac{C_{3}^{2}-1}{g(r)^{2}}>0$ .

This implies that if $C_{2}>0$ , $C_{3}>1$ ,

$H_{k}[w_{\epsilon}]\geq\delta>0$ in $2\epsilon$ $<|x|<\rho$ , (3.11)

where 6is apositive constant depending only on $\epsilon$ , $C_{2}$ , $C_{3}$ , $\rho$ , $k$ , $n$ . One can
easily check that $\kappa=$ $(\kappa_{1}, \ldots, \kappa_{n})\in\Gamma_{k}$ , i.e., $w_{\epsilon}$ is fc-admissible.

Next we choose constants $r_{0}$ , $C_{1}$ , $C_{2}$ , $C_{3}$ which have not determined yet.
First, we fix $C_{2}>0$ . Second, we choose $r_{0}\in(0, \rho)$ so small that

$C_{2}|x|^{2} \leq\frac{m}{4}|x|$ in $B_{r_{0}}$ , (3.12)

and we set $C_{1}= \frac{m}{4}r_{0}$ . From now on, we may assume that $\epsilon$ $< \frac{r_{0}}{2}$ . Finally,

we take the constant $C$ so that

$Cf_{\epsilon}(y)=-mr_{0}$ for $|y|=2\epsilon$ , (3.13)

and we set $C_{3}= \max\{C, 1\}$ . We find that adirect calculation implies

$C_{3}=\{$
$O(\epsilon^{-1})$ if $k< \frac{n}{2}$ , (3.14)
$O((\Xi\log 1/\epsilon)^{-1})$ if $k= \frac{n}{2}$ ,

for sufficiently small $\epsilon$ .
Then, we obtain that

$w_{\epsilon} \leq u(0)+\frac{m}{4}r_{0}+\frac{m}{4}r_{0}<u(0)+mr_{0}<u$ on $\partial B_{r_{0}}$ , (3.15)

and that

$w_{\epsilon}\leq \mathrm{u}\{0$) $+ \frac{m}{4}r_{0}+\frac{m}{4}r_{0}-mr_{0}<u(0)<u$ on $\partial B_{2\epsilon}$ . (3.11)
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From (3.11), (3.15), (3.16) and the comparison principle Theorem 2.1, we
obtain

$w_{\epsilon}\leq u$ in $\overline{B_{r_{0}}}\backslash B_{2\epsilon}$ . (3.17)

Now we fix $x\in B_{r_{0}}\backslash \{0\}$ , it follows that

$\mathrm{u}\{\mathrm{x}$ ) $\geq w_{\epsilon}(x)\geq u(0)+\frac{m}{4}r_{0}+C_{3}f_{\epsilon}(x)$ . (3.18)

One can compute that

$|f_{\epsilon}(x)|=\{$

$O(\epsilon^{\frac{n}{\mathrm{k}}-1})(r_{0}^{2-\frac{n}{k}}-|x|^{2-\frac{n}{k}})$ if $k> \frac{n}{2}$ ,
$O(\epsilon)\log r_{0}/|x|$ if $k= \frac{n}{2}$ ,

(3.19)

for sufficiently small $\epsilon$ . Thus we obtain from (3.14) and (3.19),

$\lim_{\epsilonarrow}\inf_{0}C_{3}f_{\epsilon}(x)=0$ . (3.20)

As $\epsilon$ tends to 0in (3.18), we conclude from (3.20) that

$u(x) \geq u(0)+\frac{m}{4}r_{0}$ , (3.21)

which contradicts the continuity of $u$ at 0.

Case 2. $k>\underline{n}$ .
$\overline{\mathrm{F}\mathrm{o}\mathrm{r}}$that

$\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}2$

, we claim that

$u(x)\geq u(0)+\overline{C}|x|^{2-\frac{n}{k}}$ for $x\in B_{\rho}\backslash \{0\}$ , (3.22)

for some positive constant $\tilde{C}$ . To prove this claim, we introduce the auxiliary
function $g_{\epsilon}$ of the form

$g_{\epsilon}(x)=u(0)+m \rho+C’(\epsilon)\int_{\rho}^{|x|}\frac{ds}{\sqrt{(\frac{s}{\epsilon})^{\frac{2(n-h)}{k}}-1}}$
, (3.23)

where $C’(\epsilon)$ is some positive constant. By the same manner with the above
discussion, one can see that $g_{\mathcal{E}}$ is $k$-admissible and that $H_{k}[g_{\epsilon}]\geq\delta$ holds for
some positive constant $\delta$ depending only on $\epsilon$ , $C’$ , $\rho$ , $k$ , $n$ , provided $C’>1$ .
Now we determine the constant C’ by

$C’ \int_{2\epsilon}^{\rho}\frac{ds}{\sqrt{(\frac{s}{\epsilon})^{\frac{2(\mathfrak{n}-k)}{k}}-1}}=m\rho$
. (3.24)
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We remark that $C’>1$ for sufficiently small $\epsilon$ since $C’(\epsilon)=O(\epsilon^{1-\frac{n}{k}})$ . So
we obtain that $g_{\epsilon}<u$ on $\partial B_{\rho}\cup\partial B_{2\epsilon}$ frorrx asimilar argument to (3.15) and
(3.16). From the comparison principle it follows that $g_{\Xi}\leq u$ in $\overline{B_{\rho}}\backslash B_{2\epsilon}$ . For
fixed $x\in B_{\rho}\backslash \{0\}$ we obtain that

$u(x) \geq g_{\epsilon}(x)=u(0)+C’\int_{2\epsilon}^{|x|}\frac{ds}{\sqrt{(\frac{\theta}{\epsilon})^{\frac{2(n-k)}{k}}-1}}$ . (3.25)

From now on the symbol $C$ denotes apositive constant depending only on $n$

and $k$ . Since it holds that

$C’=m \rho(\int_{2\epsilon}^{\rho}\frac{ds}{\sqrt{(\frac{s}{\epsilon})^{\frac{2(n-k)}{k}}-1}}.)-1\geq Cm(\frac{\rho}{\epsilon})^{\frac{n-k}{k}}$ , (3.26)

and that

$\int_{2\epsilon}^{|x|}\frac{ds}{\sqrt{(\frac{s}{\epsilon})^{\frac{2(n-k)}{k}}-1}}\geq C\epsilon^{\frac{n-k}{k}}|x|^{2-\frac{n}{k}}$
, (3.27)

for sufficiently small $\epsilon$ (say, $\epsilon<|x|/2$ ), it follows that

$u(x)\geq u(0)+Cm\rho^{-\frac{n-k}{k}}|x|^{2-\frac{n}{k}}$ , (3.28)

for sufficiently small 6. So our claim has proved.

Now we introduce another auxiliary function $w_{\epsilon}$ as follows:

$w_{\epsilon}(x)=u(0)+C_{1}+C_{2}|x|^{\gamma}+C_{3}( \epsilon)\int_{r\mathrm{o}}^{|x|}\frac{ds}{\sqrt{(\frac{s}{\epsilon})^{2}-1}}$, (3.29)

where $C_{1}$ , $C_{2}$ , $C_{3}(\epsilon)$ , $r_{0}$ are positive constants to be determined later, and we
fix aconstant $\gamma$ such that

$2- \frac{n}{k}<\gamma<1$ . (3.30)

We get that the principal curvatures of $w_{\epsilon}$ are

$\kappa_{1}=(C_{2}\gamma(\gamma-1)r^{\gamma-2}-\frac{C_{3}(\frac{r}{\epsilon})^{2}}{r\sqrt{(\frac{r}{\epsilon})^{2}-1}^{3}})A^{-3/2}$, (3.31)

$\kappa_{2}=\cdots=\kappa_{n}=(C_{2}\gamma r^{\gamma-2}+\frac{C_{3}}{r\sqrt{(\frac{r}{\epsilon})^{2}-1}})A^{-1/2}$ . (3.32)
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where $r=|x|$ and

$A=1+(C_{2} \gamma r^{\gamma-1}+\frac{C_{3}}{\sqrt{(\frac{r}{\epsilon})^{2}-1}})$

.

2

(3.33)

Therefore we deduce that

$H_{k}[w_{\epsilon}]= \kappa_{2}^{k-1}A^{-3/2}\gamma r^{\gamma-2}(\frac{n-k}{k}A+(\gamma-1))$ (3.33)

$+ \kappa_{2}^{k-1}A^{-3/2}\frac{C_{3}}{r\sqrt{(\frac{r}{\epsilon})^{2}-1}}(\frac{n-k}{k}A-\frac{(\frac{r}{\epsilon})^{2}}{(\frac{r}{\epsilon})^{2}-1})$ .

We define $M_{1}= \frac{n-k}{k}A+(\gamma-1)$ and $M_{2}= \frac{n-k}{k}A-\frac{(\frac{r}{\epsilon},)^{2}}{(\begin{array}{l}\underline{f}\epsilon\end{array})-1}$ . Then we

see that

$M_{1} \geq\gamma-(2-\frac{n}{k})>0$ , (from (3.30)) (3.33)

$M_{2} \geq\frac{n-k}{k}$ ( $1+C_{2}^{2}r^{2(\gamma-1)}+ \frac{c_{3}}{(\begin{array}{l}\underline{r}\epsilon\end{array})-1}$) $- \frac{(\frac{r}{\epsilon})^{2}}{(\frac{r}{\epsilon})^{2}-1}$ (3.36)

$\geq\frac{(\frac{r}{\epsilon})^{2}[C_{2}^{2}\gamma^{2}r^{2(\gamma-1)}-(2-\frac{n}{k})]+\frac{n-k}{k}(C_{3}^{2}-1-C_{2}^{2}r^{2(\gamma-1)})}{(\begin{array}{l}\underline{r}\epsilon\end{array})-1}$

$>0$ ,

assuming that $r<R_{0}$ for sufficiently small $R_{0}\in(0, \rho)$ depending only on
$C_{2}$ , $\gamma$ , $k$ , $n$ , and that $C_{3}>1+C_{2}r^{\gamma-1}$ . Under these assumptions, it follows
that $w_{\epsilon}$ is a $k$-admissible function satisfying

$H_{k}[w_{\epsilon}]\geq\delta>0$ in $2\epsilon<|x|<R_{0}$ (3.37)

for some positive constant $\delta$ .
We take constants $r_{0}$ , $C_{1}$ , $C_{2}$ , $C_{3}$ . We fix $C_{2}>0$ . From (3.30) we can take

$r_{0}\in(0, R_{0})$ such that

$C_{2}|x|^{\gamma} \leq\frac{\tilde{C}}{4}|x|^{2-\frac{n}{k}}$
$\mathrm{i}\mathrm{i}$. $B_{r\mathrm{o}}$ , (3.33)

where $\tilde{C}$ is aconstant in the previous claim, and we set $C_{1}=r_{0}\overline{4}$

$\tilde{C}2-\frac{n}{k}$

. Then
we take $C_{3}$ so that

$C_{3} \int_{2\epsilon}^{r_{0}}\frac{ds}{\sqrt{(\frac{s}{\epsilon})^{2}-1}}=\tilde{C}r_{0}^{2-\frac{n}{k}}$

. (3.39)
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From (3.14), $C_{3}=O$ ((glog $1/\epsilon$)), so that if $r\in(2\epsilon, r_{0})$ , $C_{3}>1+C_{2}r^{\gamma-1}$

holds for small $\epsilon$ . Since it holds that $w_{\epsilon}<u$ on $\partial B_{r_{0}}\cup\partial B_{2\epsilon}$ , which we
can prove as (3.15) and (3.16), we find that $w_{\epsilon}\leq u$ in $\overline{B_{r_{0}}}\backslash B_{2\epsilon}$ from the
comparison principle.

We repeat asimilar argument to (3.19), (3.20), (3.21). Fixing $x\in B_{r_{0}}\backslash \{0\}$

and taking $\epsilonarrow 0$ , we obtain that

$\tilde{C}2-\frac{n}{k}$

$u(x)\geq u(0)+C_{1}=u(0)+\overline{4}r_{0}$ (3.40)

This is contradictory to the continuity of $u$ . The proof that there exists a
sequence $\{z_{j}\}$ satisfying (3.1) is complete.

It remains to show that there exists asequence $\{\tilde{z}_{j}\}$ such that (3.2) holds.
But we can prove it similarly. For example, in the case of $k \leq\frac{n}{2}$ , we use the
auxiliary function of the form

$w_{\epsilon}(x)=u(0)-C_{1}-C_{2}|x|^{2}-C_{3} \int_{r0}^{|x|}\frac{ds}{\sqrt{(\frac{s}{\epsilon})^{\frac{2(n-k)}{k}}-1}}.$ ’ (3.41)

and Proposition 2.2 as the comparison principle instead of Theorem 2.1.
Then we can see that $\kappa[w_{\epsilon}]\not\in\Gamma_{k}$ and $w_{\epsilon}\geq u$ on $\partial B_{r_{0}}\cup\partial B_{2\epsilon}$ , which implies
that $w_{\epsilon}\geq u$ in $\overline{B_{0},}\backslash B_{2\epsilon}$ from Proposition 2.2. We omit its proof. $\square$

We proceed to prove Theorem 1.1. To show that $u$ is aviscosity subsolu-
tion of (1.1) in $B_{1}$ , we need to prove that

$H_{k}[P]\geq 0$ (3.42)

for any $k$-admissible quadratic polynomial $P$ satisfying $u(0)=P(0)$ and
$u\leq P$ in $B_{r_{0}}$ for some $r_{0}>0$ (We say that $P$ touches $u$ at 0from above).

First we fix $\delta>0$ and set $P_{\delta}(x)=P(x)+ \frac{\delta}{2}|x|^{2}$ . Then $P_{\delta}(x)$ satisfies the
following properties:

$P_{\delta}(0)=u(0)$ , $P_{\delta}>u$ in $B_{r_{0}}\backslash \{0\}$ . (3.43)

Next there exists $\epsilon$ $=\epsilon(\delta)>0$ such that $P_{\delta,\epsilon}(x)=P_{\delta}(x)-\epsilon(x_{1}+\cdots+x_{n})$

satisfies

$P_{\delta,\epsilon}(0)=u(0)$ , $u<P_{\delta,\epsilon}$ on $\partial B_{r_{0}}$ . (3.44)
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We notice that $\epsilon(\delta)arrow 0$ as a $arrow 0$ . Now we apply the Lemma 3.1 for
$l(x)=\langle DP_{\delta}(0),$ x\rangle $+P_{\delta}(0)$ . Passing to asubsequence if necessary, there
exists asequence $\{z_{j}\}$ , $z_{j}arrow 0$ as j $arrow\infty$ such that all coordinates of every
$z_{j}$ are non-negative, and

$u(z_{j})-P_{\delta,\epsilon}(z_{j})>0$ (3.45)

for any sufficiently large $j$ . Thus from (3.44) there exists apoint $x^{\epsilon}\in B_{r_{0}}\backslash \{0\}$

such that

$u(x^{\epsilon})-P_{\delta,\epsilon}(x^{\epsilon})= \max_{0}(u-P_{\delta,\epsilon})B_{r}>0$. (3.46)

We introduce the polynomial

$Q_{\delta,\epsilon}(x)=P_{\delta,\epsilon}(x)+u(x^{\epsilon})-P_{\delta,\epsilon}(x^{\epsilon})$ . (3.47)

From (3.44), (3.46), we see that $Q_{\delta,\epsilon}$ touches $u$ at $x^{\epsilon}\neq 0$ from above. Since
$u$ is asubsolution of (1.1) in $B_{1}\backslash \{0\}$ , we deduce that

$0 \leq H_{k}[Q]=H_{k}[P+\frac{\delta}{2}|x|^{2}-\epsilon(x_{1}+\cdots+x_{n})]$ . (3.48)

Finally, as $6arrow 0$ , we conclude that (3.42) holds.
It can be proved by analogous arguments that $u$ is asupersolution of (1.1)

in $B_{1}$ . This completes the proof of Theorem 1.1.

4Generalized solutions of curvature equations
For alarge class of elliptic PDEs, there are various notions of solutions in

ageneralized sense, such as weak solutions for quasilinear equations, distri-
butional solutions for semilinear equations, and viscosity solutions for fully
nonlinear equations. Weak solutions and distributional solutions have an in-
tegral nature, and this makes it difficult to define such concepts of solutions
for fully nonlinear PDEs. However, for some special types of fully nonlinear
PDEs, one can introduce an appropriate notion of “solutions” that have an
integral nature. For example, for Monge-Amp\‘e $\mathrm{r}\mathrm{e}$ type equations, the notion
of generalized solutions was introduced and their properties have been stud-
ied intensively by Aleksandrov, Pogorelov, Bakel’man, Cheng and Yau, and
others. For details, see [1], [7]. Recently Colesanti and Salani [8] consid-
ered generalized solutions in the case of Hessian equations (see also [23], [24],
[25] $)$ . For the curvature equations, the author [21] introduced the notion of
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generalized solutions which form awider class than viscosity solutions un-
der the convexity assumptions. So it is natural to ask if the removability of
singularities also holds in the framework of generalized solutions to (1.1).

First we define generalized solutions of (1.1). We assume that $\Omega$ is an
open, convex and bounded subset of $\mathbb{R}^{n}$ and we look for solutions in the
class of convex and (uniformly) Lipschitz functions defined on Q. For apoint
$x\in\Omega$ , let Nor(u; $x$ ) be the set of downward normal unit vectors to $u$ at
$(x, u(x))$ . For anon-negative number $\rho$ and aBorel subset $\eta$ of $\Omega$ , we set

$Q_{\rho}(u;\eta)=\{z\in \mathbb{R}^{n}|z=x+\rho v, x\in\eta, v\in\gamma_{u}(x)\}$ , (4.2)

where $\gamma_{u}(x)$ is asubset of $\mathbb{R}^{n}$ defined by

$1\mathrm{u}\{\mathrm{x}$) $=\{(a_{1}, \ldots, a_{n})|(a_{1}, \ldots, a_{n}, a_{n+1})\in \mathrm{N}\mathrm{o}\mathrm{r}(u;x)\}$ . (4.2)

The following theorem, which the author has proved in [21], plays akey role
in the definition of generalized solutions.

Theorem 4.1. Let 0be an open convex bounded set in $\mathbb{R}^{n}$ , and let $u$ be $a$

convex and Lipschitz function defined on O. Then the following hold.
(i) For every Borel subset $\eta$ of $\Omega$ and for every $\rho\geq 0$ , the set $Q_{\rho}(u;\eta)$ is

Lebesgue measurable.
(ii) There exist $n+1$ non-negative, finite Borel measures $\sigma_{0}(u$ ; $\cdot$ $)$ , $\ldots$ ,

$\sigma_{n}(u;\cdot)$ such that

$\mathcal{L}^{n}(Q_{\rho}(u;\eta))=\sum_{k=0}^{n}$ $(\begin{array}{l}nk\end{array})$ $\sigma_{k}(u;\eta)\rho^{m}$ (4.3)

for every $\rho\geq 0$ and for every Borel subset $\eta$ of $\Omega$ , where $\mathcal{L}^{n}$ denotes the
Lebesgue $n$ -dimensional measure.

The measures $\sigma_{k}(u$ ; $\cdot$ $)$ determined by $u$ are characterized by the following
two properties.

(i) If $u\in C^{2}(\Omega)$ , then for every Borel subset $\eta$ of $\Omega$ ,

$\sigma_{k}(u;\eta)=\int_{\eta}H_{k}[u](x)dx$ , (4.4)

(see Propositon [21], Proposition 2.1);
(ii) If $u$:converges uniformly to $u$ on every compact subset of $\Omega$ , then

$\sigma_{k}(u_{i};\cdot)arrow\sigma_{k}(u;\cdot)$ (weakly). (4.5)

Therefore we can say that for $k=0$, $\ldots$ , $n$ , the measure $(\begin{array}{l}nk\end{array})$ $\sigma k(u$ ; $\cdot$ $)$

generalizes the integral of the function $H_{k}[u]$ .
We state the definition of ageneralized solution of curvature equations

118



Definition 4.2. Let $\Omega$ be an open convex bounded set in $\mathbb{R}^{n}$ and let $\nu$ be
anon-negative, finite Borel measure in $\Omega$ . Aconvex and Lipschitz function
u $\in C^{0,1}(\Omega)$ is said to be ageneralized solution of

$H_{k}[u]=\nu$ in $\Omega$ , (4.6)

if it holds that

$(\begin{array}{l}nk\end{array})$ $\sigma_{k}(u;\eta)=\nu(\eta)$ (4.7)

for every Borel subset $\eta$ of Q.

There is anotion of generalized solutions to the Gauss curvature equations
which correspond to the case of $k=n$ in (4.6), since they are in aclass of
Monge-Amp\‘e $\mathrm{r}\mathrm{e}$ type. As far as the Gauss curvature equation, namely,

$\frac{\det(D^{2}u)}{(1+|Du|^{2})^{\frac{n+2}{2}}}=\nu$ , (4.8)

is concerned, the definition of generalized solutions introduced by Aleksan-
drov and others coincides with the one stated above.

One can show that if $\nu=\psi(x)dx$ for $\psi$ $\in C^{0}(\Omega)$ , aconvex viscosity
solution of $H_{k}[u]=\psi$ is ageneralized solution of $H_{k}[u]=\nu$ . Thus the
notion of generalized solutions is weaker (hence wider) than that of viscosity
solutions under the convexity assumptions.

Now we prove Theorem 1.2 which means that the removability of isolated
singularities also holds for generalized solutions of (1.1) for $1\leq k\leq n-1$ .
The technique to prove this result is different from what we have used in the
proof of Theorem 1.1. It relies heavily on the integral nature of generalized
solutions.

Proof of Theorem 1.2. Since $u$ is locally convex in $\Omega\backslash \{0\}$ , one can easily see
that $u$ can be defined at 0continuously and the extended function (we denote
it by the same symbol $u$ ) is convex and Lipschitz in 0. We may assume that
$\Omega=B_{1}$ . Hence Theorem 4.1 implies that there exists aconstant $C\geq 0$ such
that in the generalized sense $H_{k}[u]=C\delta_{0}$ in $B_{1/2}$ , where $\delta_{0}$ is Dirac delta
measure at 0. That is,

$(\begin{array}{l}nk\end{array})$ $\sigma_{k}(u;B_{r})=C$ (4.9)

for arbitrary $r\in(0,1/2)$ .
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We deduce from (4.3) and (4.9) that

$\omega_{n}(r+\rho)^{n}\geq \mathcal{L}^{n}(Q_{\rho}(u;B_{r}))$ (4.10)

$= \sum_{m=0}^{n}$
$(\begin{array}{l}nm\end{array})$ $\sigma_{m}(u;B_{r})\rho^{m}$

$\geq(\begin{array}{l}nk\end{array})$ $\sigma_{k}(u;B_{r})\rho^{k}=C\rho^{k}$ .

The first inequality in (4.10) is due to the fact that $Q_{\rho}(u;B_{r})\subset B_{r+\rho}$ , since
taking any $z\in Q_{\rho}(u;B_{r})$ , we obtain

$|z|=|x+\rho v|\leq|x|+\rho|v|\leq r+\rho$, (4.11)

for some $x\in B_{r}$ , $v\in\gamma_{u}(x)$ . Taking $rarrow \mathrm{O}$ in (4.10), we obtain that

$\omega_{n}\rho^{n}\geq C\rho^{k}$ . (4.12)

Since (4.12) holds for arbitrary $\rho\geq 0$ , $C$ must be 0. Therefore we have proved
that $H_{k}[u]=0$ in the entire ball $B_{1/2}$ , so that the origin is removable. $\square$

Remark 4.1. (1) Examining the above proof carefully, we find that the
inhomogeneous term 0in Theorem 1.2 can be replaced by ameasurable
function $f$ which is non-negative and belongs to $L^{1}(\Omega)$ .
(2) We can extend the function space to which $u$ belongs in the theorems
and definition of this section to the space of semiconvex functions (see [21]).

As we have seen in section 1Theorem 1.2 does not hold for $k=n$ . So
we have generalized solutions of (4.6), where the inhomogeneous term $\nu$ is
aDirac delta measure. One may consider the existence and uniqueness of
generalized solutions to the Dirichlet problem for (4.6) in abounded convex
domain when $\nu$ is aBorel measure. Many mathematicians have discussed
this problem. For details, see [1]. However, there are few results about the
solvability of the Dirichlet problem in the generalized sense for the case of
$1\leq k\leq n-1$ .

5Conjectures and open problems
In this section, we make some conjectures and state some open problems

we would like to study in afuture
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(1) To remove the continuity assumption on $u$ in Theorem 1.1.

As we have mentioned in the introduction, for the case of $k=1$ , Theorem
1.1 holds even if no restrictions are imposed on the behaviour of solutions
near the singularities. We conjecture that isolated singularities of (1.1) are
always removable without any assumptions on the behaviour of the solution
near the singularities.

(2) To study the removability of aset, instead of a single point.

It is also interesting to study the removability of asingular set whose
$\alpha$-dimensional Hausdorff measure is zero for some $\alpha>0$ .

(3) To study properties of generalized solutions to (4.6).

We would like to know if the notion of generalized solutions is truly weaker
than that of viscosity solution for the case of $1\leq k\leq n-1$ in (4.6), that is, if
there exists ageneralized solution $u$ of (4.6) such that $\nu$ cannot be expressed
as $\psi(x)dx$ for any $\psi$ $\in C^{0}$ . We think that this question is closely related to
the above problem of removability of singular sets.

(4) Problems o$\mathrm{f}$ isolated singularities for other fully nonlinear equations.

For example, we would like to consider the case of the curvature quotient

equations, $\frac{H_{k}[u]}{H_{l}[u]}=\psi(x)$ where $0<l<k\leq n$ , or that of $F_{k}(D^{2}u)+f(u)=0$

where $F_{k}(D^{2}u)$ is the $k$-th elementary symmetric function of the eigenvalues
of $D^{2}u$ ( $F_{k}$ is called $k$-Hessian operator).
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