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THREE SINGULAR VARIATIONAL PROBLEMS

By

LAWRENCE C. EVANS*
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CA 94720

“Some of the means I use are trivial-and some are quadrivial.”

J. Joyce

ABSTRACT. We discuss here a variational viewpoint common to three problems in nonlinear
PDE: the construction of optimal Lipschitz extensions, the Monge-Kantorovich problem, and
weak KAM theory for Hamiltonian dynamics. We establish also some interesting analytic
estimates.

1. Overview.

This expository paper discusses some viewpoints and estimates common to three related
singular variational problems, which turn out in asymptotic limits to have quite different
interpretations. These are: (I) the construction of optimal Lipschitz extensions of given
boundary data, (II) the Monge-Kantorovich optimal mass transfer problem, and (I1I) a
form of weak KAM theory for Hamiltonian dynamics.

The above quotation from Joyce (cited in the book [J]) depends upon the Latin deriva-
tion of the word “trivial”, from “tri” (= three) and “via” (= road or way). It is interesting
that there is a “trivial” (three—way) variational principle behind these apparently rather
different problems. Perhaps a fourth application remains to be found, so that our method
would then be “quadrivial”.

I would like to reemphasize here that this is an expository paper. I have not yet written
up fully detailed proofs of some of the assertions in §1.3, which should therefore be regarded
as an informal research announcement.

I presented some of these results at an meeting at RIMS in Kyoto, during September,
2003. I thank the organizers, and especially Professor Hitoshi Ishii, for their hospitality.

* Supported in part by NSF Grant DMS-0070480 and by the Miller Institute for Basic Research in
Science, UC Berkeley



1.1 Three variational problems.

First of all, fix a parameter £ > 1, which we will later send to infinity.

Problem I: Optimal Lipschitz Extensions. Assume for our first problem that
we are given a bounded, smooth domain U C R”™ and a Lipschitz continuous function
g : R® — R. Then define

(1.1) I [w] :=/65'D“’lz dz
U

for functions w in the admissible class
(1.2) Ay :={w:U — R | w is Lipschitz continuous, w = g on 6U}.

We minimize I;[-] over A;.

Problem II: Optimal Mass Transfer. Let U = B(0, R) denote the ball in R™ with
center 0 and (large) radius R.

Assume f : R™ — R is summable and has compact support, lying within B(0, R). We
write f = f* — f~ and suppose the mass balance condition that

/C-Jf+dz=/Uf'dy=1.

Then define

(1.3) I[w] :=/ 5D -1) _ 4 g
U

for w belonging to
(1.4) Az :={w:U — R | w is Lipschitz continuous,w = 0 on 9U}.

We minimize I3[-] over Aa.

Problem II1: Weak KAM Theory. For our last example, let T™ denote the flat unit
torus in R™, that is, the unit cube with opposite faces identified. Suppose P € R" is fixed
and V : R® — R is a smooth, T"-periodic potential.

Define

o D2
(1.5) Lyfw] = / MRy
on the admissible set

(1.6) As := {w: R" = R | w is Lipschitz continuous and T"-periodic}.

Once again, we minimize I3[-] over Asj.
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1.2 Euler-Lagrange equations.

For Problems I and II, let u; denote a minimizer and for Problem III, write uy :=
P .z + v; where v is a minimizer. The Euler-Lagrange equations then take these forms:

Problem 1I:
(1.7)

where

(1.8)

for
(1.9)

Problem 11:

(1.10)

(1.11)

Problem III:

(1.12)

for

(1.13)

and

(1.14)

—div(oxDug) =0 inU

[Dug|? L}
;=ek(_u2&—__§h)

—div(akDuk) = f inU

oy 1= eF(1Durl?=D)

~div(ogDug) =0 inT"
oy = eF( 2LV -B(PY)

L
Hy(P) := -Ilelog/ FZHEEV) g

n

Remark. We call (1.7),(1.10), (1.12) continuity (or transport) equations. Notice that
for Problems I and III we have normalized so that ox > 0 satisfies

(1.15)

/akdm=1, / O'kdﬂ:=1
U ™

respectively, but have not done so for Problem II.

Our goal is to understand for each of our problems what happens in the limit as the

parameter k goes to infinity.

185



1.3 Limits as k— oc.
We describe next the limiting behaviors of ux and oy:

Problem I: Optimal Lipschitz Extensions.

For our first problem, we assert this asymptotic behavior:
(i) As k — o0, ux — u uniformly on U and u is the unique viscosity solution of

1.16
(1.16) u=g in OU.

(ii) Furthermore, Ly — L for

L::—-sup{ﬂ?%{—%l(—yﬂlm,yeaﬁ a:;éy}.

(iii) Also, o — o weakly as measures, where o is a probability measure on U such that
|Du| =L o-a.e inU.
(iv) We have
(1.17) —~div(cDu) =0 inU.
The idea here is to construct an optimal Lipschitz extension into the domain U of the

given boundary values g, following Aronsson’s variational principle that for each subdo-
main V C U we should have

[|Dull oo vy < {|Dv]|pee vy

for each Lipschitz function v satisfying v = v on V. The PDE in (1.16) is in effect the
Euler-Lagrange equation for this sup—norm minimization problem. We sometimes write

Uz Ug; Uziz; = Axu,

the so—called “infinity Laplacian”. See for instance Aronsson [A], Barron [B], Barron-
Jensen—-Wang [B-J-W] for more detailed explanations.

Problem II: Optimal Mass Transfer.

We examine next Problem II as k — oc:

(i) As k — oo, ur — u locally uniformly on U, where

(1.18) |Du|l £1 a.e.
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(i) Furthermore o — o weakly as measures and
(1.19) ~div(cDu)=f inU.

(ii) o(U) 1is the Monge-Kantorovich cost of optimally rearranging the probability mea-
sure dut = ftdz to du~ = fdy. '
(iv) We also have
—Ug, Uz, Ugsz; = 0 in U —spt(f).

The basic Monge—Kantorovich problem asks us to find a mapping s to minimize the
cost functional

Cfr] := /R o~ (@) du* ()

among one-to-one mappings r : R® — R™ that push forward p* into p~. As explained
in Ambrosio [Am], Caffarelli-Feldman-McCann [C-F-M], [E1], [E-G1], etc., the potential
function u can be employed to design an optimal mass allocation plan s. The measure o is
called the transport measure (or the transport density, when it has a density with respect
to Lebesgue measure).

Problem III: Weak KAM Theory.

Finally, we address the asymptotic limit of Problem III:
(i) As k — 00, ux — u uniformly on T™ and u is a viscosity solution of

(i) Furthermore Hy(P) — H(P), where H is the effective Hamiltonian in the sense of
Lions-Papanicolaou—Varadhan [L-P-V].
(iil) We have ox — o weakly as measures and

(1.21) —div(cDu)=0 in T™
(iv) In addition,

2
(1.22) l—lz,;—‘l— +V =H(P) o-ae.

A full proof can be found in [E2]. As explained in Evans-Gomes [E-G2|, we can regard
(1.22) as the generalized eikonal equation and (1.21) as the continuity equation correspond-
ing to the dynamics

i(t) = =DV (x(t)).

The support of the measure o is the projection of the Mather set onto T". See also Fathi
[F], Mather [Mt], Mather—Forni [M-F] for other viewpoints.
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2. L2 and LP bounds.

An advantage of the common viewpoint set forth above is that we can at least hope to
find analytic methods applicable to several of the problems at once.

In this and the next two sections we illustrate some common PDE methods, which apply
variously to Problems I-III, for deriving useful estimates.

2.1 An L2-estimate (Problem III).

Consider from Problem III the Euler-Lagrange equation

(2.1) —div(ogDug) =0 inT"

for

(2.2) ok = N A

and ux = P - x + vg, vi periodic. Write

(2.3) hi = L’%E +V-H.

Lemma 2.1. We have the identity

(2.4) /T " |D?ux|? + k|Dhy|*doy, = — a AV doy,
and consegquently

(2.5) /T ) | D?ug|? + k| Dhy|?*doy, < C,

for a constant C independent of k.
Here we write “doy” for “oidx”.
Proof. To simplify notation, we henceforth drop the subscript k. Owing to (2.1) we have

0= (0Uz, )z, Uz;z; dT = /
Tn T

(OUz, )z, Uz, z; dT
n
= / OUsgiz;Uzz; + O Uz, Ugz ;AT
n
Now 04, = k(ug,Uzz; + Vz,;)0 = khg;0. Therefore

0= | o|D%u|?+koDh - (Dh— DV)dz;
T'n
and this gives

/ |D?u|? + k|Dh|%do = / Do.-DVdz=- | AVdo.
T T ™



2.2 An LP estimate for the transport density (Problem II).

We turn now to Problem II, for which

(2.6) —div(ogDug)=f inU
and ,
(2.7) o), = ef (1Durl*~1)

We assume that ux has compact support, and |ux| < M for some constant M. The
following estimate is from the forthcoming paper [D-E-P).

Lemma 2.2. For each 2 < p < oo, there ezists a constant C, depending on p but not k,
such that

(2.8) /Uazdx < C(/ \fP dz +1).
U

Proof. 1. We again omit the subscripts k. Let ¢ = p — 1 > 1. Multiply (2.6) by o9 to
discover

/auwi(oqu)m, dm=/ foludz.
U U

Hence
/aq+1]Du|2+qquu-Daudx=/ foludz.
U U

Since |Du|? > 1 if o > 1, owing to (2.7), we can deduce that

(2.9) f oTHldg < C / \f|+dz + C / 49| Dy - Do| dz + C.
U U U

2. We must control the second term on the right-hand side of (2.9). To do so, we next
multiply our PDE (2.6) by —div(c?Du) and integrate by parts:

(2.10) ./U(Uumi)zj (0%, )z, dT = —Lf(aquxj)zj dz.

(We are ignoring here a boundary term, which turns out to have a good sign: see [D-E-P]
for details.) The term on the left equals

/U(ouzl.xj + 0, Uz, ) (O MUg,a; + Q097 O Uz, d
(2.11) = /Ua‘”'1|D2u|2 + qo?" Y Dy - Do|? + (g + 1)0%0z,Ug; Uz, dT
= / 097 D?u|? + qo97!|Du - Do|? + (il—_——llaq_lwalz dz,
since (2.7) implies Zz,. = KUg;o,Uz;0. The term on the right-hand side of (2.10) is
= [ £(0%ye, b0 )
(2.12) < % '/Ua"’LllDzul2 + gqo?7}|Du - Do|? dz + C’/;f 20t dz.

We combine (2.10)—(2.12) and perform elementary estimates to arrive at (2.8). a
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3. Bounds and formulas involving Du.

3.1 Detailed mass balance (Problem II).

Interesting identities sometime result if we multiply the various transport equations by
®(Du), where

®:R" >R
is an arbitary smooth function. For example, turn again to Problem II:
(3.1) —div(ogDug) = f inU,
where
(3.2) o = e3(Dukl*~1)
Lemma 3.1. We have the identity
(3.3) —1-/ Doy - D®(Dug) dz —/ ak%@(Duk)d -l / f®(Duy) dz.
kJy ou  Ov U

Proof. We calculate
/ oug, ®(Du)y, dx — / U@Q(Du) dH" ! = / f®(Du)dz,
U su Ov U
and the first term on the left is

/n oug, Bp, (Du)ug,s, dx = /Rn %ij (Du) dz.

Remark. This formula suggests that in the limit £ — oo, we should have

f S(Dw)f dz =0,

R"

if o goes to zero on 8U. Consequently,

(3.4) / O(Du)frde = [ ©(Du)f-dy
R™

R»

for all smooth @ : R® — R.

This is a form of detailed mass balance for the Monge—Kantorovich problem: see [E-G1].
The basic insight is that the mass of the measure du* = f¥dz is optimally rearranged
into du~ = f~dy by “moving each mass point in the direction —Du”. If we formally take
® = x,, where B is some set of directions in the unit sphere, the identity (3.4) reads

fA frde = /A fdy

for A := {z € R™ | Du(x) € B}, and this is consistent with the foregoing interpretation.
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3.2 Gradient bounds (Problem III).

For Problem III we can as in [E2] bound the term in the exponential:
Lemma 3.2. We have the estimate

IDuklz

- Clogk
(3.5) — +V < Hi(P) + o8

P

Proof. Somewhat as in our proof of Lemma 2.2, we mulﬁiply the PDE by div(¢?Du) and
integrate by parts:

/lr (0Uz,)z; (0%Ug, e, dx = 0.

As before the term on the left is

/ o9 D?uf? + g0 Du - Do| + (g + 1)0%04, Uz, Uz,s, dz.

1puj? V-H
Now o = e*(=7+*V=H) and so 03, = k(ug,Ua,z, + Vi, )o. Hence

%/ oq_1|Da|2dz§/ 01|Do - DV|dz
n Tﬂ

and therefore

(3.6) / 07| Do|?dz < CK? / oitdz.
n T

Using Sobolev’s inequality, we deduce

2
( / @0 4gyth < ¢ | Do |+ 07 dz < C(g+ 1) / o7*dg.
Tn

'n

T

A standard Moser iteration implies that

llollze < Ck*
for some power a > 0. But then
2
k(l—q;—l— +V—-—H)=logo < C+alogk
and estimate (3.5) follows. O

This estimate, combined with a minimax formula explained in [E2], implies

_ _ _ Clogk
Hy(P) < H(P) < Bu(P) + —22=.

Therefore the normalization factor (1.14) provides an approximation to the effective Hamil-




4. Monotonicity formulas.

4.1 Monotonicity (Problem I).

We write Problem I in the form

(4.1) —div(ogDug) =0 in U,
for
(4.2) o = e3!Dukl’,

Lemma 4.1. For each ball B(y,r) C U we have the identity
(4.3) / (|Dugl? = 2)ok dz = r/ ((-8—1-1—'“-)2 - —1—)01c dH™ L.
B(y.7) k oBwm Ok
Proof. The Euler-Lagrange equation (1.7) says _(e%IDuI’uzi)x‘ =0, and therefore
(4.4) (3124 (815 — kg, Uz, ))a, =0

for j = 1,...,n. Assume y = 0 and the ball B(0,r) lies within U. Multiply (4.4) by
z;¢(|z|) where ¢ =1 on [0,7r — €], ¢ =0 on [r,00) and ¢ is linear on [r — ¢,7]. We find

0= / 51D (5,1 — Ktig, g, ) (610 + 22 ¢ da.
B(0,r) ||
Hence
1 L pl2
(4.5) / o(n — k| Dul?)¢ dz = / o(lz] - K22y
B(0,r) € JB(0,r)\B(0,r—¢) ||
Let € — 0 to derive (4.3). a

We can formally interpret this by first renormalizing so that ox(B(y,r)) = 1 and letting
ox — 0. Then (4.3) should imply

/ |Du)? do = r/ (%)2 dr,
B(y.r) 8B(yr) OV

where 7 denotes the restriction of o to the sphere 8B(y, ). If for instance o(B°(y,r)) = 0,

then our passing to limits in (4.3) as k — o0, before sending ¢ — 0, allows us to guess that

% = 0 almost everywhere on 8B(y,r) with respect to the measure 7.
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4.2 Monotonicity (Problem II).

The Euler-Lagrange PDE for Problem II reads

(4.6) —div(oxDug) = f inU,
for
4.7 ok = 5 (IDuk*~1)

Lemma 4.2. For each ball B(y,r) C U,

0 1
(4.8) / (|Duk|2—9)akdx=r/ ((—“-’P-)z-—)akdﬁn-l+/ f z- Duy, dz.
B(y.r) k oByr) OV kK B(zr)
Proof. We have —(ef(Pu*~1qy, ), = f and so
(eF0P* =1 (8,5 — kug ug,))a; = kfus,
for j =1,...,n. Again suppose y = 0 and take ¢ as above. Then
2
k fz-Dugdz = / o(leulz—n)d)dm-l-l/ a(lcl—M—|m|)dz.
B(0,r) B(0,r) € JB(0,r)-B(0,r—¢) ||
Let € — 0 and divide by k. O

At least formally, this identity in the limit £ — co provides some analytic control over
the transport density, although we do not here attempt to provide any details.



[Am]

[A]
(B]

[B-J-W]
[C-F-M]

[D-E-P]
[E1]

(E2]
(E-G1)

[E-G2]
[F]

(]
[L-P-V]

[Mt]
(M-F]

REFERENCES

L. Ambrosio, Lecture notes on optimal transport problems, Preprint: Scuola Normale Superiore
(2000).

G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561.
E. N. Barron, Viscosity solutions and analysis in L, in Nonlinear Analysis, Differential Equa-
tions and Control (1999), Dordrecht, 1-60. :

E. N. Barron, R. Jensen and C. Y. Wang, The Fuler equation and absolute minimizers of L*°
functionals, Arch. Ration. Mech. Analysis 1567 (2001), 255-283.

L. Caffarelli, M. Feldman and R. McCann, Constructing optimal maps for Monge’s transport
problem as a limit of strictly convex costs, to appear.

L. De Pascale, L. C. Evans and A. Pratelli, PDFE estimates for transport densities, forthcoming..
L. C. Evans, Partial differential equations and Monge-Kantorovich mass transfer (survey paper),
available at the website of LCE, at math.berkeley.edu.

L. C. Evans, Some new PDE methods for weak KAM theory, to appear in Calculus of Variations.
L. C. Evans and W. Gangbo, Differential equations methods in the Monge-Kantorovich mass
transfer problem, Memoirs American Math. Society #654 137 (1999).

L. C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics I,
Archive Rational Mech and Analysis 157 (2001), 1-33.

A. Fathi, Théoréme KAM faible et théorie de Mather sur les systémes lagrangiens, C. R. Acad.
Sci. Paris Sr. I Math. 324 (1997), 1043-1046.

K. Jackson, Invisible Forms, Picador, 1999.

P.-L. Lions, G. Papanicolaou, and S. R. S. Varadhan, Homogenization of Hamilton—Jacobi equa-
tions, unpublished, circa 1988.

J. Mather, Minimal measures, Comment. Math Helvetici 64 (1989), 375-394.

J. Mather and G. Forni, Action minimizing orbits in Hamiltonian systems, Transition to Chaos
in Classical and Quantum Mechanics, Lecture Notes in Math 1589 (S. Graffi, ed.), Sringer, 1994.

194



