obooooooooO 13230 20030 174-182

174

Neumann problems
for singular degenerate parabolic equations
on nonsmooth domains

EWTEKRY E#TE (Moto-Hiko Sato)
Muroran Institute of Technology

1 Introduction

This is a joint work with F. Da Lio. In this paper we are concerned with the following
boundary value problem

(1.1) u, + F(t,z,u, Du, D?u) =0 in@=(0,T) x Q,
(12) % _y in § = (0,T) x 80
. a’y - - ? ?

where  is a bounded domain in R™ and T > 0. Here u, = Ou/dt, and Du and D?u
denote, respectively, the gradient and Hessian of u. Let © be a bounded domain in R"
and Q = ()€ where I is a finite index set and s are domains in R"™ with relatively
iel

regular boundary such that 9€; € C3. For z € 002 we denote by I(x) the set of those
indices 7 which satisfy z € 0;. Let {vi}icr be a set of vector fields on R” such that
each v; is oblique to {; on 8%, i.e.,(vi(z),ni(z)) > 0 for z € 88, whwre n;(z) denotes
the outward unit normal vector of §; at z. We deal with equations (1.1) in a class of
singular degenerate parabolic equations which includes the mean curvature flow equation.
In the case when F is continuous in its variables, there is already a comparison and
existence result for viscosity solutions of second order degenerate parabolic PDE with
boundary condition (1.2). We refer for this to [D-I]. In the case of singular PDE like the
mean curvature flow equation and &) is smooth, Giga and Sato [G-S] have established
comparison and existence results for viscosity solutions under the Neumann condition and
the author [S], Ishii-Sato [I-S] and Barles [B] treated the case of fully nonlinear boundary
condition including capillaly boundary condition. Our aim in this paper is to establish
comparison and existence theorems concerning viscosity solutions of (1.1)-(1.2) when Q
is piecewise smooth.
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This paper is organized as follows. In Section 2 we state and prove our comparison
result and establish our existence result and we explain how to build test functions which
are needed in the proof of the comparison and existence theorems.

Acknowledgement: The authors are grateful to Professor Ishii for his many useful
advices.

2 A comparison and existence theorem

Let Q be a bounded domain in R” and 2 = ﬂ ; where I is a finite index set and Qs
i€l

are domains in R"™ with relatively regular boundary. For z € 92 we denote by I(z) the
set of those indices 7 which satisfy z € 0Q;. Let {v;}ier be a set of vector fields on R
such that each «; is oblique to Q; on 9%, i.e.,{(v;(z), ni(z)) > 0 for z € 99, whwre n;(z)
denotes the outward unit normal vector of £2; at z.

We start by listing our assumptions. Henceforth, for p,q € R™\ {0} we write p = ﬁ
and p(p,q) = [(|p| Alg])~t|p — gl] A 1. Here and henceforth we use the notation: a A b =
min{a, b} and a V b = max{a, b}.

(F1) FeC(0,T]x QxR x (R*\ {0}) x 8",
where S™ denotes the space of n x n real matrices equipped with the usual ordering.

(F2) There exists a constant v € R. such that for each (t,z,p, X) € [0,T] x 2 x (R™\
{0}) x 8™ the function u — F(t,z,u,p, X) — ~yu is non-decreasing on R.

(F3) For each R > 0 there exists a continuous function wg : {0,00) — [0, c0) satisfying
wr(0) = 0 such that if X,Y € 8" and p, pe € [0, 00) satisfy

X 0 I -1 I0

F(t,x,u,p,X) - F(t,y,u,q,—Y)
> —wr(p1(|z — yI> + p(p,@)?) + p2 + Ip — al + |z — yl(Ip| V lg| + 1))

then

forallt € [0,T), z,y € Q, u € R, with |u| < R, and p,qg € R™\ {0}.
(B1) For each i € I the boundary 89; is of class C®.

(B2) For each z € 0N there is a neighorhood V of z in 8Q such that I(y) C I(z) for
yevV.

(B3) For each x € 0 the convex hull of the vectors v;(z), with i € I(z), does not contain
the origin.
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(B4) For each z € O there is a family {B(z) : £ € W} of compact convex subsets of R®
with 0 € W for all z € W, where W is an open neighborhood of z, such that the
family is of class C** and such that for all z € W N R, p € 8B(x), i € I(z) and
n € Np(B(z)),

20 if (p,mi(2)
2.1 i(z),n
1) a@m{Ze o

I/\ IV

)
)

Theorem 2.1. Suppose that (F1)-(F3) and (B1)-(B4) hold. Let u € USC([0,T) x Q)
and v € LSC([0, T) x Q) be, respectively, viscosity sub- and supersolutions of (1.1)-(1.2).
If u(0,z) < v(0,z) forz € Q, then u < v on (0,T) x Q.

Let Qo = (0,T) x Q. A function u : Qo — R is called a viscosity subsolution of (1.1)-(1.2)
if it satisfies the following properties:

(i) u* < +00
(i) 7+ Fz,r,p,X)<0 forz € Q) (T, 10,X)€p2+ *(t,x)
7+ Fi(z,r,p, X) Amin{(v(z),p) : 1 € I(z)} <0
for z €00 (r,p, X) € pé’:u*(t, )
Similarly a function u : Qp — R is called a viscosity subsolution of (1.1)-(1.2) if it satisfies
the following properties:
(i) Uy > —00
(i) 7+ Fz,n,p,X)>0 for e (r,p, X) € p%o'u,.(t, z)
T+ F*(z,r,p, X) Amin{(vi(z),p) : t € I(z)} >0
for z €00 (r,p, X) € péo'u*(t, x)

Here a A b = min(a,b), a V b = max(a,b) and p“ *(t,z) (resp. on “u.(t,z)) denotes the
parabolic super 2-jet in @Qp. (see [CIL]) Any functlon u

Remark 2.2. Assumptions (F1) and (F3) imply that

—o0 < Fi(t,z,u,0,0) = F*(t,z,u,0,0) < oo

In what follows we use the notation: for any p,q € R",

{p(p ,q) if p,q#0,

2.2 =
22 p(pa) = if either p=0 or ¢=0.

Note that the function p* is upper semi-continuous on R” x R".



Remark 2.3. We state typical examples of F satisfying (F1)-(F3). Let A: Q x (R™\
{0}) — M™™ where M™ ™ denotes the space of real n X m matrices, be a function
which is homogeneous of degree zero, i.e.,

Az, Ap) = A(z,p) for all (z,p,)) € Q x (R™\ {0}) x (0, 00)

and which satisfies

|A(z,p) — Ay, @)l < Ci(lz—y|+|p—g|) forallz,y€Qandp,ge S,

where C; > 0 is a constant and S™! denotes the unit sphere {£ € R : || =1}. It
follows that for all z,y € O and p,q € R"\ {0},

14(e.7) - Aty <Cx(lz =91+ [~ )

lp — gl

<Cillz -y|l+ ——
(e =9+

) < Cull -yl +20(p, 9))-
Let b € C(Q, R™) satisfy

|b(z) — b(y)] < Colz —y| forall z,y € Q.

Furthermore let ¢, f € C(Q, R) be given. Define the function F € C(Q x R x (R™\
{0}) x &) by

F(z,u,p, X) = —tr[A(z,p)" A(z, p) X] + (b(z), p) + c(z)u + f(z).
As is observed in [CIL], if X,Y € 8™ and uy, u2 € [0, 0o) satisfy

X 0 I -I I 0
then

—tr[A(z,p)* Alz, p)X] — tr[A(y, q)* Ay, q)Y] < C3|| Az, p) — Ay, 9)II?
<4C3Cy(|z — yf* + p(p, 2)%).

It is now easy to see that F satisfies condition (F3). Also, it is immediate to see that
condition (F2) is satisfied with v < minge.

If A(z,p) =1-|p|™%(p®p), b =0, and c = f = 0, then it is the case of the mean
curvature flow equation and the above conditions on A, b, ¢, and f are valid.

Proof of Theorem 2.1.  We may assume by replacing T > 0 by a smaller number
if necessary that w and —v is bounded above on [0,T) x Q. For any constant A >
max_.g (0, )V (—v(0, 7)), if we choose a constant B > 0 large enough, then the functions

f(t,£)=—-A—-Bt and g(t,z)=A+ Bt

zeq
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are, respectively, (viscosity) sub- and supersolutions of (1.1)-(1.2). For such functions f
and g, we set

a(t,z) = u(t,z) V f(t,z) and o(t,z) = v(t, z) A g(t, z),

and observe that % and 9 are, respectively, sub- and supersolutions of (1.1)—(1.2) and that
@(0, ) < §(0,z) for = € Q. If we can show that @ < @ on [0,T) x Q for any such f and
g, then we see that u < v on [0,T) x Q. This observation reduces the proof to the case
where u and v are bounded.

Also, the standard technique reduces the proof to the case when v = 0 in (F2). Indeed,
if v < 0, then the functions (¢, z) = €"u(t,z) and 9(t,z) = €"v(t,z) are, respectively,
sub- and supersolutions of (1.1)—(1.2) with F(t,z,r,p, X) replaced by the function

e(—r + F(t,z,e "'r, e p, e " X)).

Thus we may assume that u and v are bounded on [0,T) x {2 and that the function
r — F(t,z,r,p, X) is non-decreasing in R for each (¢, z,p, X) € [0, T]xQx (R™\{0}) xS™.

By virtue of lemma 2.7, there are a function w € C*(Q x ) and a positive constant
C such that for all (z,y) € 2 x Q,

(23) Ix - y|4 S 'LU(ZZ?,y) S C’x - yl4’
|Dzw(z, )| V | Dyw(z,y)| < Clz -yl

(2.4) (vi(z), Dyw(z,y)) >0  for all z € 30, i€ I(x)
<'7i(y)) _Dvw(m’y)) <0 for all y € 9, i€ I(y)
(25)  |D.w(z,y) + Dyw(z,y)| < Clz - yl*,
p*(Dzw(x,y), —Dyw(w, y)) < C|$ - y‘:

and for a. e. (z,y) € 2 x

e8) Du@y<clo-v (L F)+le-ut(y 7))

We argue by contradiction. So we suppose that

(2.7 mp = sup{u(t,z) —v(t,z) : (t,z) €[0,T) x N} > 0.

For a >0, € >0, § > 0 we define

U(t,,9) = 7 + ow(z,y) +6(e(z) + 0(y)),
é(tvm’ y) = u(ta :t;) - 'U(t’ y) - \Il(t, m,y)

for (t,z,y) € [0,T) x ¥ x Q. Here the function ¢ € C%(Q) satisfies

>0 on Q and (Dp(z),%(z))>1 for z€0Q and i€ I(z)
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Actually we can construct the above function ¢. (see [D-I]) From (2.7) we infer that for
sufficiently small € > 0 and § > 0, the function ® attains a maximum greater that mg/2.
Fix such § and ¢, and choose a maximum point (£, #,¢) of ®. Note that ® and (£, , y)
depend on a, €, 6.

It is now well-known (see, e.g., [CIL]) that

(2.8) i{%o}gﬁloé%é(t £,9) = my,
(2.9) Jim sup{ow(,9) : 0<d<1, 0<e< 1} =0.

We will pass to the limit as § \, 0, @ — oo in this order. Thus, in view of (2.8), we
may assume that ¢ > 0 and that u(¢, £) > v(¢,9).

Note that
(2.10) (7i(z), Dyw(z,y)) > 6  for all z € 69, i€ I(z)
(2.11) (vi(y), ~Dyw(z,y)) < -6  for all y € 0Q, i€ I(z)

We apply the maximum principle for semi-continuous functions (see [CIL]), to find
matrices X,Y € &" such that

(% &) wsou=st (% 7)erlopmit+) (5 ).

where C is the constant from (2.6) and C; = C V sup,cq || D*¥(z)||, and such that

QZ + F(,5,4,5,X) - F*E §,9,4,—Y) <0,
where X
a=u(t,z), =09),
p = aDw(t, &) +6Dy(E),  §=—aDyuw(i,§)— 6DyY(3).
Using (2.2) and writing w = wg, where R = supy m,a(lul + [v]), we get

€

T

+F*(£,£E,ﬂ,ﬁ,X) - F*(Eigv'&:da '—Y) Z 'T'Q' - W(Tl +7'2 +’I"3),

where
ri=3Calz — §1>(1& — 91 + p* (5, 9)*),
To =Cl(a|:2 - 3714 + 5),
rs=|p— gl + |Z = 9|(|p| v |9 + 1).
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Sending & \ 0 along a sequence, we may assume that { — #, £ — %, § — §, p — P,
g— g,and r; — s; for i = 1,2,3. We then get

€
(2.12) 02 5 —wlsi++s3),
p= aDzw(i'a ?j), = —aDyw(:E, 37),

q
s1 < 3Ca(l+C)|z — g|* < 3C(1 + C)aw(Z, §),
s2 £ Crow(Z, §),

ss<|p—al+|z—g|(p| v ig +1)
<+Colz - §* + |£ - 9|(Ca2 — §* + 1)
<2Caw(z,7) + |Z — 7.

Sending a — oo in (2.12), we get a contradiction, which proves that supjy r)g(2—v) <
0.0

We next show the existence of a viscosity solution of the initial-boundary value problem

(2.13) ug + F(t,z,u, Du, D%) =0 in Q,
(2.14) g—: —0 in S = (0,T) x 69,
(2.15) u(0,z) = g(z) - for z € Q,

where g € C(Q) is a given function.

Theorem 2.6. Assume that (F1)-(F3) and (B1)-(B4) hold. Then for each g € C(Q)
there is a (unique) viscosity solution u € C([0,T') x Q) of (2.13)—(2.14) satisfying (2.15).

Sketch of proof. = We use the Perron method (see [CIL]) to show the existence of a
continuous viscosity solution. If we introduce the new unknown 4(t,z) = e"u(t,z),
where v € R is the constant form (F2), then the problem (2.13)-(2.14) is reduced to the
case when v = 0. Hence, we may assume that v = 0. According to lemma 2.7, there is a
function w € C(Q x 1) having the following properties:

(2.16) |z —y|* <w(z,y) < Clz —y|*,
|Dzw(z, )| V |Dyw(z,y)| < Clz — ),

217 (w(z), D;w(z,y)) <0 forall ze€df, i€ I(z)
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(7i(y), —Dyw(z,y)) 20  forall yed, icl(y)

We can construct sub- and supersolutions of (2.13)-(2.14) satisfying (2.15) similarly
as [Theorem3.1, I-S].

a

Let each ©; be a bounded domain with C3 boundary 82 in R". Then we see there is
a positive contant C; such that

(2.18) (vi(z),z —y) + Cilz —y|* >0 forall z e o, yE Q
(see [I-L]).

Lemma 2.7. Assume that (B1)-(B4) hold. There are a function w € C?(Q x 1) and a
positive constant C such that for all (z,y) € Q x Q,

(219) |z —yl* <w(z,y) < Clz —y|4,
|Dw(z, y)| V | Dyw(z, y)| < Clz — yP,

(2.20) (vi(z),D;w(z,y)) >0 forallz€d, icl(z)
(vi(y), —Dyw(z,y)) <0 for all y € 09, i € I(y)
(2.21)  |D;w(z,y) + Dyw(z,y)| < Clz —y|*,
p*(D,w(:B, y)a -—Dy’LU(I,‘, y)) < CII - y';

and for a. e. (z,9) € QA xQ,

(222) Dw(ey)<C{lo-v( 1 ) +le-ut(y 1

Sketch of proof. We can construct the function ¢ € C?(Q0) such that
>0 on Q and (Dy(z),v(z)) > max(1l,2C;mingp) for z€dN and i€ I(z)

(see [D-S]). We set w(z,y) = |z — y|*(¢(z) + ¢(y)). Then using (2.18) we can check this
function w satisfies (2.19)-(2.22) similarly as [G-S].
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