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Interfaces in Activator-Inhibitor Systems
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1. ACTIVATOR-INHIBITOR SYSTEM

A system of reaction-diffusion equations

ou 0

5 = di1Au + f(u,v), —3—: = doAv + g(u, v),
is called an activator-inhibitor system when the reaction terms (f, g) satisfy
(A-I) (i) fu>0, (il) fo<0, (i) go>0, (iv) g»<0

on some region in (u,v)-plane. In such a case, u is called an activator and v an
inhibitor. As long as the conditions in (A-I) are valid, u has self-activation and
v-enhancing effects, while the increase in v tends to inhibit the production of both
u and v itself. A typical example is:

(FH-N) fmv)=uv-v’~v,  glu,v)=u-Lfv (8>0)

for which conditions (A-I)-(ii), (ii), (iv) are satisfied for all (u,v) € R?, while the
condition (A-I)-(i) is valid only when —1/v/3 < u < 1/v/3. Another example is

(CAM) f(u,v) = (1 —u?)(u —tanhv),  g(u,v)=u—Pv (8>0).

For f in (CAM), the condition (A-I)-(ii) is valid only for —1 < u < 1. This is a

significant difference from f in (FH-N), which will turn out to be important later.
For f in (CAM), we define h*(v) = +1 and h%(v) = tanhwv. Similarly for f in

(FH-N), h%(v) and h°(v) are three roots of u — u® = v (for |v| < 2v/3/9) satisfying

h~(v) < KO(v) < h*(v).

We will deal in this article a situation where the activator u diffuses slowly and
reacts fast, compared with the inhibitor . Namely, we consider the following system

ey = e2Au+ f(u,v),
zeQCRY (N>2) t>0
(1.1) vy = DAv+ g(u,v),

0=0u/On=0v/0n z€dQ t>0,

where 0 C R¥ is a smooth bounded domain, n the outward unit vector on 85, and
€ > 0 is a small parameter (called a layer parameter).

We first look at the equation for v in (1.1) on the entire one-dimensional space,
with v frozen so that the functions h*(v) are defined. This problem has a special



type of solution u(t,z) = Q((z — ct)/e) = Q(z), called a travelling wave solution
which satisfies

(TW) <9 + ch +f(Q,v) =0, z€eR, lim Q(z) =h*(v), Q(0)=0.

d22 dz z—+o0

This problem has a unique solution pair (Q(z;v), c(v)) for each v chosen appropri-
ately.

2. TRANSITION LAYER AND INTERFACE

When the layer parameter € > 0 is small, the solution (u(t, z), v(¢, z)) of (1.1) with
appropriate initial conditions will develop a transition layer in its u-component, i.e.,
u(t, z) has the following behavior;

u(t,z) = h=(v(t, z)), =€ QF(t)\I(t)~c"8e,
where
r't)={z € Q|u(t,z) =0}
is called an interface,
Q) = {z € Q| +u(t,z)> 0}

bulk regions, and I'(t)® (§ > 0) stands for the 6-neighborhood of the interface. Since
u(t, r) makes a sharp transition from u = h~(v) to u =~ h*(v) across I'(t) within
a narrow region I'(t)7¢1°8¢  y(t,z) is said to be a transition layer solution. This
transition layer structure is known to persists during an extended period of time.
To keep track of the transition layer it suffices to describe the normal speed of the
interface I'(t). Let v be the unit normal vector on I'(t) pointing into the ‘+’-bulk
region Q7 (t), and v(z; ['(t)) the normal speed in v-direction. Since we have identified
the interface as the O-level set of u(t, z), differentiating u(I'(t),t) = 0 with respect
to t, we obtain

0=u+ (Vyu)v= -z: {eus + (Vsu)v},

where v = ev. Using the equation for u and the expression of the Laplacian near
I'(8); |
1
]
where k = k(z;T'(t)) is the sum of principal curvatures of the interface at z € T, we
obtain

Am 5Vi+ 2V,

0 =eAu + (Vyu)v + f(u,v)
=V2u + (v + er)Viu + f(u,v).
Comparing the last equation with that in (TW), we arrive at an interface equation

(21)  v(@TE) =cv(t,2) —en(z; (), (z€TL(), t>0). I(0)=To
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Although the derivation above is rather formal, it can be made a little more rigorous!
thanks to matched asymptotic expansions. By using such expansions, we find that
v(t,z) is a solution of the following problem defined in the bulk regions Q%(t).

(i) v = DAv+ g*(v,z;I(t)), =€ O\I'(¢), t >0,
(2.2) (ii) Ov(t,z)/on =0, z € 01, v(0,z) = ¥(z), T €N

(iii) w(t,-) € CHQ) NC*Q\I(t), t >0,
where g* is defined by
g*(v,z;T(t)) = g(h(v),v), =€ Q*(2).

We call (2.1)-(2.2) the interface equation (IFE)_ for (1.1). When the curvature term
—ek is neglected in (2.1), we represent the interface equation by (IFE),.

We now summarize known results on the existence and uniqueness of solutions
for (IFE),.

Theorem 2.1 (Classical Solution [2]). Let Ty C Q be of class C*** and let ¢ be
of class C'*® for some a € (0,1). Then there exists a classical solution pair
(T(t),v(t,z)) of (IFE), (€ > 0) on a time interval [0,T). To be more precise, let
v(t,-) : To — Q be a representation of I'(t). Then there ezists a B € (0, a) such that

Y€ CHIBRMAO,TI X T), € CHOR34 (0,7] x O\ (Losesr i) x T(0).

Theorem 2.2 (Semi-Classical Solution [1]). Let ¢ € C*(Q) and Ty be of C? class.
Then there exists a positive constant T > 0 so that (IFE), has a unique solution on
the time interval [0, T satisfying

v € W2([0,T) x Q), v € WL([0,T] x Ty).

Theorem 2.3 (Weak Solution [5]). Let ¥ € C*(Q) and Ty be of C° class. Then for
each T > 0, (IFE), (e > 0) has a solution on [0, T| with

v € C® (viscosity solution), v e C([0,T] xQ), V.veC(0,T]x Q).

It is not, in general, expected to have a global-in-time solution of (IFE), (e > 0).
This is why the weak (viscosity) solutions as in Theorem 2.3 are important. Our
next interest is how well the interface equation (IFE), approximates the reaction-
diffusion system (1.1).

3. CONVERGENCE AND ASYMPTOTICS

When we have a solution (I',v) of (IFE)_, a solution (uf,v?) of (1.1) is said to
converge to (I, v) if the following are valid;

lin(x) v(t, z) = v(t,z) uniformly on [0,T] x Q,

lir% u(t, ) = h*(v(t,z)) uniformly on QE\I'S for each § > 0,

1This does not mean that the matched asymptotic expansion method justifies the interface
equation in a mathematically precise sense.



QF ={(t,z) |t €[0,T), z€Q*@)},
I'r={(t,z)|t€[0,T], zeT()}
If={(t,z) |t €[0,T], =€ (t)°}.
A convergence result for (1.1) was first given by Chen [1] when the nonlinearity
(f,9) 1s of (FH-N) type.

Theorem 3.1 ([1}). Let (T',v) be a solution of (IFE), on a time interval [0, T}, in
the sense of Theorem 2.2. Then there ezists a solution (uf,v*) of (1.1) that converges
to (T',v). More precisely, there ezists a constant M > 0, independent of € > 0, such
that

sup{[v:(t,z) — v(t,z)|; z € O} < Malog—él?,
sup{fue(t, z) — u(t,2)| ; & € A(Ee'*81} < Melog -
unifromly on t € [0, T), where u(t,z) = h*(v(t, z)) for z € Q*(t).

Extending Chen’s method of proof [1], Soravia and Souganidis [11]* was able to
prove a global-in-time convergence result for nonlinearities of (FH-N) type.

Theorem 3.2 (Global-in-time convergence to viscosity solutions [11]). Let (T',v) be
the weak solution of Theorem 2.3 defined on the infinite time interval [0,00). As-
sume that {(t,z) | t € [0,00), z € I'\(t)} is a null-set. Then there ezists a solution
(uf, %) of (1.1) that converges to (T',v) uniformly ont € [0,T] for any T > 0.

These convergence results are very nice. However, they apply to (1.1) only when
the nonlinearity (f, g) has appropriate monotonicity properties;

f is monotone in v and g is monotone in u.

These monotonicity properties are used in the proof to apply the maximum principle
(comparison principle). Therefore the proofs in [1] and [11] do not apply when
(f,g) is of (CAM)-type. For scalar reaction-diffusion equations, de Mottoni and
Schatzman [4] developed a method of proof of convergence which does not depend
on the maximum principle.

3.1. Asymptotic methods in convergence proof. We now present a conver-
gence result for (1.1) in the spirit of [4].

Theorem 3.3 (Convergence by approximation [7]). Assume that (IFE), has a smooth

solution (T',v) on a time interval [0, T, enjoiying the regularity properties;
T e CHEHe([0, T x Ty), ve CHiHe([0,T) x Q\I'r) N CY([0, T} x )
withl > 2 and a € (0,1).

2T am indebted to Professor Y. Giga for bringing the reference [11] to my attention.
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(i) There ezists a family of approzimate solutions (u§,vy) of (1.1) in the LP(Q2)-
sense (p > N);

A e f(ug, vi)”m =0(eh,
18svy — DAV — g(u, vl =O(e)
satisfying
lim v4(t, ) = v(t,z) uniformly on [0,T] x Q,
lirrcl) us(t, ) = h(v(t, 7)) uniformly on ﬁ;\I‘% for each § > 0.
£—
(ii) There ezists a family of solutions (u®,v®) of (1.1) satisfying

sup_|v(t,z) — vi(t, 3)| SME",

[0,T]x%
sup |uf(t,z) — uS(t, z)| _<_Msl”%,
[0,7]x% ’

where M > 0 is a constant independent of €.

The outline of proof of Theorem 3.3 now follows.

Part (i): Construction of approximate solutions.
Let us first agree to identify the interface I'.(¢) as the O-level set of u®(t, z);
L.(t) = {z € Q| u’(t,z) = 0} = I'(2),
where I'(¢) is obtained from a solution (I',v) of (IFE),. We now intend to express
[.(t) as a graph over I'(¢), i.e.,
Te(t) = {7(t,y) +eR*(t,y)v(t,y) |y € To, t€[0,T]}.

Note that R(¢,y) is a priori unknown (to be determined). Let us decompose the
domain 2 by the interface;

Q= Q; () UT(t) U ()
and consider the following approximate problem..

Ouute = eAur* + 71 f(uFe, vEe),
(3.1) z € QE(t), t >0,
Bvte = DAvES + g(ut*, vEe),

with the boundary conditions

+.e +.e

(3.2) wFF |, =0, vE|r, = b, o = 0= %—n—, z €, t>0.

Here, b° is to be determined.
We now substitute formal expressions

RE=R1+ER2+62R3+..., b5=b0+5b1+52b2+__.

into (3.1)-(3.2) to construct formal approximate solutions (u**€,v**). This con-
struction consists of two stages, outer and inner expansions.
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Once the formal approximations are obtained, we impose on them C!-matching
conditions;
u™® oyttt pf gtE

(3.3) =5 5= g b L) t>o

These conditions give rise to a series of equations; the lowest order (0-th order)
equation is nothing but (IFE),. The k-th (k > 1) order equation is a linear inhomo-
geneous parabolic system for (Ry,be—1) with the inhomogeneous terms depending
only on known quantities and (R;, b;—;) with lower indices (0 < j < k). The prin-
cipal part of the equation is the same for all order k¥ > 1, which is the linearization
of (IFE)O So, these equations are solvable and we obtain the de31red approximation
as in Theorem 3.3 (i).

Part (ii): Spectral estimate.
We first linearize (1.1) around the approximate solution U§ = (u%,v5). For each
t € [0, T] fixed, let us denote the linearized operator by L°(t);

eA + %f - %ff
L5(t) = ,
gt  DA+gf
where f2 = £,(U3) and similarly for f2, g4 and g4. It is shown that —£5(¢) is a
sectorial operator for each t € [0, T]. More precisely, we have the following

Lemma 3.1 (Resolvent estimate). There ezist A, > 0, 6y € (0,7/2) and M > 0,
which depend only on the solution (T,v) of the interface equation (IFE), such that

34) (A -L@) < Xe{reC| arg(A—A) < T +6o}.

M
A=A’
We now rescale £5(t) and look for a solution U*(t, z) of (1.1) as follows.
A%(t) = eLf(et), Ut(et, z) = Ug(et, z) + o(t,z), tE€0, —1—1]
Then (1.1) is expressed as
(3.5) pr = A%(t)p + N°(¢, ) + R*(2),

where N(t, ) = O(|p|?) and

IRE@)le = O("Y), teo, g}.

Now our task is to give a uniform estimate on ¢ in the time interval [0, E] To do
this, let us set up appropriate function spaces. We define the basic space X§ and
the domain X§ of A*(t) by

(3.6) X5 :=LP(Q) x LP(Q), X§:=W2H(Q) x W2, (Q),

where, as sets,

en(Q) = WP (Q) := {u e W*P(Q) | —Ian 0}



with a weighted norm
lullwag = lullze + ellVulle + €| V?u| .
We denote by X, a € (0,1), the interpolation spaces between X§ and X7, i.e.,
X5 = WHF(Q) x W22 (9).

We also introduce weighted Holder spaces C'f’p. It is the same as the usual Holder
space CP(Q) as sets, with the weighted norm:

N N
lullg, = €5 luleo + €** ¥ [ul.

These Hélder spaces are introduced to deal with the quadratic term-N‘ in (3.5). The
weighted Sobolev spaces have usual embedding properties; if o, € (0, 1) satisfy the
relation 2o — & > > B then W2P is continuously embedded in C2,;

N
(3.7) 2a — 5> B = WXPoCL

with embedding constants being independent of € > 0.
When we consider a bounded linear operator B : X; — Xj, its norm is denoted
by ||Blla,s- Now let us recast Lemma 3.1 in terms of A°.

Lemma 3.2. —A°(t) is sectorial for each t € [0,Z] and the following estimate is
valid;

(38) (= A°®) oo <

— < — .
|'\ WL Ae{reC| arg(A—eA) < 2+00}

Note that the operator A%(t) — A%(s) for 0 < s,¢ < T is a multiplication operator.
This difference does not involve any differential operator Therefore, we can easily
show that there exists a constant M; > 0 such that for0 < < a <1

' T
(3.9) 14°(8) — A%(8)llap < Mie(t —s), O<s<t<—
Moreover, the estimate (3.8) implies
(3.10) ety < M 0<s<is %

Therefore there exists a constant K > 0 such that the evolution operator ®(t,s)
associated with the family {A®(¢)},c,<z satisfies for 0 <, 8<1

(3.11) |8(t, 8)llap < Mi(t — 5)* Pest+ENE=2) g <5<t <

™|

Applying the variation of constants formula to (3.5), we obtain

(3.12) @(t) = ®(t,0)(0) + /ot B(t, s)N°(s, p(s))ds + /.‘t ®(t, s)R°(s)ds.
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Since the existence of solutions to this equation is well established, we only need
to have an estimate on ||¢(¢)||a, where || - ||o is the norm of X5. Let C > 0 be a
constant (independent of € > 0) such that

IR ()l < Ce™, IN*(s,0)| S Clf?,  0<s<
Then we have for 23 — % >0

IN*(s, o(s)llz» < Cle(s)loollo(8)llz2 < Cllo()l5-
Now using these estimates and (3.11) in (3.12), we have

t
r(t) <Myr(0) + CM;eH! / (t — 5)~Pds
0

t
+CM; / (t — 5) PNt KIap ()2

1-8
(3.13) <M;7(0) + -C-AT’[lT—ﬂ-—e +A
t T
+ CMle(’\""K)T/ (t—s8)Pr(s)lds, 0<t< o
where r(t) := ||¢(t)||ge~¢**+E)* is a continuous function of € [0, T). Now we choose

the initial function ¢(0) so that
7(0) = lp(0)ls < .
Then, from the continuity of r(t), we have
(3.14) r(t) <€
for t near 0. Let T} > O be defined by

sup{t € [0, -T—] |r(s) <€, 0<s<t}

We have either T} = L or r(T}) = €!. We will show that the latter possibility does
not occur by choosmg g > 0 small enough From (3.13), we have

CM]_ 18 + CMle(A.+K)TT1 B8 621

< I+1
r(T1) SMie™ + - e -5
CM,T'# C M;eP+KTT1-8 1
gl 1 B < -¢
£ {Mle + - e’ 4+ -3 } 2

arriving at a contradiction. Therefore, (3.14) is valid for 0 <t < :‘E Now by using
(3.7), we obtain

T
€% 0" ()leo + B |0 (D)oo < M, 0SS,
o(t

for some M > 0 independent of € > 0, where (t) = (¢*(t), ¢*(t)). This completes

the outline of proof of Theorem 3.3.
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4. DEGENERACY

In the previous section, we have discussed a relationship between the reaction-
diffusion system (1.1) and its interface equation (IFE), on finite time intervals.
Does (IFE), capture asymptotic (as ¢ — 0o) behaviors of solutions to (1.1)? We
will show by an example that the answer is no! We will also show that (IFE), is
more appropriate to describe the asymptotic behavior of (1.1).

Let us consider (1.1) on the N-dimensional unit disk; = {z € RV | |z] < 1},
and look for its equilibrium solutions with spherical transition layers.

170

Theorem 4.1 (Existence and stability of transition layers [8]). Let 2 be the N -dimensional

unit disk; Q = {z ; |z| < 1}.
(i) There ezists R. € (0,1) such that for
I.={lz]=R.}, Q ={lz|] <R}, Q"={R.<]z|<1},

the problem

0= DAv+g*(v,z;T.), ze€Q¥ g—:=0, z € N
has a unique spherically symmetric solution v = v*(z) = v*(|z|) with regqularity
properties; -

v* € CY Q) NC*AON\T,).
(ii) There exists a family of spherically symmetric equilibrium solutions (u®(z), v¢(z))
of (1.1) for small € > 0. This solution has the following behavior;
lim ve(z) = v*(z), wuniformly on Q,
E— )
hII(l) uf(z) = hE(v*(z)), wuniformly on Q\I'¢ for each 6 > 0.

(iii) The solution in (ii) is unstable; The linearization around it has spherically
symmetric eigenfucntions. Let A; be the eigenvalue associated with spherical
harmonics of degree j > 0 which has the largest real part. Then they are all
real and satisfy

A5 < 0;  breathing mode,

A1 < 0; translation mode,

Ai>0 2<k<j;—-1); wiggly modes,
Ax <0 (k=j3);  wiggly modes,

where j¢ = O((eD)~Y?). Moreover, A attains a mazimum at j = j; =

O((eD)~/3).

(iv) Let the space dimension be 2; N = 2. Then there erists a infinitely many
critical values {€;}32;, with jo > 1 such that non-radial equilibrium solutions
bifurcates at each € = €; from the equilibrium solution in (ii) and €; has the
following characterization:

_ J(0)i(R)R?
y2

1
;= + O(— as j — 00).



This theorem says that the spherically symmetric transition layer solution is highly
unstable with O(¢71/2) many of unstable eigenvalues. It may be obscure how the
interface equation (IFE), with € > 0 is related to the results in Theorem 4.1. In
oder to clarify this relationship, let us outline its proof.

Outline of Proof: Part (i) reduces to a boundary value problem for an ordinary
differential equation.

For part (ii), we construct a pair of equilibrium solutions (u**,v**) of (1.1),
respectively, on QF. Then the C'-matching conditions

du—* u"‘e dv—¢ dvte

()= TR, (R = T (R
give rise to an equatlon on I‘*, ie.,
(4.1) A%p = ¢ (0)v}(R)p - ¢(0)I'p = g,

where ¢ is known and (4.1) has to be uniquely solvable inp. In (4.1), Il is a
Dirichlet-to-Neumann map, defied by

o, ot
ov T+ oy T
where v are solutions of the boundary value problem;

IIb :=

ovt
£o=b 2 |sq=0.
r. = b, 5 lag

We emphasize that the C'-matching condition is as simple as (4.1) only because we
are dealing with spherically symmetric functions. For general functions, it is more
involved and its solvability is not clear [6].

Part (iii). It turns out that the eigenvalues A$ in Theorem 4.1 (iii) has the following
characterization;

DAv* + gi(v,z;T)vE =0, z €,

A; = 6;\§ +o(e) (as € — 0),
where 5\5 are eigenvalues of A° defined by

N-1
R?
with AT* being the Laplace-Beltrami operator on I',. The e-multiplied term in (4.2)
exactly corresponds to —ex-term in (IFE)_. This is why (IFE), cannot capture

asymptotic behavior of solutions to (1.1).

In the proof of part (iv), we use an equivariant bifurcation theory developed in
[3] and [12].

(4.2) Af:=¢ (AP‘ + ) + A°

5. RESCALING

Theorem 4.1 says that as t — oo I'(t) tends to develop fine scales. Theorem 4.1
(iii) says that (1.1) produces equilibrium transition layers in which the interface I’
has a typical length of scale O((¢D)Y/?) = 1/j¢ and that the length scale of the most
unstable mode is O((e D)'/3) = 1/4Z. In this section, we will rescale (IFE), to obtain
another interface equation which describes meso-scale (i.e., £'/3-scale) interfaces.
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Let us simply write (IFE), as
v = _
(IFE) { o %Z)v ).
We now rescale the spatial variable z via;
Ooz+—zef), z=¢%%
where 0 < a < 1 is to be adequately determined. Under this rescaling, (IFE)
becomes

(5.1) { 2V = (D) — el 7R,

The second equation in (5.1) implies & = £2*¥ which upon substitution in the first
of (5.1) gives
(5.2) €2V = 2% (0)v — ' k.

In order for the two terms on the right of (5.2) to have contributions of the same
magnitude, it must be that €2* = ¢!~ Hence, we obtain o = 1/3. In this way,
we naturally arrive at the meso-spatial scale O(e'/?) predicted in Theorem 4.1 (iii).
The equation (5.2) also suggests us to rescale the time variable by t = ¢7/3¢. In
terms of (£,%), (1.1) is written as

{ &u; = &4 Au + f(u,v)

&v; = DAv + £2g(u, v),

(5.3)

where & = £1/3. An interface equation associated with (5.3) is
(5.4)
{ v(z; () = ¢(0){v(t, ) — 3(t)} - {r(z; T(t)) — &)}, ze€l(t), t>0,

0= DAv+g*(z;T(t)), zeO\I'(), t>0, v(,-)eC(),
where g*(z;T(t)) = g(h*(0),0) for z € Q*(t), B(t) = [1,v(t z)dSs, and E(t) =
fI‘(t) k(z;T'(t))dS,. We can establish a relationship between (5.3) and (5.4) similar
to Theorem 3.3.

Theorem 5.1 (Existence of classical solution [9]). Let I'(0) = T'q be of C***-class
for some 0 < a < 1. Then there ezists a T > 0 so that (5.4) has a unigue solution
(D(t), v(t, z)) with regularity properties;

y(t,y) € CH¥e/224e([0, T] x To), o(t, "), ui(t, ) € C**(@\T(2)) NCH(Q).
We also have an analogue of Theorem 3.3.
Theorem 5.2 ([7]). There ezists a family of solutions (uf,v%) of (5.3) such that
lim vE(t,z) = v(t,z) wuniformly on [0,T] x O,
lim o = hE(v(t, z)) uniformly on [0,T] x Q\I%. for each § > 0.

The proof of this theorem is carried out in the same spirit as that of Theorem 3.3.
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