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1 Introduction

This is a continuation of our work [KG], [GGK], where we studied a gradient (flow) system of
an energy whose energy density is not C 1 50 that the diffusivity in the equation is very strong and its
effect is even nonlocal. In this paper we consider the case when the values of unknowns are constrained.
To be specific we consider a gradient (flow) system of the total variations of mappings with constraint of
their values. Let us write the equation formally. For a mapping u : Q — RY with a domain Q in R" let
E,(u) denote its total variation, i.e.,

Ey(u) = /,, Vulds. (1)

Let §FE;/6u denote its ‘first variation’ (with respect to L? inner product). Then the unconstrained

gradient system is formally written in the form
uy = —~8E, Jéu (1.2)

for u = u(z,t),z € 2,t > 0, where u; denotes the time derivative, i.e., u¢ = Ou/0t. If the values of u is

constrained in some fixed (Riemannian) manifold M embedded in RY, the first variation §E, /épu with
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this constaint is of the form

0E, /Spu = Py(8E /bu),

where P, is the orthogonal projection to the tangent space of M at the value of «. Thus our constrained

gradient system is of the form

uy = —P,(6E, /éu). (1:3)
The explicit form of (1.2) is
Vu

=div| - —]}. 14
s (74) (4

If M is a unit sphere SV, then the explicit form of (1.3) is

| . Vu

ue = div (I—V—u—l-) + |Vuju (1.5)

as explained in Example 2 in Section 2. An explicit calculation for (1.3) is for example in [MSO). Although
the notion of solution of (1.4) is not a priorily clear because of singularity at Vu = 0, a general nonlinear
semigroups theory (initiated by Y. Komura [Ko]) applies under appropriate boundary conditions since
the energy is convex. The theory yields the unique global solvability of the initial value problem for (1.2)
under the Dirichlét boundary condition; see e.g. [Ba] and also [KG], [GGK], [HZ], [ACM]. However, for
(1.3) such a theory does not apply since it cannot be viewed as a gradient system of a convex functional.
Even for smooth energy a constrained gra'tiient system needs individual study for well-posedness. A
" typical example is the harmonic map flow equation. It is formally written in the form (1.3) where E; in

(1.1) is replaced by the Dirichlet energy

Baw) = 5 [ IVulds.
2Ja
Its initial value problem is well-studied, for example, in [ES], [St], {Cg], [Ch], (C], [CDY], [F]. The solution
is independent of the way how M is embedded in RY. For the gradient system of the total variation

(1.3) even the notion of solution is unclear because of singularity at Vu = 0.
In this paper, as a first attempt, we propose to formulate a constrained gradient system when the
energy ¢ is convex but having singularities by using subdifferentials 3. It is formally written as
e € ~Pu(Bp(w)).

The speed u, looks undertermined. However, under some regularity condition of u we prove that the right
derivative d*u/dt is uniquely detemined. Like unconstrained problems it equals the minus of ‘minimal

section’ of the convex set P,(3¢(u)).
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Unfortunately, even unique local solvability of the initial value problem for (1.3) is not clear. We
restrict ourselves to consider a piecewise constant initial data in a one dimensional domain — an open
interval. We calculate subdifferentials & when ¢ is the total variation at a piecewise constant function.
We further calculate the minimal section of P,(0¢p(u)) and construct a global solution for (1"3) with the
Dirichlet condition by reducing the problem to a system of ordinary differential equations (ODEs). A key
observation is that the minimal section is constant on each maximal spatial interval where the solution is
constant so that the solution must stay as piecewise constant and the jump discontinuities are included
in those of the initial data. This yields the uniqueness of a solution at least among piecewise constant
functions. We say that each connected component of the graph of a piecewise.consta.nt function as a

plateau.

We also study the behaviour of solution when M is the unit circle $*. The equation of the motion of
the plateau is presented, which is written in the form of reducing ODE. We identify the form of stationary

solutions and prove that the solution becomes a stationary solution in finite time.

Unlike the harmonic map flow, the notion of solution depends also on the ambient space R not
only on M itself. Moreover, there are several ways to define the notion of total variation for mappings
to M. The corresponding gradient system may differ. The definition of the total variation in this paper
is not intrinsic; it depends on distance of the ambient space RY. For S'-valued problem one is tempting
to define the total variation of u = (cos #,sin §) by ./n |V6|dz. However, this energy is also singular when
the jump of argument is 7, so the dynamics starting with such jumps cannot be determined uniquely.
There are several dicussion to define the notion of mapping of bounded variation with valued in S. In

[GMS] a class of mappings approximated by smooth S! mapping was characterized.
pping

Although there are huge literature on quasilinear parabolic equations with singularity at Vu = 0, the
singularity is weaker than ours in the sense that the diffusion effect is still local; see e.g. [D], [G]. There
are several fields where equations with nonloal singular diffusivity are proposed. The first example stems
from material sciences for describing motin of antiphase grain boundaries [Gu]. In fact, a crystalline
curvature flow equation was proposed [AG], [T] as an example of anisotropic curvature flow equations
[G], [Gu] with singular interfacial energy. When the interface is a curve given as the graph of a function,
one of simplest examples is of the form (1.4) with n = 1 [FG]. The second example stems from image

analysis. In [ROF] it was proposed to use gradient flow system of the total variation with L?-constraint
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for a grey level function u to remove noises from images. The third example stems from plastisity
problem [HZ]. The fourth example is derived from the phase field model of grain structure evolution
which include grain boundary migrations and grain rotation [KWC],[WKC],[LW],|[GBP]. The equation
of orientation with singular diffusibity is coupled with the equation of ordering parameter. This model
yields a mathematical subproblem with spatially non-uniform energy. We developed a mathematical
theory which handles such a non-uniform equation with sigular diffusivity in [KG] and [GGK] together
with the case of the uniform energy. By now well-posedness for unconstained gradient system (1.3) is

established by many authors [FG], [HZ], [ACM], [ChW]...

Although the curvature flow equations with singular diffusivity do not have the divergence structure
of the form (1.2), they are well-studied for evolution of curves [GG1] based on order-preserving structure.
For a surface evolution the corresponding theory is widely open; see e.g. [BN], [GPR]. There are several
other applications of singular diffusivity, for example for formation of shocks of conservation laws [GG2],

[TGO].

The problem with value constraint naturally arises in image processing to remove noise from direction
field of color gray-level mappings u = (uy,ug,u3) keeping its strength u} + u3 + u = 1. There is a nice
book for background of the problems form image processing. As mentioned in [S, §6.3] the well-posedness
for the initial-boundary problem for constrained problem (1.3) has not yet been studied even for (1.5).
This type of constrained problems also naturally arise in multi-grain problems [KWC] where u is an angle

of averaged crystagraphical directions.

2 Gradient system with constraint

We prepare an abstract framework for studying gradient systems of a convex functional. Let ¢(# oo)
be a convex, lower semicontinuous function on a Hilbert space H with values in R U {oo}. The gradient
system for ¢ is of the form

%(t)e—a(p(u(t)) for t>0, (2.1)

where 9p(v) denotes the subdifferential of ¢ at v, i.e.,

Op(v) := {6 € H; p(v+h) —p(v) 2 (h,§) forall he H}
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and u is a function from (0,00) to H. It is well known (see e.g. [Ba]) that the problem (2.1) admits a
unique global solution for any given initial data in H. We next consider a gradient system with constraints
on values of functions. Let (v, w) denote the standard inner product of v,w € RY. Let Q be a smoothly
bounded domain in R". The space of RY-valued square integrable functions is denoted by ILZ(Q; RY )-

As a Hilbert space H we take L*(Q; RY) equipped with the inner product

(fr0) = [n (f(z),9(c))dz for fg€H.

Let M be a smoothly embedded complete manifold in RY. For a given point v € M let 7, denote the
orthogonal projection from RY = T,RY to the tangent space T, M of M at v. Let M be the space of

L?-mappings from ) to M i.e.,
M={feH; fzyeM for ae.z€}
For g € M we define a mapping from H to H by

Py(f)(z) = my)(f(z)) for ae.z€fl

where f € H. By definition P, is an orthogonal projection of H so that its image H, is a closed subspace

of H. (Actually, it is the tangent space of the Hilbert manifold M at g.)

A constained (by M) gradient systems is of the form

M1)€ ~Puo(Bolu(®) for t>0. (22)

This problem is no longer dissipative so unique globally solvability is not expected even if ¢ is smooth so
that no singular diffusivity appears. In fact, there is a counterexample for global solvability of a smooth

solution and uniqueness for the harmonic map flow in Example 1.

Example 1 (Harmonic map flow). Let g be a Lipschitz map from 9 to M. For v € H we set

2

1 .

—/ |Vo|*dz, if v, veEH (1<i<n)withv=gonQ,

e(v) = Q
+o0, otherwise.

Then (2.2) is the harmonic map flow equation with the Dirichlet condition v = g on 3. Here Vv =

(8z,v,. - -,05,v) and 8;; = 8/0z; and |Vv|® denotes the sum of all squares of 9,v* for v = (v',...,oN).

Unconstained problem (2.1) for this ¢ is the heat equation with the Dirichlet condition. Of course, ¢ is

a lower semicontinuous, convex function in H.



The harmonic map flow equation is well-studied by many authors. Uniqueness and global solvability
depends on dimension of {2 and also geometric properties of manifold M. For example if { is two-
dimensional, i.e., n = 2, there is a unique global weak solution which is regular except a finite number
of isolated points and the energy is decreasing in time [St], [Cg], [F]. When n > 3, although there exists
a global weak solution, it may not be unique [Ch], [C]. If M = S', then the global solution is smooth.
However, if M = §?, there exists a smooth local solution which develops singularities in finite time [CDY]

when € is a two dimensional disk. See, for example, [S] for more complete list of references on this topics.

¥

M =541 = fw e RY; Jul =1} 3)
i.e. M is the unit sphere, then for z € M
m(y) =y—(y,z)z for yeR".
Since Bp(v) = {—Av} for v (belonging to the domain of dyp),
—P\(B9(v)) = {0 — (Av,0)0}.
Since [v| = 1 so that (Av,v) = div(Vv,v) — [Vo|? = —|Vv|?, we observe that
—P,(Bp(v)) = {Av + |Vv|*v}.

So (2.2) is formally written as

= Au + |Vul?u.

®|@

Example 2 (Total variation flow with constraint). Let g be a Lipschitz map form 9 to M. Let §
denote a Lipschitz extension of g to R™. For v € H let # be its extension to R" such that i(z) = §(=)

for:c ER \Q. Weset
Vi I if & BV Q'RN

o0, otherwise,

where BV denotes the space of functions of total variations. The quantity ¢(v) is the total variation of
the measure Vv in R®. The reason we extend v to ¥ is that we would rather measure the discrepancy
of v from g on the boundary. By this choice of ¢ (2.1) is the total variation flow equation with Dirichlet

condition. Its formal form is

% _ div (El) . (2.5)
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It is easy to see that ¢ is a convex, lower semicontinuous function in H [GGK]. The equation (2.2) is the
Dirichlet problem for the total variation flow equation with constaint. If M is the unit sphere (2.3), then
its formal form is

ou . ( Vu

5{' =div I—V'u—l) + |Vu|u

since (div(%) ,v) = —IV‘UI‘ for v satisfying |v| = 1.
v

Example 3 (A simple inhomogeneous example). Let a be a positive continuous function in Q. Instead

of Example 2 we set
o) = [ a(o)IVi(a)ids

for v € BV(Q,RY) and p(v) = +o0o otherwise. This ¢ is also a convex, lower semicontinuous function
in H. This type of inhomogenous one is important in application to multi-grain problem [GGK], [KG]

and also image processing e.g. [ChW].

3 Characterization of speed

The evolution laws (2.1) and (2.2) look ambiguous since dy is multivalued. Like (2.1) the speed
du/dt of the evolution by (2.2) is actually uniquely detemined under the stronger assumptions than those
for (2.1). We state such a charactarization of the speed in this section. Unfortunately, it does not yield

the uniqueness of a solution of the initial value problem for (2.2).

We prepare several notations. For a closed convex set A in a Hilbert space there exists a unique point
z closest to the origin. We shall write z by °A. Since dyp(v) is always a closed convex set in H, %(Bp(v))
is well-defined and is denoted by 8%p(v). It is called the canonical restriction (or minimal section) of
dp(v). The set P,(8p(v)) is also a convex set in H, for v € M since P, is an orthogonal projection.
However, it may not be closed. If there exists a point z’ € P,(8¢(v)) which is closest to the origin of H,,
it must be unique since the set is convex. We shall denote 2z’ by °P,(8p(v)). We call this element the

minimal section (of P,(dp(v)).

Theorem 3.1. Assume that § > 0 and that M is compact. Assume that u : [to,t0 + 8] = M CHis

continuous and right differentiable. Assume that the right derivative dtu/dt is continuous in [to,to + 4]



{8% (w(t) + Puy(u(t +7) —u(t)); t, t+7 € [to, 8o + 8], T € R}
is bounded in H. If u satisfies

dt
(1) € —Pu(Be(u(t)) for t€[to,to+9),

then

dtu 0 :
T(t) = —"Pyn(0p(u(t)) for tE€[to,to+9).

In particular, the minimal section of —Py3)(0p(u(t))) always exists for t € [to, %o +6).

Proof. It suffices to prove (3.2) for ¢t = t;. We may assume that ¢, = 0. we set
h(s) =u(s) —u(0), P, =Py, for s€l0,0)

to simplify the notation. By (3.1)

dtu

(d%(s)’ h(s)) = (—=(s), —Puh(s)) < p(u(s) = Puh(s)) = p(u(s))-

By definition for £ € Po(Op(u(0)) we have

(=&, h(3)) = (=€, Poh(s)) < p(u(0)) — (u(0) + Poh(s))-

Combining (3.3) and (3.4), we obtain

(E2a), ha)) < (=€, h(s)) + B(s) +¥(s)

with

3(s) = p(u(s) — Psh(s)) — (u(0)),
(s) = (u(0) + Poh(s)) — ¢ (u(s)).
We divide both hand sides by s > 0. Sending s to zero yields
dtu dtu d¥u
II—G&-(O)H2 <=6 — () < HlHHT— =)l

if we admit

i’i_iig(b(s)/s =0 and %\I’(s)/s =0,
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where || - || denotes the norm in H. By (3.5) we observe that d*u(0)/dt is the minimal section of

Po(8p(u(0))-

It remains to prove (3.6). We shall present the proof for @ since the proof for ¥ is similar. By

defintion of subdifferentials
¢(u(s) — Pyh(s)) — @(u(0) < (1 — Po)h(s), 8%p(u(s) — Psh(s)))
By our boundedness assumption on 8%y it suffices to prove that
lim (1~ Po)A(s)l/5 = . (3.7)
By definition of the tangent space there exists a constant C' that satisfies
(1 —mu)¢] < Clmo(]?

for all ¢ € R, v € M satistying ¢ + v € M. Thus

- 2opaess <@ [ Bl pgpas (38)

Since h(s)/s — dtu(0)/dt as s | 0 in H, |h(s)|*/s* — |du*(0)/dt|* in L' sense. Since M is bounded,
|h(3)| is bounded in L™ for small s. So the right hand side of (3.8) converges to zero as s — 0 since

h(z,s) —+ 0 a.e. z € Q by taking a subsequence. Thus we have proved (3.7) so we obtain (3.6). o

4 One dimensional piecewise constant evolution

We now consider the total variation flow with constraint (Example 2) when the domain £ is an

interval (20, 21). We consider the initial value problem
du
E(t) € —Py(5(0p(u(t))), vle=o = uo (41)
with ¢ defined by (2.4) with Q = (z0,21). We consider a piecewise constant initial data
up(z) = k2 €RY on (z,7i41), i=0,1,...,£-1,£2>2, (4.2)
where 20 = 2o < 21 < T3 < --+ < Tt = z;. The boundary values k3, h9_, are taken so that A3 = g(z0)

and hY_, = g(z1). We also assume that h # h?,, fori =0,1,...,£—2.

We shall seek a solution u(t) = u(z,) of (4.1)-(4.2) when u(z,t) is piecewise constant and its jump

discontinuities are included in {z;}5;-
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4.1 Subdifferentials

We first calculate the subdifferential ¢ of ¢ defined by (2.4) at a piecewise linear function uo defined
by (4.2). We set

m® = (R —hY_)/|Ih? —RY_ I, i=1,...,6—1 (4.3)
Lemma 4.1 Let f € L*(Q;R") be of the form
f(@) = =({(=)= k()| <1, € Q= (20,2) (49)
for some continuous € in Q that satisfies
Ez)=m?, i=1,2,...,£— 1 (4.5)

Then f € dp(up). Conversely, if f € Bi(up), then f is of the form (4.4) with (4.5).

Proof. The proof is similar to that of [GGK, §3.2, Lemma 1}. We shall check
(v — uo, f) < (v) — p(uo)
for all v € D(p) = {v;¢(v) < oo}. By definition
(0 =0, f) = = [ (0= o, o) (46)
Since |¢] < 1, integrating by parts we see
- [ eede = [ (00,60~ (0,12 < (0) — w2, (7)

where v, is regarded as a Radon measure; p(v) equals the total variation of (#),. For example

~1

w(ug) = Z (R — BY_, 1.
=1
Since £(z;) = m;, we see that
-1
[wones = uogl - Y08 - H_yymd (48)

=1
= uof|3} — ¢(uo)-

The formula (4.6)-(4.8) now yields

(v—uo,f) < o(v)—uodlZ; +uotlz; — p(uo)

]

¢(v) — ¢(uo),



which implies f € 9 (uo).

Conversely, assume that f € dp(ug). Let ¢ be a primitive of —f. Since f € L*(Q;RY), ¢ must be

absolutely continuous on . The condition f € dp(up) is equivalent to

/‘;(v — ug, (z)dz < p(v) — p(ua).

We test various v in this inequality to derive properties of (.

We plug

v(z) = uo(z) — z\m;/ §(r—=z)dr, e R, [N < |RO — h?—1

in (4.9) and integrate by parts to get
—’\(mia C(Il)) <=

fori=1,...,¢— 1. Since this inequality holds for both positive and negative A, we conclude that

(m.',C(.'t.')) = 1, 1= 1,.. .,Z -1

For & € (z0,21) \ {z:}2] and i € {1,...,£— 1} we set

X

o(z) = uo() + A / mé(r — #)dr, \ER, m € SV 1.

2z
We plug this v in (4.9) and integrate by parts to get

A(m, ((£)) < Al
Since this inequality holds for both positive and negative A, we observe that

[(m, (@D <1

Since m € SV is arbitrary, this implies |¢(2))| < 1. Be continuity of { we see that

I(z)] <1 forall ze€Q.

(49)

Since (mi,((z;)) = 1, the inequality |((z)| < 1 implies that ((z;) = m;. We have thus proved that

f € 8¢p(uo) must have the form (4.4)-(4.5).

O
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4.2 Minimal section

We shall calculate ° P, d¢(uo) for a piecewise constant function ug in (3.7). In general it is not clear

that °P,dp(v) = P,8%(v) but for our up this property holds.

Lemma 4.2. Let L; be the length of the interval (z;,z;y,), i.e., L; = #i31 — Z;. Then

L,T'l‘rr,,?(m?H -mY?) for T € (Zi, Tit1),
—OP,,((9p)(u0))(z) = i=1,...,0—2,
0 for z € (zo,71) U (ze-1,Te).

Moreover, OP,O((acp)uo) = Puo(ao‘P)(“O))-

Proof By Lemma 4.1 we already know the explicit form of 8p(uo). If g = %Py, (8p)(uo), it must be

9= _Pﬂo(nﬂ-‘)

with # minimizing

L S, ,
el =3 ] Impoe P
i

=0

with constraints n(z;) =m? (i =1,2,...,£— 1) and |p(z)]| < 1 for z € . It suffices to minimize

Tigy
[ ‘”h‘.”]t lzdz
zi *

with above constraint. The answer is easy. The minimum is attained when 7 is linear
1(z) = {(z — z)my, + (wis1 —2)mI}L7! for = € (zi,7it1)

fori=1,2...,£—1and

0

n(z) = m{ for =z € (zo,21),
my_; for z € (ze-1,%s)-

Since g = —Py,(7z), we have an expression of °P, (8y)(uo) in Lemma 4.2. o

Since 8°p(uo) is also computable and

Pooluo) = Lil(md,, —m?) for z € (i Zip1), 1=1,2,...,4-2,
o for z € (zg,21) U (ze-1,Ze),

we obtain ° P, (8¢)(ug) = Puy(8°¢(uo))-



4.3 Dynamics

We consider (4.1)-(4.2) assuming that
u(z,t) = hi(t) eRY on (zi,2i1), i=0,1,...,—1,¢>0 (4.10)

with ho(t) = g(z0) and he—1(t) = g(z1). The values hi(t) and h;y1(t) may agree for some ¢ > 0. It turns
out that the problem (4.1)-(4.2) is reduced to an ODE system for h;’s. Moreover, there exists a unique

global solution.

Theorem 4.3. Assume that M is compact. There exists a unique
h(t) = (h1(t), . - -, he—2(t))

such that h;(1 < i < £—2) is Lipschitz continuous from [0, c0) to M which is smooth except finitely

many points such that (4.10) solves (4.1)-(4.2). Moreover, h; solves

____dh‘;-it) = zl—im.;(f)(ms'ﬂ(t) —my(t)) for € (i, Tit1), (411)
i=1,...,£-2
for sufficiently small t+ > 0, where
m;i(t) = (hi(t) — hi—a @) /|hi(t) = hica(t)yi=1,...,£—1. (4.12)

Proof. If hy’s are Lipschitz on [0, c0) and smooth except finitely many points, u given by (4.10) fulfills
the regularity assumptions of Theorem 3.1. Then by Theorem 3.1 and Lemma 4.2 h; must solve (4.11)

until the first merging time when h; = hiy; for some 2.

Of course, (4.11) is uniquely solvable until the first merging time. If h;’s merges at some time to,
we removes some z;’s and renumber jumps z;’s such that hi(to) # hiy1(to) for ¢ = 0,1,... , 4o — 2 with
£ < £, Again we are able to solves (4.11). Repeating this procedure finitely many times, one is able
to solve (4.1)-(4.2) uniquely and globally-in-time. (Since h;’s are bounded, the solution of (4.11) can be
extended unless some h;’s merge.) Since the right hand side of (4.11) is bounded (independent of t), the

solution h;’s must be globally Lipschitz continuous in time. a
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4.4 Constrained gradient system of ordinary differential equations

If u = u(z,t) is of the form (4.10), then

e(u()) = $(ha(t),. .., ha(t), d=£—2 (£>3)
d+1
Y(hy,...,ha) =Y |hj = hj_1|, ho = g(20), he—1 = g(=1)-

i=1
(¥ £ =2, p(u(t)) = |h1 — ho| and is independent of ¢.) Using this ¢ : RN? — R, we are able to rewrite
(4.11) as
dh
= =~ grad, $(h), h(t) = (h(t),-., ha(t)), (4.13)

where grad, is the gradient of % in RV? with respect to the inner product

d
(h,9)s = Z Li(hi, 9i)

for g = (g1,-..,9a4) and 7y = (m4,,..., 7, ). Indeed, by definition,

i (k) = (177 %,’”—)d

=1
Since ghi(t) = —(miy1(t) — m;i(2)), (4.11) is the same as (4.13). This weight is very natural since our
subdifferential of ¢ is taken with respect to L?(£2)-inner product. Let us summarize what we obtained

here.

Proposition 4.4. Assume that M is compact. Let h(t) be a function defined in Theorem 4.3. Then h

solves (4.13) for t before the first merging time.

We expect that in finite time our solution u stops moving. We shall prove such a phenomena when
M = S*. For this purpose we study the large time behabiour of (4,13) assuming that there is no merging
of hy's.

Proposition 4.5 Assume that M is compact. Let h be a global solution of (4.13) for t € [t.,c) such

that no h;’s merge for t € [t,,00). Then
/ (heyhe)s dt < $(h(t.)) and %(:t@l <0 for >t
to

Moreover, there is a subsequence of {u(z,t +t, + k)}{., converges in L* (2 x (0,1); M) to a piecewise

constant stationary solution u of (4.1) in the sense that °P, _ (8¢(uco)) = 0. Here u(z,t) is defined by
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Proof. We observe that h is smooth for (¢.,00). We take inner product of (4.13) and h, and observe
that

d,.
(s o) = =L (1))

which yields dys(h(t))/dt < 0 for all ¢ € (t.,00). We integrate over (t,,s) and send s to infinity to get

/ 7 (hey he)adt < p(h(t))

since ¥ > 0. In particular, (hy)(t) = he(t + tx + k) converges in L?(0,1) to zero. Since {hi(t)} C M
is bounded for ¢ € (0,1] {hx(t)} has a convergent subsequence. Since (h); — 0 in L?(0,1), the limit of
{ux} (defined by (4.10) with h; replaced by hs;) converges to uc (by taking a subsequence) which is a
stationary solution. (In this argument there might be a chance that (hi — hi—1)(t) = 0 as t — oo s0 we

rather use u instead of h). o

4.5 S'-valued problem

We shall study a more detailed dynamics when the set of constraint M equals the unit circle $* in
R2. We first characterize all stationary piecewise constant solutions. For two vectors in p,q € M we

define arg(p, q) = argp — argq. The value is taken so that arg(p,q) € (—~, 7).

Lemma 4.6. Let ug be of the form (4.2) with h # h{,, fori =0,1,...£~2,£ > 2 and h = g(z0) and
RY_, = g(2z1). Then uy is a stationary solution of (4.1) (in the sense that °P,,(8p(up)) = 0) if and only

of arg(h?,h?_,) is independent of i = 1,2,...,£— 1.

Proof. We may assume £ > 3. By elementary geometry we observe that
Wh?(m?ﬂ -m{)=0

is equivalent to say that arg(h?,h}_,) = arg(hl,,,h}) fori=1,...,£ 2. a

We next study the stability of stationary solutions. For ug in (4.2) we observe that

-1
1 0

1
plu) =Y |h —h_;| =) 2|sin&l, &= 5 arg(h;

i=1 =1

) h?—l )‘
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Since hY and hS_, are fixed by the Dirichlet data, the sum Zfi =: ) is constant independent of

i=1

d-1
(&1 ...,&e-1) (at least small perturbation of (;,...,£q)). We set E(¢y,...,8d) = Z |sin ;| + |sin(A —

=1
d
) "¢)l, d = £ — 2. By definition E(éy,...,£s) = p(u0)/2. If uo is a stationary solution of (4.1), then by
—t
’ d
Lemma 4.6 wesee that {; =&, =--- =€ =\ — Z&. The next lemma shows that such a stationary
=1

solution is local maximum of E so in particular it is unstable in all direction. Note that when we discuss

the stability it suffices to check Hesse matrix for grad (= V) instead of grad,.

Lemma 4.7. Assume that d = £ —2 > 1. Assume that A # 0 and /(€ — 1) € (—=/2,%/2]. Then the

Hesse metrix V*E at & = (A\/(£—1),...,M/(£ — 1)) is negative definite.

Proof We may assume that A\ > 0. We differentiate E and observe that

VE = (cos&; — cos(A — ifj))fﬂ near £ and
— |
—V2E(&) = (&;5a +Jc¢)15i,jsd, a =sin(A/(£ - 1)),
where.é';j is Kronecker’s delta. Since
(dija + a) = a(dij + 0i0;) with o =(01,..., oq) =(1,...,1),

its determinant is easy to calculate. Indeed,

det(8;;a + a) = a? det(8;; + 0i0;) = a?(1 + |o*) = a¥(1 + d).

Thus we conclude that
det((dija + a)1<i,j<r) > 0

for all r = 1,2,...,d, which implies that —V2E(&;) is positive definite. o

By Lemma 4.7 all piecewise constant stationary solution (except one jump or no jump solution) are local
maximum in a class of piecewise constant functions having the same location of jump discontinuities. Of
course all one jump and no jump solutions are isolated global minimizers since each stationary solution
has a different value of energy ¢. Combining Proposition 4.5 and Lemmas 4.6, 4.7, we obtain a full

convergence result.
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Proposition 4.8. Assume that M = S' and N = 2. Let u be of the form and h = (h1,--- he—2)

solves (4.13) for t € [t,,o00) such that no h;’s merges for t € [t,,00). Assume that u(z,t.) is not a

stationary solution of (4.1). Then u(z,t) converges to a (piecewise constant) stationary solution with
-1

jump discontinuities strictly contained in {z;};=;. In particular, h; — hi_1 — 0 as t — oo for some

i=1,...,£—1,ast - c0.

4.6 Stopping in finite time

We continue to study the case when M = S' with N = 2. We shall pforve that our piecewise
constant solution u = u(t) actually stops moving after finite time and it becomes a stationary solution.
For this purpose we shall rewrite (4.11) by using argument 6;(t) of h;(t). Since

miz1 = (cosipy — 1,8in8;41)/Aia,
m, = (1 - 00895_1,-— s‘mO;_l)/A.-
with A; = ((cos 8; — 1)% + sin® 6;) if h; = (1,0), we see that
Th; (m.—+1 - m.-) = T(Sin0;+1/A,'+1 + SiIl 0.‘_1 /A.)
with 7 = (0, 1). Since A? = 4sin®(6;/2), we see that

L —m) =T sin 0;+1 sin6;_;
Wh;(m:+1 I) (zl Sin(95+1/2)| + 2|3i11(0i—1/2)l) .

For a general h; = (cos §;,sin 8;) our calculation shows that

sin(fi41 — 0;) |, sin(6—1 —6;) }
2lsin(%657%)| * 2}sin(5=4=5)

_ . Biy1— 6
=T {sgn (sm 5 )

Thi (Mig1 —m;) = 7‘{

Biy1 —6;
®7

+sgn (sin 9.'—12* 0‘) cos 8"-12_ b }with T = (—sin#;, cosb;). Since
dh; __db;

@ - T dt

(4.11) becomes

% = L [sgn (sin ——————0i+12_ b cos —-——9"“2— b:
(4.14)

+sgn (sin 9:‘—12— 05) cos 85-12_ 95]
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fori =1,...,£—2. If we consider the evolution of u, (4.14) holds until the first merging times of h;’s. At
the merging time we renumber jumps so that renumbered §;’s solves (4.14) until the next merging time.

We set £&; = (8; — 6;—1)/2 as before.

Theorem 4.9 (Stopping in finite time). Assume that N =2 and M = S'. Let u be the solution
of (4.1)-(4.2) of the form (4.10). Then there exists t, > 0 such that u(z,t) = U(z) for t > t, with some

(piecewise constant) stationary solution of (4.1).

Proof. We may assume that the initial data is not a stationary solution. Then there are finitely many
times tg < t; < --+ < ty, to > 0 such that the set of jump discontinuous decreases at ¢;,7 = 0,...,3
while in [0,%0), [tj>tj+1), ( =0,...,8 — 1) and [t,,00) the set of jump discontinuities is independent of
time. (At each t; some h; merges.) We claim that u(z,¢,) = U(z)— some stationary solution so that
u(z,t) = U(z) for t > t,. If u(z,t,) is not a stationary solution, then we have a situation of Proposition

4.8 with t, = t,. By Proposition 4.8 there exists an nonempty set I C A = {1,...,£ — 1} that satisfies

Jim (8:(2) — 61 (t)) =0 for i€l

(i)If I # A, then there is ig € I such that either i + 1 or ip — 1 does not belong to I. Hip+1 ¢ 1,
then |d8;, /dt| is bounded away from zero for sufficiently large ¢ by (4.14) since 8;, — 8i;—1 — 0 while
8i,4+1 — 8, is bounded away from zero. Similarly, if io — 1 ¢ I then |d6;,_1/dt] is bounded away from
zero for sufficiently large ¢. In both cases these properties contradict the convergence of hj, or hi,_, as

t — o0o. So this case does not occur.

(i)If I = A, then g(20) = g(z1). Then there is some ip € A such that sgnsinf;, > 0 and either
sgnsiné;, 41 > 0 or sgnsiné;,_; > 0. Note that sgnsin;,+1(t) is independent of ¢ > ¢.. By (4.14) either
|d8;, /dt| or |d8;,—1/dt| is bounded away from zero for large ¢. This property contradicts the convergence

of h;, or h;,—; as t = co. So this case does not occur neither.

We thus conclude that u(z,t;) = U(z). o

Remark 4.10. The stationary solution U(z) we obtain at t, is not necessarily one jump or no jump



solution. Here is a simple example. We set
K = (0,—1), hS = (0,1), h{ = (cos o, sin bp), h = (cos o, sin )

with £ = 4 and 6 € (0,7/2). Assume that the initial data uo is given by (4.2) with these h?’s and that

Lo = Ly = Ly = L3. Then the solution u(z,t) becomes

hg, z € (.’Bo,xl),
U(z) =< (1,0), =z € (z1,23),
hg, z € (z3,%4)

at the first merging time which is a stationary solution.

Although all piecewise constant stationary solution (except one or no jump solution) are local max-
imum in a class of piecewise constant functions having the same location of jump discontinuities, it may

be attained at the merging time of evolution as this example shows.
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