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Uniqueness and error bounds for eikonal equations with
discontinuities

Klaus Deckelnick & Charles M. Elliott

1 Introduction

Let  C R™ be a bounded domain with a Lipschitz boundary 9§2. We consider the eikonal
equation

Vu(z)] = f(z) z€Q (1.1)
u(z) = ¢(z) z e, (1.2)

where f and ¢ are given functions. The equation arises for example in geometric optics,
computer vision or robotic navigation. In certain situations it is desirable to allow f to be
discontinuous, e.g. in geometric optics, when light propagates through a layered medium. The
aim of this paper is to study the well-posedness of (1.1), (1.2) for right hand sides f satisfying
a one-sided continuity condition (see (2.2) below), that allows certain types of discontinuities.
Furthermore, we shall be concerned with an error analysis for a finite difference scheme to
approximate the solution of (1.1), (1.2).

The well-posedness of (1.1), (1.2) in the case of continuous f follows from the theory of
viscosity solutions for Hamilton-Jacobi equations H(z,u,Vu) = 0 developed in [4]. The
notion of viscosity solution was generalised by Ishii [5] to allow for discontinuous Hamiltonians
H. In [11], Tourin proves a comparison result for Hamiltonians, which are allowed to be
discontinuous along a smooth surface. Soravia [10] obtains necessary and sufficient conditions
for uniqueness of the solution to the boundary value problem. While the work in [11] and
[10] is based on Ishii’s notion of solution, several other approaches have been suggested: in
[7], Newcomb & Su consider the Dirichlet problem for H(Vu) = f and introduce a notion of
solution which they call Monge solution. They obtain a comparison result as well as uniqueness
for the Dirichlet problem provided that f is lower semicontinuous. Ostrov [8] studies an
evolutionary Hamilton-Jacobi equation which occurs in the context of radar satellite tracking
and obtains a unique solution as the limit of suitable upper and lower solutions. Recently,
Camilli & Siconolfi [3] introduced a new notion of solution for Hamilton-Jacobi equations of
the form H(z, Vu) = 0, which allows measurable dependence of H on z and involves measure-
theoretic limits. They prove representation formulae, comparison principles and uniquness
results.

Our work uses Ishii’s definition of solution which we shall recall in §2. For a class of right hand
sides f, which satisfy a suitable one-sided continuity condition we obtain well-posedness of
the problem (1.1), (1.2). In §3 we discretize the problem with the help of a finite difference
scheme on a regular grid. Under a slightly more restrictive condition on f we prove that
the error between viscosity solution and discrete approximation is of order O (Vh). We have
not included all the details of the proofs of existence and of the error analysis. However, a
forthcoming paper, which generalises our approach to Hamilton-Jacobi equations of the form
H(Vu) = f, will provide a detailed convergence analysis for a wide class of finite difference
schemes as well as numerical tests.
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2 Existence and Uniqueness

In order to allow for discontinuous functions f in (1.1) we shall use the following generalisation
of the concept of viscosity solution, which was introduced by Ishii in [5].

Definition 2.1. A function u € C°(Q) is called a viscosity subsolution (supersolution) of
(1.1) if for each ¢ € C(Q): if u— ¢ has a local maximum (minimum) at a point zp € 2, then

[V¢(zo)l < fr(mo) (= fel(zo))-
Here,

1@ = limsup(f(w) ly € Br(@) N}, fula) = liminf{f(4) |y € Bi(2) N0}

A viscosity solution of (1.1), (1.2) then is a function u € C%(Q) which is both a viscosity sub—
and supersolution and which satisfies u(z) = ¢(z) for all z € 6.

Let us next formulate our assumptions on the data of the problem. We suppose that f : & — R
is Borel measurable and that there exist 0 < m < M < oo such that

m<fz) <M Vel (2.1)

Furthermore, we assume that for every z € § there exist ¢, > 0 and n; € S™~1 s0 that for
allyeQ,r>0andalld € S"~! with |d — nz| < €; we have

fly+rd) - f(y) <w(y—z|+7), (2.2)

where w : [0,00) — [0,00) is continuous, nondecreasing and satisfies w(0) = 0. A similar
type of condition was used in [11]; however, in (2.2) it is sufficient to estimate values of f for
vectors whose difference is close to a given direction.

Exa_mple: Suppose that a surface T' splits Q into two subdomains Q; and Q», that fio, €
C°(), fin, € C°%(€;) and that

y—+l:z:1,ynl€ o fly) < y_)lzl’yme 0 fly) forallz €T.

In addition, assume that the following uniform cone property holds: for every z € T' there
exists a neighborhood U and a cone C; (which is congruent to a fixed given cone Cp) such
that y € Uy N Q; implies that y + C; C ;. Then (2.2) holds with n = ng given by the
direction of the cone Cj.

To see this, observe that the cone condition prevents a situation where y € Qy,y +rd € Q,
which would lead to a violation of (2.2) (cf. [11], where T is assumed to be smooth).

One can also consider e.g. a two-dimensional domain 2, where three curves of discontinuity
meet at a triple junction.

It is not difficult to verify that (2.2) implies

f*ly+rd) = fuly) Sw(ly -2l +7) | (23)

forallye Q,r >0and d € S}, |d — ny| < €.
Finally, we suppose for simplicity that ¢ = 0.

Lemma 2.2. There ezists a viscosity solution u € C%(Q) of (1.1), (1.2).

38



Proof. We only sketch the main ideas. Consider the sup-convolution of f, i.e.
1
fe(@) =sup{f(y) - =lz —9l?}, zEQe>0
yen €
Clearly, f. is continuous and f*(z) < fe(z) for all z € Q. Let

1
Le(z,y) = inf{/o fe(y@®), I (D) dt | v € WH((0,1); Q) with 4(0) =z, ¥(1) = y}.
It is well-known that uc(z) := infycpn Le(z,y) is a solution of

|Vuf| = f(z) z€Q
u(z) = 0 z€

in the viscosity sense. Furthermore, it can be shown that
lullgorqy < C(M,$2)  uniformly in € > 0.

Thus, there exists a sequence (ex)ken With €5 N, 0,k — oo and ue C%(Q) such that u* — u
uniformly in Q as k — oo. Using well-known arguments from the theory of viscosity solutions
one verifies that u is a solution of (1.1), (1.2). i

Uniqueness of the viscosity solution follows from

Theorem 2.3. Suppose that u € C°(Q) is a subsolution of (1.1), v € C%(R) is a supersolution
of (1.1) and that at least one of the functions belongs to C%(Q). If u < v on 8Q then u < v
in Q.

Proof. Let us assume that v € C%1(Q). We shall use the approach presented in [6] (see also
[11]). Fix 6 € (0,1) and define uy(z) := Bu(z). Next, choose zp € 2 such that

ug(zo) — v(zo) = r;lgs%c(ua(w) —v(z)) = p, (2.4)

and suppose that 4 > 0. Upon replacing u,v by u+k,v + k, we may assume that 4 > 0 in Q,
so that ug < u in Q. In particular, ug < v on 9%, which implies that zo € Q. Choose € = €z,
and n = ng, € S*! according to (2.2) and define for A > 0,L > 1

1 .
®(z,y) = ug() —v(y) ~ LAz —y— ynl’ ~lg—xl’,  (z,9) €Qx Q.
Choose (zx,y») € Q x Q such that

o = &(z,y).
(T2, 92) (:c,;x)lggxﬁ (z,v)

Since zy € 2 we also have zy— %n € Q for large \; using the relation ®(z,y») > ®(zo, z‘o-%")
together with (2.4) we infer

LA|zx —yr — §n|2 + |za — zo|? < ug(zn) — v(y») — ug(zo) + v(zo — —1/\—'n.)
= (ug(2x) = v(z2)) — (up(z0) — v(z0)) + v(z2) — v(y») — v(zo) + v(zo — %n)

lip(v) (o2 — 3] + ) (2.5)

IA
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This implies . c
LAzy —yx — :\'nl2 +|zx — zo|® < 3
where C depends on lip(v) and as a consequence,

Zx, Yx — To, as X — 00 (2.6)
Alza — o< C o ¢ (2.7)
AT = VL 2+e€ ‘

provided that L is large enough. Since u is a subsolution, we may deduce from the relation
®(zx, yr) = @(z,y») for z € Q that

[2LA (2 — 43— 37) + 2(x — 30)| < 657(@2)

for large A and similarly, .
2LA(@x —yx = 1)l 2 fuln)-
Combining the above inequalities, we infer

(1—0)f*(yr) < 2lzx — zol +0(F*(22) — Fulwn))- (2.8)

In order to apply (2.2) we write z)x = yx + ady, where

_ n+wy _ _1_ _ 1
d) = T wn’ ™= 3 n+wy|, wx=2A (:1»‘ U ,\n). (2.9)
Recalling (2.7) we deduce
26
|dA _nl < 2|'LU,\| 24e  _ ¢

1—|wy —1- 2_5—_5
and (2.3) therefore yields

FH(@) — folyn) = F*yn + rada) — fulwn) < w(lya — zo| + 7). (2.10)

If we send A — oo in (2.8) we finally obtain from (2.1), (2.10) and (2.6) that (1-0)m <0, a
contradiction. Thus, ug < v in  and sending 6 ,* 1 gives the desired result. |

3 Numerical scheme and error analysis

Let us assume that Q = IT*_, (0,5;) and that the grid size h > 0 is chosen in such a way that
b; = Njh for some N; € N, i = 1,...,n. We then define

Qu:=20NQN, Q=27 N3N, Q=0 U,

where Z} = {zo = (hay,....hom)| o € Z,i = 1,..,n}. Our aim is to approximate the
viscosity solution u of (1.1), (1.2) by a grid function U : Q; — R and to prove an estimate
for max,,_cq, [u(za) — U(z,)|. Let us abbreviate U, = U(za) and recall the usual backward
and forward difference quotients,
Ua - Ua—ek

D U, = — D,":'Ua =

ch-i—e;, - U, o

h ) ma E Qh, k = 1, ...,n-
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In order to define the numerical method we introduce the function G : R?* — R as

n 1
G(Pla q1, -*-:Pm‘In) = (Z ma,x(pg', _q]:)z) 2:

k=1
where z+ = max(z,0),z~ = min(z,0). The discrete problem now reads: find U : Q5 — R
such that
N G(DI_UQ, Df-Ua, sary D;Ua, D;—Ua) = f(za) To € Qh (3-1)
Ua = 0 xa E th. (3.2)

The above scheme was examined for continuous f in [9] in the context of shape-from-shading
and convergence to the viscosity solution was obtained as a consequence of a result of Barles
and Souganidis [2]. In the case of a constant right hand side f = 1, Zhao {12] recently obtained
an O(h) error bound. The scheme can be derived by interpreting the viscosity solution u as
the value function of an optimal control problem. For further information and a corresponding
list of references we refer to Appendix A (written by M. Falcone) in [1].

The function G has the following crucial properties:

a) Consistency:

G(p1,P1, -, Pn,Pn) = || for all p = (p1,...,Pn) € R™. (3.3)

b) Monotonicity:
let @ = (a1,82, ..., 82n—1,820),b = (b1,b2, ..., bon—1, bon) € R?® with ax > by for k = 1,...,2n.
Then

G(t—a1,a2 —t,....,t —@2n-1,820 —t) < G(t —b1,bp —t,...,t —bon—1,b2n —t) VEER. (3.4)

Note that the above properties imply in particular that the solution of (3.1), (3.2) cannot
have a local minimum in €, and therefore U, > 0 in Q. In order to carry out our error

analysis we need to strengthen (2.2) in that we assume that there exist ¢ > 0, K > 0 such

that for all z €  there is a direction n = n, € S*~! with
fly+rd) - f(y) < Kr VWwe ly-z/<e VdeS™ L, |d—n|<e Vr>0. (3.5)

Theorem 3.1. Let u be the viscosity solution of (1.1), (1.2) and U a solution of (3.1), (3.2).
Then there ezists a constant C, which is independent of h such that

max |u(za) — U(za)| < Cvh.
T €52,

Proof. We again only sketch the main ideas. As it seems difficult to use the argument from the
uniqueness proof in order to control the maximum of u — U, we shall resort to the KruZkov
transform. Thus, let i : Q = R, U : Q; — R be defined by

i(z) := —e %) zeQ, Uy:=—eY, g, €.
One verifies (cf. [4]) that @ is a viscosity solution of

fleYa+|Val = 0 zeQ (3.6)
ir) = -1 ze€dq, (3.7)
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and that U satisfies

f(@a)Ua + G(D;Ua, D Usy ..., Dy Ua, D UL) = Fi 30 €y (3.8)
Ue = =1 &q€ 0, (3.9)
where
max |Fy| < Ch. (3.10)
Za €N
Next, choose z5 € 2}, such that
li(zp) — Ugl = lU(wa) ~Ua|
aEQ
and assume that %(zg) > Up. The opposite case can be treated similarly. If dist(zg, Q) < VA,

it follows from (3.7), (3. 9) and the Lipschitz continuity of @ that

max i(za) - Ual = i(z5) - Up < OV,

Ta €y

Now suppose that dist(zg, Q) > vh and define

®(z, za) := (z) — Uy — T |z — 24 — Vhn|? - Lovh|zg — :Eg' , (2,25) € Q x Q.

Here, n = ng, and Li,Ly > 0 are constants that do not depend on h and which will be
chosen later. There exists (Zn,Ta,) € Q x Q) such that

®(zp, = ®(z,zq).
(onoa) =, 2o, o, 05172

Since dist(zg, 3Q) > v, we have zg + vhn € Q and therefore
Q(whaa:(!h) > @(.’L‘ﬂ + \/E'n” SL‘ﬂ)
From this we infer in a similar way as in (2.5) that

|Za, —zgl < € . (3.11)

Tay — Vhn| < 2; (3.12)

1
“ﬁlmh -
provided that L; = L;(lip(i),€),t = 1,2 are sufficiently large (e from (3.5)).
Suppose first that (zh,Zq,) € 2 X Q. Since 4 is a subsolution of (3.6) we infer
* ~ 2Ll \/“
£ (@n)ilan) + |7 (on ~ ey, = Vn)| <O (3.13)

Keeping the first component of ® fixed we obtain on the other hand for all z, € Qp

- Ly
U, > Ua,, + — Tr ([a:h —Vhn|? —|zp — 2o - \/i_mlz)
+L2\/E(|:vah - z;;lz — T — w3[2)

= Vo
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Since Uy, = Va,, (3.4) and (3.3) imply
G(D7Usyy Dy Uayy ooy Dy Unyy, DU, ) < G(Dy Ve, D Vg s ooy Dy Vs D Vi, )
2L,

< [7_1—1-(1:;1 - Za, — \/’I{n) - 2L2\/i—z(zah —-zg)| + CcVh.

Combining this inequality with (3.8) and (3.10) then yields

f(Za,)Usy, + |%($h — zo, — Vhn)| > ~|FE |- cvh > —Cvh. (3.14)

As a result of (3.13), (3.14)

f(@a)izh) = Uy) < COVR+e @) (f*(z3) — f(Tay))
= CVh+e " @)(f*(zq, +rndn) — f(Zay)) (3.15)

where similar to (2.9), dj, = ;%wu:—], rn = Vh|n+ wy|, wy = —}-,;(a:h — %4, — Vhn). Since
. ~ L
(zp) — U, = ®(2h,20,)+ 7—%]:1:,, — Zq, — vhn|? + sz/f_zla:ah — zg|?

> ®(zp,zp) = ﬁg —i(zg) — L1Vh,
we finally deduce from (2.1), (3.15) and (3.5) that
m(i(zg) — Up) < CVh+ Kry < CVh.

The cases zp, € 0Q or z,, € Q) can be examined with the help of the boundary conditions
(3.7), (3.9). Transforming back to u and U implies the desired error bound. |
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