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Asymptotic analysis for the Cauchy problem
for a functional PDE

RS RFERFERE - BEFAER WBEF  fiE (Kazufumi Shimano)
Department of Mathematics, Tokyo Metropolitan University

This paper is based on the joint work with Professor Hitoshi Ishii of Waseda University.
1. Introduction

We consider the asymptotic bahavior of solutions of the Cauchy problem for the func-
tional partial differential equation

(B wi(@4,) = SHDW(2,1,6),)

(CP). 4 +-€—15 fI k(&) [w(z, t,m) — w'(z, 8, €)ldn
for (z,t,£) € R™ x (0,00) x I,
| v¥(,0,8) = g(z,€) for (z,§) e R" x I,

where ¢ is a positive parameter, I is a given finite interval of the real line, H is a Borel
function on R™ x I such that for each £ € I the function H(-, £) is continuous on R™, and
k is a bounded, positive, Borel measurable function on I x I.

The functional partial differential equation (E). may be regarded as an infinite system
of first order partial differential equations. Indeed, one of our motivations to study (CP),
is to extend an asymptotic result obtained in Evans [3] for a finite system of partial
differential equations to that for (CP).. Prior to [3] there are many contributions to
the asymptotic behavior of solutions of systems of differential equations related to the
problems treated in [3] and we refer for these to [3], [6], [7] and the references therein.

The functional partial differential equation (E), arises as a fundamental equation for the
optimal control of the system whose states are described by ordinary differential equations,
subject to random changes of states in I and to control which induce the integral term in
(E): and the nonlinearity of H, respectively.

Other than the extension to infinite systems, new features in this paper beyond [3] are:
(i) the treatment of the initial layer, i.e., the case when the initial data g(z,£) depends
on £ and (ii) the nonlinearity of the term H.

In our asymptotic analysis of (CP),, we use the perturbed test function method devel-
oped in [3], which is based on the notion of viscosity solution and the stability properties
of viscosity solutions. The extension from finite systems to infinite systems was not trivial
and, as we will see in section 3, we need to take into account of terms up to order €2 when
we build the perturbed test function.

The problem of the initial layer in our analysis is resolved by constructing appropriate
barrier functions, a result of which is stated in Lemma 3.4 below. On the other hand, the
extension to the nonlinear term H is rather straightforward.
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2. Preliminaries

We use the following notation: Qr = R" x (0,T), Rr =R" x[0,T) for 0 < T < o0,
and for function f: S — R™ we write ||f||co = supg |f|. I denotes a fixed finite interval,
with length |I| > 0, and also the identity operator on a given space.

For any k € Z, := NU {0} and Q C R™, C*(Q) ® B(I) denotes the set of functions
f on Q x I such that for each z € Q the function f(z,-) is Borel measurable in I and
for each £ € I the function f(-,£) is k times continuously differentiable on 2. We write
also C(Q) ® B(I) for C°(Q) ® B(I). For any Borel subset @ C R™, B({) denotes the
space of all Borel functions on €2, and B>(Q2) denotes the Banach space of bounded Borel
functions f on Q with norm || f||ee-

Throughout this paper we fix positive numbers kg, £;, with Ky < k1, and consider the
class Dy of Borel functions k on I x I such that ko < k(§,1) < k; for all §,p € I.

We call a continuous function w : [0,00) — [0,00) a modulus if w is non-decreasing in
[0, 00) and w(0) = 0.

Let G; and G, denote the sets, respectively, of all pairs (w, L) of a modulus w and a
positive constant L and of all pairs of a collection {wr}r>o of moduli and a collection
{LRr}r>o of positive constants. We write G = G x G».

For v, = (w, L) € Gy let D;(v1) denote the set of all functions ¢ € C(R™) ® B(I) such
that

(D1) l9(z,6) —9(v, Ol Swllz —yl), l9(z,)|<L forallz,yeR" €l

For v, = ({wr}r>0, {Lr}r>0) € G2 let Dy(7y,) denote the set of all functions H € C(R™)®
B(I) such that

(D2) |H(p,§) — H(q,6)| <wr(lp—4l), |[H®P, &< Lr
for all p,g € B(O,R), £ €I, R>0,

where B(0, R) denotes the closed ball with radius R centered at the origin. For v =
(M, ") € G we write

D(y) = Do x D1(m) x Da(72),

and set
D;i=U{Di(7) |v€Gi} for i=1,2 and D=|J{D(7)|7€G}.
We often consider the sub;:lass of functions k € Dy for which
(K1) fI k(€ n)dn=1 foralléel

For such a function k, we define the continuous linear operator K : B*(I) — B*(I) by

(2.1) Kf(©) = [ kemfdy forgel
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Note that this formula extends the domain of definition of K to the space of (Lebesgue)
meastirable functions f : I — R which are integrable. Associated with this operator, we
define the compact linear operator K : L?(I) — L?(I) by

(2:2) R1©) = [Kkemfnydn for f € LA(1).

As usual and in the above formula, we often identify elements of L?(J) with measurable
functions on I, the square of which are integrable. The precise meaning of (2.2) is the
following: for function f : I — R which is measurable and such that |f|? is integrable, let

[f] ;= {g: I = R | g measurable, g(¢) = f(£) a.e. £ € I}.
With this notation, K is defined by
K(f] = [Kf].

By hypothesis (K1), the operator K has unity as its eigenvalue and the function 1 €
L2(I) defined by 1(¢) = 1 as a corresponding eigenfunction. By the Perron-Frobenius
theory, we see that the kernel Ker (I — K) is one-dimensional, i.e.,

Ker (I — K) = span {1}.

(See the proof of Lemma 3.5 in section 3.)

By the Fredholm-Riesz-Schauder theory (see, e.g., [8]), the kernel Ker (I — K*), where
K* denotes the adjoint operator of K, is a one—dimensional subspace of L?(I). Hence,
there exists a unique vector r € L?(I) such that,

[r@kEnde=rn) aenel
[ rgdg =1.

When we regard the vector r as a function, we may assume by replacing r if necessary
that » € B®(I) and that

(23) [r©kEmde=rtn) forallnel

Moreover, by the Perron-Frobenius theory, we see that r(§) > 0 for all £ € I. Then form
(2.3) we get

(2.4) kKo <r(l)<k, foréel.

By the Fredholm-Riesz-Schauder theory, there is a bounded linear operator S : {r}* —
{1}*, where B* denotes the orthogonal complement of B in L?(I), such that

(2.5) Sf-KSf=f forfe{r}*.
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For any integrable function »: I — R, we define
{hy-= = {f € B2() | [ h(©)£(§)de = o}.
Associated with S, we define a continuous linear operator S : {r}+* — {1}+* by
Sf=f+Kg, withge S[f]

Here note that Kg does not depend on the choice of g € S[f] and that for f € {r}+°
and g € S[f],

Ko®) < [KElaidn< ([ ke nfdn) 15U

<
< wlIPM2ISIN ANz < el ZUISIHS Hoos

where || fll2 = (J; [f(€)[2de) /.
Now, (2.5) reads

(2.6) (I-K)Sf=f forfe {r}-=.
Let H € C(R™) ® B(I) satisfy (D2) for some ({wg},{Lr}) € G2 and

(H1) /I H(p,&)r(€)d =0 for p € R™
We define @ € C(R™) ® B(I) by

(2‘7) a(p’ ) = SH(p’ )

Observe that if, in addition, we assume that H € C™(R") ® B(I) for some m € N and
that for each R > 0 there are a constant Cr > 0 and a modulus wg such that for any
multi-index a = (04, ...,an) € Z7% with a; +---a, < m,

(2.8)
|DyH(p,£)| < Cr for (p,€) € B(O,R) x I, £ €1,
|DzH(p, &) — DyH(g,€)| < wr(lp—4q|) forp,ge B(O,R), £€1, R>0,

and if we set f(p,§) = SH(p, )(§) for (p,€) € R™ x I, then f € C™(R") ® B(I) and
furthermore for each R > 0 there exist a constant Mz > 0 and a modulus pg such that
for any multi-index o € 2%, with a; + -+ + a, < m,

o) |DsfB.8I<Mp for (0,6) € BOR) x I, R>0,
\Dy f(p,€) — Dy f(9,€)] < pr(lp—g|) forp,qe B(O,R), £€1I, R>0.

In addition to (D2) and (H1), we assume that H € C'(R") ® B(I) and that H satisfies
(2.8) with m = 1. We define A: R* x ] —+ 8" and A : R® - &" by
1
A€ = 3 (DpH(p,£) ® Dya(p,€) + Dypa(p, €) ® Dy H(p, £)),

(2.10)
Ap) = [r©Aapodk
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The components of the matrix-valued function A belong to C(R™) ® B(I). Also, in view
of (2.9), we see that A is continuous on R”. We claim that A(p) is a non-negative definite
matrix for any p € R™. To see this, we first observe that

D,H(p.€) = Dya(p,€) = [ k(€,m)Dpalp,mdn ~for all (p,§) € R x .
Let ¥y € R™ and compute that for p € R",
(Alp)y,y)
= [r(€)(DH(p,£), y)(Dyalp, ), )it
= [ 1©)(Dsalp, )9 — [[  r(©)k(E,n)(Dyalp,n), y)(Drelp, &), y)dédn
> [ r(€)(Dyalp,€),v)%de
~([[., r@k(e. ) (Dyalw,n),vydedn) ([ [ r(@k(€, m(Doalp,),vdean)
=0,

which was to be proven. Here and henceforth we write (p,q) for the Euclidean inner
product of p,q € R™. '

Let Q C R, and (v, M) € G;. We denote by U(v, M) = U(Q x I;v, M) the set of
functions u € C(Q) ® B(I) such that

|u(:z:,t, é) - 'u'(y’ S:E)I < V(I.’B - yl ‘+ It - SI)
lu(z,0,€)| < M

for all (z,t) € Q and £ € I. We denote
U=U®Q xT)=JUN) | A€ Gi}.
We write
UQ X LN =UQ X ENNCEOQxT), U@ xI)=UxI)nCQ x I).

We denote by U*(Q x I) the set of those functions u on © x I such that for each
(z,t) € Q the function u(z, t,-) is Borel measurable and integrable in I and for each £ € 1
the function u(-,£) is upper semicontinuous in Q. We set U~(Q x I) = =UT(Q x I).

Next, we give the definition of viscosity solutions of

@  w@hO = HOuEL,0 + [ ke fuebn) —ul b Oldr
for (z,t,£) € R™ x (0,00) x I,

Definition. Let Q C Qu be an open subset and (k,H) € Dy X D;. (i) We call u €
Ut (Q x I) a viscosity subsolution of (E) in Q x I if whenever p € C}(Q), £ € I, and
u(-,£) — @ attains its local mazimum at (&,1), then

pul D) < H(Dp(2,1),€) + [ k(€ mu(#,E,n) - u(e, Ol



(ii) Similarly we callu € U~ (Q X I) a viscosity supersolution of (E) in Q x I if whenever
p € CHR), € € I, and u(-,€) — ¢ attains its local minimum at (,1), then

ou(,0) 2 H(Dp(,2),€) + [ k(. m)lu(@, £n) — u(@,f,O)ldn

(iii) Finally, we call u € C(Q) @ B(I) a viscosity solution of (E) in Q x I if it is both a
viscosity sub- and supersolution of (E) in Q x I.

For the definition of viscosity solutions of (E)o, we use the standard definition, for which
we refer to [1].

3. Main results

Theorem 3.1. Let (k,g, H) € D. Then there is a unique viscosity solution u € U (Rw xT)
of (CP).. |

If k is continuous on I x I, then the proof of Theorem 3.1 is standard. (See [4].) In
case that k is Borel measurable on I x I, we use an argument based on monotone classes
of functions. (See [5].)

Of course, u € U(Ry % I) is defined to be a viscosity solution of (CP). if it is a viscosity
solution of (E), in Qo x I and it satisfies the initial condition: u*(z,0,§) = g(z, ) for all
(z,6) e R* x I.

Theorem 3.2. Let k € Dy, g € BUC(R"), and H € CI(R") ® B(I). Assume that (K1)
and (H1) hold and that (2.8), with m = 1, hold for some ({wgr}, {Cr}) € G2. Then there
is a unique viscosity solution u € BUC(Ry) of

(B)o w(z,t) = tr[A(Du(z,t))D?*u(z,t)]
(CP)o for (z,t) € R™ x (0, o0),
u(z,0) = g(z) forzeR"

See [1] for the proof of Theorem.
The assumptions on k and H in the above theorem are made just to make sure that
the function A is continuous on R™.

Theorem 3.3. Let (k,g,H) € D. Assume that (K1) and (H1) hold and that H satisfies
(2.8), with m = 1, for some ({wr},{Cr}) € G3. Set

3(z) = [ 1(©)g(z,6)de  for s € R

Let u* € U(Ro % I) be the viscosity solution of (CP).. Let u € BUC(Ry,) be the viscosity
solution of (CP)O with § in place of g. Then, for each & € (0,1),

limsup{fu“(z, ,) — u(z, 1) | (@,,€) € R x [6, 57| x I} =0.
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In addition, if g(z,&) is independent of £, then for each T > 0

li{%sup{lus(z,t,f) —u(z,t)] | (z,t,6) e R" x [0, T} x I} = 0.

We introduce only the proof of Theorem 3.3.
Let (k,9,H) € D, §, {v }ee(0,1), and u be as in Theorem 3.3.
Note that, by (K1), (E). reads

wi(a,4,€) = ZH(Du (2,4,8),€) + 5 ([ €, (a,t, in - u°(2,1,6))
for (z,t,£) € R™ x (0,00) x I.
We set h(z,€) = g(z,£) — §(z) for (z,€) € R™ x I, and note that
/I r(€)h(z,£)d =0 for all z € R™.
To prove Theorem 3.3, we use the so-called relaxed limits. We define

u+($’t) = limr\,o sup{ue(y, 8, 7’) | (yv 3,77) € Roo X Ia Iy - IL‘I + |3 - tl < T}
u~(z,t) = lime o inf{u®(y,5,7) | (,8,1) € Reo X I, ly—z| +|s—t| <7}
for (z,t) € R x I.
Lemma 3.4. There is a modulus p such that
9(z) — u(t) < v (z,1) S ut(z,t) < glz) + u(t)  for (z,1) € Qoo
In addition, if h =0, then the above inequalities hold for all (z,t) € Re.
Lemma 3.5. There are constants § > 0 and Cy > 0 such that for any h € {r}+>,

145 Philos < Coe™hlloo  for allt > 0.

Proof of Lemma 8.5. In this proof we regard L?(I), B®(I), etc. as the vector spaces
with complex scalar field.

We first prove that
(3.1)‘ if 4 € C is an eigenvalue of K and |u| > 1, then u =1.

To show this, we fix 4 € C and ¢ € L*(]) so that |u] > 1, ¢ # 0, and K¢ = ué.
Identifying ¢ with the function h defined by

hE) = u™" [ k(€ mgndn,

where g is a function in the equivalence class ¢, we may regard ¢ as a function in B*®([)
and assume that

ne() = K¢(§) forall{ el
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Set M = sup;|#|. We claim that |#(§)] = M ae. & € I. In order to check this,
we fix € > 0 and v > ¢, and choose £ € I so that |¢(€)] > M — e. Observing that
|6(€)| < K|¢|(€) and setting B, = {€ € I | |¢(£)] < M — ~}, we calculate that -

0 < [ ke mem)] - M +e)dn
< [ k(e - mdn+ [ k(e medn < (7 - e)rolBy| + .
Yy
Sending € — 0, we see that |B,| = 0 for all ¥ > 0, which shows that |¢(£)| = M a.e.
Eel
By multiplying ¢ by M~ if necessary, we may assume that M = 1. We fix { € I so
that |¢(£)] = 1. We may assume by multiplying ¢ by #(€), the complex conjugate of o(€),

that ¢(£) = 1. Define a € B(I) by a(€) = Re ¢(€). It follows that a(€) = 1 and |a(¢)| < 1
for all £ € I. Setting B, = {{ € I | a(§) <1 — ¢} for £ > 0, we argue as before, to get

0< ¢ [ k(€ n)dn < —ewolBe,
which guarantees that ¢(€) =1 a.e. £ € I. Thus we have

po(€) =K¢(§) =1 for{el,

and conclude that u =1 and ¢(§) =1forall £ € I.
Next, we observe that for ¢ € {r}+,

(3:2) [Ro©r@©d = [ @& () = [ s()r(e)de =o.

This allows us to define the continuous linear operator L : {r}* — {r}* by L¢ = K¢.
Since K is a compact operator on L?(I), we see that L is a compact operator on {r}+.
By the Fredholm-Riesz-Schauder theory, we know that for each € > 0, o(L) N {z € C |
|z| > €} is a finite set and consists of eigenvalues of L. Here and henceforth, for any
operator L, o(L) denotes the spectrum of L. Since 1 ¢ {r}+, we see from (3.1) that

o(L) Cc {z € C||z| < 1}. Since (L) is a closed subset of C, we find a constant 6 € (0,1)
such that

(3.3) o(L)c {: € C||z| < 6}.

In view of (3.2), we may define the continuous operator L : {r}-*° — {r}>*> by
L¢ = K¢. We claim that

(3.4) o(L) C {ze C ||| < 8).
To show this, fix 4 € {z € C | |z| > 6}. For ¢ € {r}*® choose any

lb € (/"'I - E)—1[¢])



and set
f&) = u7 (Ky(€) — ¢(§)) foréel
It is easily seen that f € {r}** and that

pf€) —Lf(E) =¢() forall§el. |
Hence, u] — L is surjective. Next we fix ¢ € {r}>*®. Let f,g € {r}+™ satisfy

(WI-L)f(§)=¢() and (ul—L)g(§) =¢() forfel

Then we see that [f — g] € Ker (ul — L), which yields in view of (3.3) that f(£) = g(¢)
a.e. £ € I. Accordingly we have

u(f —9)(€) =L(f—g)(¢) =0 forfel.

Thus pl — L is injective. Invoking the open mapping theorem, we conclude that 4 is in
the resolvent set of L, proving (3.4).
Recall the definition of the spectral radius p of the operator L, i.e.,

p= lim |4V~

k—00

(See {8].) We know that p < 8. Fix any A € (6,1). Then there is a constant C > 1 such
that
IL¥|| < CX¥  for all k € N.

This yields that for ¢ > 0,

k k
”etL” S Z ¢ ”L, ” S Ce”.
ke€Z, k!

Thus, for h € {r}>* and t > 0 we have

45Dl = = Dhll s < Ce™4— ]

This completes the proof. O
Proof of Lemma 8.4. Using the standard mollification, for each v € (0, 1) we may choose
functions g, € C2(R") and h,, H, € C'(R") ® B(I) such that
|Gy(@)| V |hy(2,6)] < C,  |Dgy(z)| V | D?gy(2)|| V | Dhy(z, €)| < Cs,
\Hy(p,€)| v |DH,(p,€)| < Lr,

for all (z,p,€) € R® x B(0,R) x I and R > 0 and for some constants C > 0, C, > 0,and
Lp > 0. Here C does not depend on either v or R, C, does not depend on R, but may
depend on v, etc. We may assume further that

/ r(€)hy(z,6)dé = 0 for z € R”,

(3.5)
[ r©H,(p,)dE= 0 forpeR”,
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9(z,6) < §y(2) + hy(2,6) and  Gy(z) < G(z) +o(y) forall (z,6) €R" x I,

where o(y) = 0 as ¥y \( 0,

Fix v € (0,1). In what follows we write g and h for g, and h., respectively. This abuse
of notation hopefully does not cause any confusion.

Fix € € (0,1), and we define f, € C*'(R"*!) ® B(I) by

fo(z,t,) = ez& Dp(g,)  for (z,t) € R* x R.

Of course, we have
{ 2 h(568 = FK - Dfila,t,)©
fe(z,0,6) = h(z,8)
for all (z,t,€) € R® x R x I. By Lemma 3.4, since (3.5) holds, we have

Ife@t, Moo < Coe™#[|h(z, )lloo < CCoe™%,
IDfe(,t, Yoo < +/RCyCoe™#

for all (z,t) € R™ x [0,00), where § and Cy are positive constants from Lemma 3.5.
We set

(Pe(x, ') = SHE(DQ(I)a )
in view of (3.5), and
(3.6)  w(z,t,&) = §(z) + fe(x,t,€) + Bit + e(pe(z, ) + Bz) +€Bs(1 — e~ )

for (z,t,£) € R % I, where By, B;, and Bj are positive constants to be fixed later. Recall
that
(I — K)pe(z,*) = H(Dg(z),-) forz € R,

and
Dy.(z,") = S (D*§(z) D,H.(D3(s),")) for z € R™.

The last identity guarantees that
|Dee(z,8)| < C;  for (z,6) e R* x I
for some constant C; > 0 independent of €. We may assume as well that

loe(z,6)| < C1 for (z,6) e R™ x I
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We calculate that

7= e 4,€) - H(Du(z,1,6),6) ~ 5 ([ ke nhulz,tndn - w(z,t,6)

= 551(1( —Df(,t,)() + B+ gBSe-f%
~=H(Dg(z) + Df.(z,1,€) + eDpe(z,€),€)
fs—z(fg - I)sgfe(xi t,) + eve(s,)) ()

= B+ nge"?’ — EH(Dg(z) + Df.(z,t,€) + eDpe(z, &), &)
+2H(Dg(z), £).

Noting that as € — 0,
H(Dg(z) + Dfi(z,1,€) + €Dy (z, £),€) = H(DG(z),£) + Oe + ™),

we see that
72 B+ B M(1+ ée’%)
€ €

for some constant M > 0 which does not depend on &.
We fix B; = B; = M, so that w is a viscosity supersolution of (E).. Moreover, we fix
B, = C) so that
u(z,0,¢) < w(z,0,§) for (z,£) e R"* x I.

It is obvious that w € Y. Thus, by a comparison theorem, we see that
u¥(z,t,€) < w(z,t,€) for (z,t,§) € Roo X I.
Sending € \, 0, we see that
ut(z,t) < gylz) + Mtv for (z,t) € Qoo-
Writing M () for M in view of its dependence on v and setting
u(t) = inf{o(y) + M(7)t |y € (0,1)} fort 20,
we get a modulus yx such that
ut(z,t) < §(z) + u(t) for (z,t) € Qoo
Similar arguments ensure that for some modulus g,
u”(z,t) 2 g(z) — u(t) for (z,%) € Qoo

In case when h = 0, we use the same function w defined by (3.6) with f. = 0 and
B; = 0 and argue in the same way as above, to conclude that

9(z) — u(t) < u(z,t) S u¥(z,t) < g(z) + p(t) for (z,¢) € Res
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for some modulus p. This completes the proof. '[J

Lemma 3.6. The functions u™ and u™ are a viscosity subsolution and a viscosity super-
solution of (E) in Qw, respectively.

We need the following lemma in the proof of Lemma 3.6.
Lemma 3.7. There are a collection {H,}.c01) C C?(R™")®B(I) and a ({wr}r>0, {Cr}r>0)
€ G such that for each € € (0,1), H, satisfies (H1) and such that for all (z,€) €
B(O,R) x I, e € (0,1), and R > 0,
|He(p,€) — H(p,§)| < wr(e)e, |DpHe(p,€) — DpHe(p, €)| < wr(e),
wr(e
H(p, OV IDHe(,6) < Cr, D2, )] < 22,

Proof. By the standard mollification techniques, for each € > 0 we find a function
H, € D, N C?(R™) ® B(I) such that for all (z,£) € B(0O,R) x I, e € (0,1), and R > 0,

|Hu(3,€) - H,0) < Cae, ID,H.(,) ~ DpH(, )| < wrl),
.9V ID,H(p,6)| < Ca, D2, )] < 22,

where wg is a modulus and Cg > 0 is a constant, which can be chosen independently of
E.
Fix R > 0 and fix such wg and Cg. Set

wR(sr)

or(r) = inf{(Crs) Vwgr(st) V ——=|0<s<1} forr>0.

Then it is clear that og is a non-decreasing, upper semicontinuous, real-valued function
on [0, 00) and that og(0) = 0.
By definition, for each £ > 0 there is an s = s(¢) € (0, 1) such that

or(e) + & > (Crs) V wr(se) V @

Then the function ﬁAp, €) := Hy(p, &) and Ggr(r) = or(r) + r satisfy

|He(p,€) — H(p,£)| < Crse < edr(e), |DpHe(p,€) — DpH(p,€)| < wr(se) < Grle),
Fop OV ID 0, 6) < G, 1D, (p, )] < 22EE) < 98E)

se £

for all (z,£) € B(0,R) x I and € > 0. In the above inequalities one may replace 6z by a
modulus. Thus the collection {ﬁe}ee(o,l) together with appropriate choice of collections
of moduli and of positive constants has the required properties. O

Proof of Lemma 3.6. We begin by showing that ut is a viscosity subsolution of (E)o. Let
¢ € C*(Qco), and assume that u™ — ¢ attains a strict maximum at some point (%, %) € Qo-
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Let {H:}ee(o,1) be a collection of functions from Lemma 3.7. For € € (0,1), we define
the function ®(-,€) on Q, x I by

O(z,t,€,8) = v (2,4, €) — p(2,8) — epi(z, 1, €) — £%p5(2, 1, £),

where
(pi(zat’ ) = SHE(DQO(Zf,t),'),
b‘(x,t, ) = <DpHe(D‘p(x’t)")sD‘Pi(%t? )),
Bt = [r@Feted
Wiz t,) = S(F(z,t) - F(z,1)

for (z,t) € Q.

Note that
i b, ¥5 € CH(Qwo) ® B(1),

and
Dyi(z,t,r) = S[D*p(s,t)DpHe(Dep(z,1),")],

(—%wi(%t, ) S [(Des(z,t), DpH(Dp(z, t),))]

I

for (z,t) € Q.
Fix a compact neighborhood V C Q. of (%, 7). Using Lemma 3.7, we deduce that

0| | e
sup sup(l%l + | Dt + |22+ 18] + [95]) < o0,

0<e<1

sup(IDcpzl + ) < wvs(e)

9

3902
ot

where wy is a modulus.
By the definition of u*, there is a sequence €; \, 0 such that

8; := sup{®(z,t,£,¢;) | (z, 1) €V, € € I} = (ut — ) (£,f) asj— o0.

Then we choose a sequence of points (z;,t;,£;) € V x I such that for each j € N, the
function ®(z,t,§;,¢€;) attains a maximum over V at (z;,t;) € V and

(3.7) &(z;,t5,€5,65) 2 0 — €5

It is easily seen that
(:B.‘i’tj) - (i’i) as j — 00.

Since uf is a viscosity subsolution of (E). in Q. X I, we have

1
‘Pt(xwt ) < —H(D‘P(%’t )+ 8JD(p1 (z31tJ;£_1)

(38) +52DQ0 (x_th’EJ) {1)
+§(/1k(§h77) (2, t5,m)dn — uJ(zJ'tJ’é.J))
3
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Note that as 7 — oo,

H(Dy(z;,t;) + £; Dy (4,15, &) + €2DoF (25,15, &), §j)
(3.9) = H,,(Dyp(z;,t;),&;) + €5(DpHe;(Do(z, ), &), Dot (x5, 5, €5)) + o(e;)
= He,- (D‘P(xj; tj), 5]) + ejbsj (xj’ tj?&j) + O(EJ')'

From (3.7), we have
ui (IB]', tj, E) — ufi (zj, tj, EJ)
< Eg' +E;j [(P? (Z‘j’tja 5) - ‘le (‘Tja tja §J)] + E? [(P;J (xj: tj: f) - <p;J (xj’ tj’gj)]
for all £ € I, j € N. Hence, in view of the definition of the operator S, we have
/Ik(fj, mu® (zj, 5, n)dn — u (25,15, &;)

< & +ei(K — Dot (25,1, )(§) + 5K — Dy (w4, 5,-)(§))
= & —&;H,,(Do(z),1),&5) — €3 [6% (25, 1, §5) — B4 (x5, 15)]

Combining this with (3.8) and (3.9), we get
(3.10) wi(z5,t5) < b9 (zj,t) +o(l)  as j— oo.
Since
bz, t;) = fIT(E)(DpH (De(5,t1),€), D*p(z;, t5) Dpa(Dep(2, t5), €))dE + 0(1)
= tr [A(Dy(z;,t;))D?p(x;,t;)] + o(1)
as j — oo, we conclude from (3.10) that
e(2,1) < tr[A(Do(%,£))D*¢(2, 1)),

which shows that u™* is a viscosity subsolution of (E)o-
Arguments similar to the above prove that u~ is a viscosity supersolution of (E)e. O

Proof of Theorem 8.8. In view of Lemma 3.4, we see that
limsup{u*(2,t) = u” (1, 8) | (#,8), (4, 8) € @, Iz —y| + |t — 8] <r}=0.

By Lemma 3.6, we know that u* and u~ are a viscosity subsolution and a viscosity
supersolution of (E)o. Thus, by using a comparison theorem, we see that u* <u <u~ in
R, from which we deduce easily that as € \, 0,

ut(z,t,€) = u(z,t) locally uniformly in Qy X I.

Since (E). and (E), are translation invariant in z, we conclude from the above that for
any collection {y.}.c(0,1) C R", as € 0,

u(z + Ye,t,8) — u(z + ye,t) = 0 locally uniformly in Qo X I.
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Now a simple argument by contradiction shows that, for any § € (0,1), as € \( 0,
(3.11) u¥(z,t,€) = u(z,t) uniformly in R™ x [§, 67] x I.

Finally, if g(z,£) is independent of &, then (3.11) and the last assertion of Lemma 3.4
yield the uniform convergence of u®(z,t,£) to u(z,t) in Ry x I for any T € (0,00) as
e\0. O ’
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