Uniqueness and error bounds for eikonal equations with discontinuities

Klaus Deckelnick & Charles M. Elliott

1 Introduction

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with a Lipschitz boundary $\partial \Omega$. We consider the eikonal equation

$$|\nabla u(x)| = f(x) \quad x \in \Omega \tag{1.1}$$

$$u(x) = \phi(x) \quad x \in \partial\Omega, \tag{1.2}$$

where f and ϕ are given functions. The equation arises for example in geometric optics, computer vision or robotic navigation. In certain situations it is desirable to allow f to be discontinuous, e.g. in geometric optics, when light propagates through a layered medium. The aim of this paper is to study the well-posedness of (1.1), (1.2) for right hand sides f satisfying a one-sided continuity condition (see (2.2) below), that allows certain types of discontinuities. Furthermore, we shall be concerned with an error analysis for a finite difference scheme to approximate the solution of (1.1), (1.2).

The well-posedness of (1.1), (1.2) in the case of continuous f follows from the theory of viscosity solutions for Hamilton-Jacobi equations $H(x, u, \nabla u) = 0$ developed in [4]. The notion of viscosity solution was generalised by Ishii [5] to allow for discontinuous Hamiltonians H. In [11], Tourin proves a comparison result for Hamiltonians, which are allowed to be discontinuous along a smooth surface. Soravia [10] obtains necessary and sufficient conditions for uniqueness of the solution to the boundary value problem. While the work in [11] and [10] is based on Ishii's notion of solution, several other approaches have been suggested: in [7], Newcomb & Su consider the Dirichlet problem for $H(\nabla u) = f$ and introduce a notion of solution which they call Monge solution. They obtain a comparison result as well as uniqueness for the Dirichlet problem provided that f is lower semicontinuous. Ostrov [8] studies an evolutionary Hamilton-Jacobi equation which occurs in the context of radar satellite tracking and obtains a unique solution as the limit of suitable upper and lower solutions. Recently, Camilli & Siconolfi [3] introduced a new notion of solution for Hamilton-Jacobi equations of the form $H(x, \nabla u) = 0$, which allows measurable dependence of H on x and involves measuretheoretic limits. They prove representation formulae, comparison principles and uniquness results.

Our work uses Ishii's definition of solution which we shall recall in §2. For a class of right hand sides f, which satisfy a suitable one-sided continuity condition we obtain well-posedness of the problem (1.1), (1.2). In §3 we discretize the problem with the help of a finite difference scheme on a regular grid. Under a slightly more restrictive condition on f we prove that the error between viscosity solution and discrete approximation is of order $\mathcal{O}(\sqrt{h})$. We have not included all the details of the proofs of existence and of the error analysis. However, a forthcoming paper, which generalises our approach to Hamilton-Jacobi equations of the form $H(\nabla u) = f$, will provide a detailed convergence analysis for a wide class of finite difference schemes as well as numerical tests.

2 Existence and Uniqueness

In order to allow for discontinuous functions f in (1.1) we shall use the following generalisation of the concept of viscosity solution, which was introduced by Ishii in [5].

Definition 2.1. A function $u \in C^0(\bar{\Omega})$ is called a viscosity subsolution (supersolution) of (1.1) if for each $\zeta \in C^{\infty}(\Omega)$: if $u - \zeta$ has a local maximum (minimum) at a point $x_0 \in \Omega$, then

$$|\nabla \zeta(x_0)| \leq f^*(x_0) \quad (\geq f_*(x_0)).$$

Here,

$$f^*(x) := \lim_{r \to 0} \sup\{f(y) \, | \, y \in B_r(x) \cap \Omega\}, \qquad f_*(x) := \lim_{r \to 0} \inf\{f(y) \, | \, y \in B_r(x) \cap \Omega\}.$$

A viscosity solution of (1.1), (1.2) then is a function $u \in C^0(\bar{\Omega})$ which is both a viscosity suband supersolution and which satisfies $u(x) = \phi(x)$ for all $x \in \partial \Omega$.

Let us next formulate our assumptions on the data of the problem. We suppose that $f: \Omega \to \mathbb{R}$ is Borel measurable and that there exist $0 < m \le M < \infty$ such that

$$m \le f(x) \le M \qquad \forall x \in \Omega.$$
 (2.1)

Furthermore, we assume that for every $x \in \Omega$ there exist $\epsilon_x > 0$ and $n_x \in S^{n-1}$ so that for all $y \in \Omega, r > 0$ and all $d \in S^{n-1}$ with $|d - n_x| < \epsilon_x$ we have

$$f(y+rd)-f(y)\leq\omega(|y-x|+r), \tag{2.2}$$

where $\omega:[0,\infty)\to[0,\infty)$ is continuous, nondecreasing and satisfies $\omega(0)=0$. A similar type of condition was used in [11]; however, in (2.2) it is sufficient to estimate values of f for vectors whose difference is close to a given direction.

Example: Suppose that a surface Γ splits Ω into two subdomains Ω_1 and Ω_2 , that $f_{|\Omega_1} \in C^0(\bar{\Omega}_1)$, $f_{|\Omega_2} \in C^0(\bar{\Omega}_2)$ and that

$$\lim_{y\to x,y\in\Omega_1}f(y)<\lim_{y\to x,y\in\Omega_2}f(y)\qquad\text{ for all }x\in\Gamma.$$

In addition, assume that the following uniform cone property holds: for every $x \in \Gamma$ there exists a neighborhood U_x and a cone C_x (which is congruent to a fixed given cone C_0) such that $y \in U_x \cap \bar{\Omega}_1$ implies that $y + C_x \subset \Omega_1$. Then (2.2) holds with $n = n_x$ given by the direction of the cone C_x .

To see this, observe that the cone condition prevents a situation where $y \in \bar{\Omega}_1, y + rd \in \Omega_2$, which would lead to a violation of (2.2) (cf. [11], where Γ is assumed to be smooth).

One can also consider e.g. a two-dimensional domain Ω , where three curves of discontinuity meet at a triple junction.

It is not difficult to verify that (2.2) implies

$$f^*(y+rd) - f_*(y) \le \omega(|y-x|+r)$$
 (2.3)

for all $y \in \Omega$, r > 0 and $d \in S^{n-1}$, $|d - n_x| < \epsilon_x$. Finally, we suppose for simplicity that $\phi \equiv 0$.

Lemma 2.2. There exists a viscosity solution $u \in C^{0,1}(\bar{\Omega})$ of (1.1), (1.2).

Proof. We only sketch the main ideas. Consider the sup-convolution of f, i.e.

$$f_{\epsilon}(x) := \sup_{y \in \Omega} \{f(y) - \frac{1}{\epsilon} |x - y|^2\}, \qquad x \in \Omega, \epsilon > 0.$$

Clearly, f_{ϵ} is continuous and $f^*(x) \leq f_{\epsilon}(x)$ for all $x \in \Omega$. Let

$$L_\epsilon(x,y) := \inf\{\int_0^1 f_\epsilon(\gamma(t)), |\gamma'(t)| \, dt \mid \gamma \in W^{1,\infty}((0,1);ar\Omega) ext{ with } \gamma(0) = x, \, \gamma(1) = y\}.$$

It is well-known that $u_{\epsilon}(x) := \inf_{y \in \partial \Omega} L_{\epsilon}(x, y)$ is a solution of

$$|
abla u^{\epsilon}| = f_{\epsilon}(x) \quad x \in \Omega$$

 $u^{\epsilon}(x) = 0 \quad x \in \partial \Omega$

in the viscosity sense. Furthermore, it can be shown that

$$\|u^{\epsilon}\|_{C^{0,1}(\bar{\Omega})} \leq C(M,\Omega)$$
 uniformly in $\epsilon > 0$.

Thus, there exists a sequence $(\epsilon_k)_{k\in\mathbb{N}}$ with $\epsilon_k \searrow 0, k \to \infty$ and $u \in C^{0,1}(\bar{\Omega})$ such that $u^{\epsilon_k} \to u$ uniformly in $\bar{\Omega}$ as $k \to \infty$. Using well-known arguments from the theory of viscosity solutions one verifies that u is a solution of (1.1), (1.2).

Uniqueness of the viscosity solution follows from

Theorem 2.3. Suppose that $u \in C^0(\bar{\Omega})$ is a subsolution of (1.1), $v \in C^0(\bar{\Omega})$ is a supersolution of (1.1) and that at least one of the functions belongs to $C^{0,1}(\bar{\Omega})$. If $u \leq v$ on $\partial \Omega$ then $u \leq v$ in $\bar{\Omega}$.

Proof. Let us assume that $v \in C^{0,1}(\bar{\Omega})$. We shall use the approach presented in [6] (see also [11]). Fix $\theta \in (0,1)$ and define $u_{\theta}(x) := \theta u(x)$. Next, choose $x_0 \in \bar{\Omega}$ such that

$$u_{\theta}(x_0) - v(x_0) = \max_{x \in \tilde{\Omega}} (u_{\theta}(x) - v(x)) =: \mu,$$
 (2.4)

and suppose that $\mu > 0$. Upon replacing u, v by u + k, v + k, we may assume that $u \ge 0$ in $\bar{\Omega}$, so that $u_{\theta} \le u$ in $\bar{\Omega}$. In particular, $u_{\theta} \le v$ on $\partial \Omega$, which implies that $x_0 \in \Omega$. Choose $\epsilon = \epsilon_{x_0}$ and $n = n_{x_0} \in S^{n-1}$ according to (2.2) and define for $\lambda > 0, L \ge 1$

$$\Phi(x,y):=u_{ heta}(x)-v(y)-L\lambda\left|x-y-rac{1}{\lambda}\,n\,
ight|^2-\left|x-x_0
ight|^2, \qquad (x,y)\inar\Omega imesar\Omega.$$

Choose $(x_{\lambda}, y_{\lambda}) \in \bar{\Omega} \times \bar{\Omega}$ such that

$$\Phi(x_{\lambda}, y_{\lambda}) = \max_{(x,y) \in \bar{\Omega} \times \bar{\Omega}} \Phi(x,y).$$

Since $x_0 \in \Omega$ we also have $x_0 - \frac{1}{\lambda}n \in \Omega$ for large λ ; using the relation $\Phi(x_\lambda, y_\lambda) \ge \Phi(x_0, x_0 - \frac{1}{\lambda}n)$ together with (2.4) we infer

$$L\lambda|x_{\lambda} - y_{\lambda} - \frac{1}{\lambda}n|^{2} + |x_{\lambda} - x_{0}|^{2} \leq u_{\theta}(x_{\lambda}) - v(y_{\lambda}) - u_{\theta}(x_{0}) + v(x_{0} - \frac{1}{\lambda}n)$$

$$= (u_{\theta}(x_{\lambda}) - v(x_{\lambda})) - (u_{\theta}(x_{0}) - v(x_{0})) + v(x_{\lambda}) - v(y_{\lambda}) - v(x_{0}) + v(x_{0} - \frac{1}{\lambda}n)$$

$$\leq \operatorname{lip}(v)(|x_{\lambda} - y_{\lambda}| + \frac{1}{\lambda})$$

$$\leq \operatorname{lip}(v)(|x_{\lambda} - y_{\lambda}| - \frac{1}{\lambda}n| + \frac{2}{\lambda}).$$

$$(2.5)$$

This implies

$$|L\lambda|x_{\lambda}-y_{\lambda}-rac{1}{\lambda}n|^2+|x_{\lambda}-x_0|^2\leq rac{C}{\lambda},$$

where C depends on lip(v) and as a consequence,

$$x_{\lambda}, y_{\lambda} \to x_0,$$
 as $\lambda \to \infty$ (2.6)

$$\lambda |x_{\lambda} - y_{\lambda} - \frac{1}{\lambda} n| \leq \frac{C}{\sqrt{L}} < \frac{\epsilon}{2 + \epsilon}$$
 (2.7)

provided that L is large enough. Since u is a subsolution, we may deduce from the relation $\Phi(x_{\lambda}, y_{\lambda}) \geq \Phi(x, y_{\lambda})$ for $x \in \bar{\Omega}$ that

$$|2L\lambda(x_{\lambda}-y_{\lambda}-rac{1}{\lambda}n)+2(x_{\lambda}-x_{0})|\leq heta f^{*}(x_{\lambda})$$

for large λ and similarly,

$$|2L\lambda(x_{\lambda}-y_{\lambda}-rac{1}{\lambda}n)|\geq f_{*}(y_{\lambda}).$$

Combining the above inequalities, we infer

$$(1-\theta)f^*(y_\lambda) \le 2|x_\lambda - x_0| + \theta \left(f^*(x_\lambda) - f_*(y_\lambda)\right). \tag{2.8}$$

In order to apply (2.2) we write $x_{\lambda} = y_{\lambda} + r_{\lambda}d_{\lambda}$, where

$$d_{\lambda} = \frac{n + w_{\lambda}}{|n + w_{\lambda}|}, \quad r_{\lambda} = \frac{1}{\lambda} |n + w_{\lambda}|, \quad w_{\lambda} = \lambda \left(x_{\lambda} - y_{\lambda} - \frac{1}{\lambda} n\right). \tag{2.9}$$

Recalling (2.7) we deduce

$$|d_{\lambda} - n| \leq rac{2|w_{\lambda}|}{1 - |w_{\lambda}|} \leq rac{rac{2\epsilon}{2 + \epsilon}}{1 - rac{\epsilon}{2 + \epsilon}} = \epsilon$$

and (2.3) therefore yields

$$f^*(x_{\lambda}) - f_*(y_{\lambda}) = f^*(y_{\lambda} + r_{\lambda}d_{\lambda}) - f_*(y_{\lambda}) \le \omega(|y_{\lambda} - x_0| + r_{\lambda}). \tag{2.10}$$

If we send $\lambda \to \infty$ in (2.8) we finally obtain from (2.1), (2.10) and (2.6) that $(1-\theta)m \le 0$, a contradiction. Thus, $u_{\theta} \le v$ in $\bar{\Omega}$ and sending $\theta \nearrow 1$ gives the desired result.

3 Numerical scheme and error analysis

Let us assume that $\Omega = \prod_{i=1}^{n} (0, b_i)$ and that the grid size h > 0 is chosen in such a way that $b_i = N_i h$ for some $N_i \in \mathbb{N}$, i = 1, ..., n. We then define

$$\Omega_h := \mathbf{Z}_h^n \cap \Omega, \quad \partial \Omega_h := \mathbf{Z}_h^n \cap \partial \Omega, \quad \bar{\Omega}_h := \Omega_h \cup \partial \Omega_h,$$

where $\mathbb{Z}_h^n = \{x_{\alpha} = (h\alpha_1, ..., h\alpha_n) \mid \alpha_i \in \mathbb{Z}, i = 1, ..., n\}$. Our aim is to approximate the viscosity solution u of (1.1), (1.2) by a grid function $U: \bar{\Omega}_h \to \mathbb{R}$ and to prove an estimate for $\max_{x_{\alpha} \in \bar{\Omega}_h} |u(x_{\alpha}) - U(x_{\alpha})|$. Let us abbreviate $U_{\alpha} = U(x_{\alpha})$ and recall the usual backward and forward difference quotients,

$$D_{m{k}}^-U_{m{lpha}}:=rac{U_{m{lpha}}-U_{m{lpha}-e_{m{k}}}}{h},\quad D_{m{k}}^+U_{m{lpha}}:=rac{U_{m{lpha}+e_{m{k}}}-U_{m{lpha}}}{h},\quad x_{m{lpha}}\in\Omega_h,\quad k=1,...,n.$$

In order to define the numerical method we introduce the function $G: \mathbb{R}^{2n} \to \mathbb{R}$ as

$$G(p_1,q_1,...,p_n,q_n) := \Big(\sum_{k=1}^n \max \big(p_k^+,-q_k^-\big)^2\Big)^{\frac{1}{2}},$$

where $x^+ = \max(x,0), x^- = \min(x,0)$. The discrete problem now reads: find $U: \bar{\Omega}_h \to \mathbb{R}$ such that

$$G(D_1^-U_{\alpha}, D_1^+U_{\alpha}, ..., D_n^-U_{\alpha}, D_n^+U_{\alpha}) = f(x_{\alpha}) \quad x_{\alpha} \in \Omega_h$$

$$(3.1)$$

$$U_{\alpha} = 0 x_{\alpha} \in \partial \Omega_{h}. (3.2)$$

The above scheme was examined for continuous f in [9] in the context of shape-from-shading and convergence to the viscosity solution was obtained as a consequence of a result of Barles and Souganidis [2]. In the case of a constant right hand side $f \equiv 1$, Zhao [12] recently obtained an $\mathcal{O}(h)$ error bound. The scheme can be derived by interpreting the viscosity solution u as the value function of an optimal control problem. For further information and a corresponding list of references we refer to Appendix A (written by M. Falcone) in [1].

The function G has the following crucial properties:

a) Consistency:

$$G(p_1, p_1, ..., p_n, p_n) = |p|$$
 for all $p = (p_1, ..., p_n) \in \mathbb{R}^n$. (3.3)

b) Monotonicity:

let $a=(a_1,a_2,...,a_{2n-1},a_{2n}), b=(b_1,b_2,...,b_{2n-1},b_{2n})\in\mathbb{R}^{2n}$ with $a_k\geq b_k$ for k=1,...,2n. Then

$$G(t-a_1,a_2-t,...,t-a_{2n-1},a_{2n}-t) < G(t-b_1,b_2-t,...,t-b_{2n-1},b_{2n}-t) \quad \forall t \in \mathbb{R}.$$
 (3.4)

Note that the above properties imply in particular that the solution of (3.1), (3.2) cannot have a local minimum in Ω_h and therefore $U_{\alpha} \geq 0$ in $\bar{\Omega}_h$. In order to carry out our error analysis we need to strengthen (2.2) in that we assume that there exist $\epsilon > 0$, $K \geq 0$ such that for all $x \in \Omega$ there is a direction $n = n_x \in S^{n-1}$ with

$$f(y+rd)-f(y) \leq Kr \qquad \forall y \in \Omega, \ |y-x| < \epsilon \quad \forall d \in S^{n-1}, \ |d-n| < \epsilon \quad \forall r > 0. \tag{3.5}$$

Theorem 3.1. Let u be the viscosity solution of (1.1), (1.2) and U a solution of (3.1), (3.2). Then there exists a constant C, which is independent of h such that

$$\max_{x_{\alpha} \in \bar{\Omega}_h} |u(x_{\alpha}) - U(x_{\alpha})| \le C\sqrt{h}.$$

Proof. We again only sketch the main ideas. As it seems difficult to use the argument from the uniqueness proof in order to control the maximum of u-U, we shall resort to the Kružkov transform. Thus, let $\tilde{u}: \bar{\Omega} \to \mathbb{R}, \tilde{U}: \bar{\Omega}_h \to \mathbb{R}$ be defined by

$$\tilde{u}(x):=-e^{-u(x)},\,x\in\bar{\Omega},\quad \tilde{U}_{lpha}:=-e^{-U_{lpha}},\,x_{lpha}\in\bar{\Omega}_{h}.$$

One verifies (cf. [4]) that \tilde{u} is a viscosity solution of

$$f(x)\tilde{u} + |\nabla \tilde{u}| = 0 \quad x \in \Omega \tag{3.6}$$

$$\tilde{u}(x) = -1 \quad x \in \partial\Omega, \tag{3.7}$$

and that \tilde{U} satisfies

$$f(x_{\alpha})\tilde{U}_{\alpha} + G(D_{1}^{-}\tilde{U}_{\alpha}, D_{1}^{+}\tilde{U}_{\alpha}, ..., D_{n}^{-}\tilde{U}_{\alpha}, D_{n}^{+}\tilde{U}_{\alpha}) = F_{\alpha}^{h} \quad x_{\alpha} \in \Omega_{h}$$

$$(3.8)$$

$$\tilde{U}_{\alpha} = -1 \quad x_{\alpha} \in \partial \Omega_h, \tag{3.9}$$

where

$$\max_{x_{\alpha} \in \Omega_h} |F_{\alpha}^h| \le Ch. \tag{3.10}$$

Next, choose $x_{\beta} \in \bar{\Omega}_h$ such that

$$|\tilde{u}(x_{eta}) - \tilde{U}_{eta}| = \max_{x_{lpha} \in \tilde{\Omega}_h} |\tilde{u}(x_{lpha}) - \tilde{U}_{lpha}|$$

and assume that $\tilde{u}(x_{\beta}) \geq \tilde{U}_{\beta}$. The opposite case can be treated similarly. If $\operatorname{dist}(x_{\beta}, \partial\Omega) \leq \sqrt{h}$, it follows from (3.7), (3.9) and the Lipschitz continuity of \tilde{u} that

$$\max_{x_{\alpha} \in \bar{\Omega}_h} |\tilde{u}(x_{\alpha}) - \tilde{U}_{\alpha}| = \tilde{u}(x_{\beta}) - \tilde{U}_{\beta} \le C\sqrt{h}.$$

Now suppose that $\operatorname{dist}(x_{\beta}, \partial\Omega) > \sqrt{h}$ and define

$$\Phi(x,x_lpha):= ilde u(x)- ilde U_lpha-rac{L_1}{\sqrt{h}}\,|x-x_lpha-\sqrt{h}\,n|^2-L_2\sqrt{h}\,|x_lpha-x_eta|^2,\quad (x,x_lpha)\in ar\Omega imesar\Omega_h.$$

Here, $n=n_{x_{\beta}}$ and $L_1,L_2\geq 0$ are constants that do not depend on h and which will be chosen later. There exists $(x_h, x_{\alpha_h}) \in \bar{\Omega} \times \bar{\Omega}_h$ such that

$$\Phi(x_h, x_{\alpha_h}) = \max_{(x, x_{\alpha}) \in \tilde{\Omega} \times \tilde{\Omega}_h} \Phi(x, x_{\alpha}).$$

Since $\operatorname{dist}(x_{\beta}, \partial\Omega) > \sqrt{h}$, we have $x_{\beta} + \sqrt{h} n \in \bar{\Omega}$ and therefore

$$\Phi(x_h, x_{\alpha_h}) \ge \Phi(x_{\beta} + \sqrt{h} \, n, x_{\beta}).$$

From this we infer in a similar way as in (2.5) that

$$|x_{\alpha_h} - x_{\beta}| < \epsilon, \tag{3.11}$$

$$|x_{\alpha_h} - x_{\beta}| < \epsilon, \qquad (3.11)$$

$$\frac{1}{\sqrt{h}}|x_h - x_{\alpha_h} - \sqrt{h} \, n| < \frac{\epsilon}{2 + \epsilon}$$

provided that $L_i = L_i(\text{lip}(\tilde{u}), \epsilon), i = 1, 2$ are sufficiently large (ϵ from (3.5)). Suppose first that $(x_h, x_{\alpha_h}) \in \Omega \times \Omega_h$. Since \tilde{u} is a subsolution of (3.6) we infer

$$f^*(x_h)\tilde{u}(x_h) + \left| \frac{2L_1}{\sqrt{h}} \left(x_h - x_{\alpha_h} - \sqrt{h} \, n \right) \right| \le 0. \tag{3.13}$$

Keeping the first component of Φ fixed we obtain on the other hand for all $x_{\alpha} \in \Omega_h$

$$\tilde{U}_{\alpha} \geq \tilde{U}_{\alpha_h} + \frac{L_1}{\sqrt{h}} \left(|x_h - x_{\alpha_h} - \sqrt{h} \, n|^2 - |x_h - x_{\alpha} - \sqrt{h} \, n|^2 \right)$$

$$+ L_2 \sqrt{h} \left(|x_{\alpha_h} - x_{\beta}|^2 - |x_{\alpha} - x_{\beta}|^2 \right)$$

$$= : \tilde{V}_{\alpha}.$$

Since $\tilde{U}_{\alpha_h} = \tilde{V}_{\alpha_h}$, (3.4) and (3.3) imply

$$G(D_{1}^{-}\tilde{U}_{\alpha_{h}}, D_{1}^{+}\tilde{U}_{\alpha_{h}}, ..., D_{n}^{-}\tilde{U}_{\alpha_{h}}, D_{n}^{+}\tilde{U}_{\alpha_{h}}) \leq G(D_{1}^{-}\tilde{V}_{\alpha_{h}}, D_{1}^{+}\tilde{V}_{\alpha_{h}}, ..., D_{n}^{-}\tilde{V}_{\alpha_{h}}, D_{n}^{+}\tilde{V}_{\alpha_{h}})$$

$$\leq |\frac{2L_{1}}{\sqrt{h}}(x_{h} - x_{\alpha_{h}} - \sqrt{h}n) - 2L_{2}\sqrt{h}(x_{\alpha_{h}} - x_{\beta})| + C\sqrt{h}.$$

Combining this inequality with (3.8) and (3.10) then yields

$$f(x_{\alpha_h})\tilde{U}_{\alpha_h} + \left|\frac{2L_1}{\sqrt{h}}\left(x_h - x_{\alpha_h} - \sqrt{h}\,n\right)\right| \ge -|F_{\alpha_h}^h| - C\sqrt{h} \ge -C\sqrt{h}.\tag{3.14}$$

As a result of (3.13), (3.14)

$$f(x_{\alpha_h})(\tilde{u}(x_h) - \tilde{U}_{\alpha_h}) \leq C\sqrt{h} + e^{-u(x_h)}(f^*(x_h) - f(x_{\alpha_h}))$$

$$= C\sqrt{h} + e^{-u(x_h)}(f^*(x_{\alpha_h} + r_h d_h) - f(x_{\alpha_h}))$$
(3.15)

where similar to (2.9), $d_h = \frac{n + w_h}{|n + w_h|}$, $r_h = \sqrt{h} |n + w_h|$, $w_h = \frac{1}{\sqrt{h}} (x_h - x_{\alpha_h} - \sqrt{h} n)$. Since

$$\tilde{u}(x_h) - \tilde{U}_{\alpha_h} = \Phi(x_h, x_{\alpha_h}) + \frac{L_1}{\sqrt{h}} |x_h - x_{\alpha_h} - \sqrt{h} \, n|^2 + L_2 \sqrt{h} |x_{\alpha_h} - x_{\beta}|^2$$

$$\geq \Phi(x_{\beta}, x_{\beta}) = \tilde{U}_{\beta} - \tilde{u}(x_{\beta}) - L_1 \sqrt{h},$$

we finally deduce from (2.1), (3.15) and (3.5) that

$$m(\tilde{u}(x_{\beta}) - \tilde{U}_{\beta}) \le C\sqrt{h} + Kr_h \le C\sqrt{h}.$$

The cases $x_h \in \partial \Omega$ or $x_{\alpha_h} \in \partial \Omega_h$ can be examined with the help of the boundary conditions (3.7), (3.9). Transforming back to u and U implies the desired error bound.

References

- [1] M. Bardi, I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser Boston 1997.
- [2] G. Barles, P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal. 4, 271-283 (1991).
- [3] F.Camilli, A. Siconolfi, Hamilton-Jacobi equations with measurable dependence on the state variable, Preprint, (2002).
- [4] M.G. Crandall, P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277, 1-42 (1983)
- [5] H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians an arbitrary open sets, Bull. Fac. Sci. Engrg. Chuo. Univ. 28, 33-77 (1985).
- [6] H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type, Proc. Amer. Math. Soc. 100, Number 2, 247-251 (1987).
- [7] R.T. Newcomb II, J. Su, Eikonal equations with discontinuities, Differential Integral Equations 8, 1947-1960 (1995).

- [8] D. Ostrov, Viscosity solutions and convergence of monotone schemes for synthetic aperture radar shape-from-shading equations with discontinuous intensities, SIAM J. Appl. Math. 59, 2060-2085 (1999).
- [9] E. Rouy, A. Tourin, A viscosity solutions approach to shape-from-shading, SIAM J. Numer. Anal. 29, 867-884 (1992).
- [10] P. Soravia, Boundary value problems for Hamilton-Jacobi equations with discontinuous Lagrangian, Indiana Univ. Math. J. 51, 451-477 (2002).
- [11] A. Tourin, A comparison theorem for a piecewise Lipschitz continuous Hamiltonian and applications to shape-from-shading, Numer. Math. 62, 75-85 (1992).
- [12] H. Zhao, Fast sweeping method for eikonal equations I: distance function, Preprint.

Klaus Deckelnick Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg Universitätsplatz 2 39106 Magdeburg Germany

Charles M. Elliott
Centre for Mathematical Analysis and Its Applications
School of Mathematical Sciences
University of Sussex
Falmer Brighton BN1 9QH
United Kingdom