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POLYLOGARITHMS AND MIXED MOTIVES
MASAKI HANAMURA

§1. The category of mixed motives Dyinite(k).

Let k be a field, 0! = P} — {1} and O" = (O')™ with coordinates (z1,--- ,Z,). Faces of
O™ are intersections of codimension one faces, and the latter are divisors of the form EI?;I =
{z; = a} where a =0 or co. A face of dimension m is canonically isomorphic to 0J™.

Let ©,, be the permutation group of the set {1,--- ,n}; it acts on (Z/2Z)"™ by permutations.
Let Gy, be the semi-direct product of (Z/2Z)™ and %,,; an element is of the form (i, -+ ,in;7)

with 4y, ,in € Z/2Z = {£1} and 7 € L. ¥, acts on 0" by permutations of coordintates,
and (Z/2Z)" acts by: (i1, ,in)* (T2, * ,Tn) = (€1%1,-++ ,Z2*"). So Gy acts of (™. There
is a homomorphism sgn : G, = {1}, (41, ,in;T) 41+ in - SGNT.

. Let X be an equi-dimensional variety (or a scheme) over a field k. Let Z7(X,n) be the
Q-vector space of Q-cycles z of codimension r on X x 0" such that
(i) each irreducible component of z meets each face X x O™ properly, and
(ii) z is alternating with respect to G, namely, for any o € Gn, 0(z) = sgn(o)z.

The inclusions of codimension one faces d; 4 : D?’;l < O" induce the map
8= (-1)"*%6f,: Z"(X,n) = Z"(X,n— 1)

(namely, @ sends alternating cycles to alternating ones) and (Z7(X,-),0) is a homology com-
plex. We call this the cycle complez (of codimension r) of X. By definition the (rational)
higher Chow groups are the homology groups of this complex:

CH™(X,n) = H,2"(X,") -

Note CH"(X,0) = CH"(X), the rational Chow group of X.
The following notion will be of frequent use. A C-complez (of abelian groups) consists of
(i) Complexes A™ = (A™*,dam) (each of which is not necessarily bounded) for m € Z,
such that for all but finitely many m’s, A™ = 0; and
(ii) For m < n, maps of graded groups

Fm,n:Am,o _)An,o—(n—m—l)

subject to the condition

Fm,no(_l)m dAm + (_l)ﬂ dAnoFm’n + Z Fl,nOFm’t —_ 0
m<é<n

as a map A™® — AmenIm+2,
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One can associate with it a complex, the total complex Tot (A) = (Tot (A)*,d), defined as:

Tot (47 = DA™~

p€EZ

(which is a finite sum), and the differential d is the direct sum, for m, of (—1)™ dgm + F™" :
A™® 5 Bp>mA™*~ ("M  The condition in (ii) is equivalent to d being a differential.

Let X and Y be smooth projective. For an element f € Z°(X x Y, £), one has the partially
defined map (of graded vector spaces)

fe: Z2"(X,n) — = = Z"5(Y,n + £), H(2) =py. J(f xO") - (2 x Y x OY)].

Here (f x O0") - (z x Y x O0%) denotes the alternation (with respect to the action of Gp¢) of
the cycle theoretic intersection (f x ") ® (z x Y x (%), and py : X x ¥ x O+t » Y x O+
is the projection.

Similarly there is the partially defined map

Z(X XY, )®ZY x Z,-) ~ — = Zrte-dm¥ (X »x 7.
which sends u® v € Z"(X x Y,n) ® Z5(Y x Z,m) to
vou := the alternation of pxz.[(X xvxO")® (ux Z x0O™)].

For each smooth projective variety X there is a collection of distinguished subcomplexes of
27 (X, -) satisfying:

(i) For a distinguished subcomplex Z7(X, ), the inclusion into Z"(X,-) is a quasi- isomor-
phism; )

(ii) For any cycle f € Z°(X x Y, £) and a distinguished subcomplex Z7+#~4m X (Y, .)’ there is
a distinguished subcomplex Z7 (X, )’ on which f, is defined and induces a map f : Z27(X, ) —
Zr+s—dimX(Y’ 4 e)i;

(iii) The intersection of a finite collection of distinguished subcomplexes is again distin-
guished.

For details on the category D(k) of mixed motives, we refer the reader to [Ha, II]. We will
only need the subcategory Dyinite (k) of mixed motives of finite type; the definitions are briefly
recalled.

A finite symbol is a formal sum

@(XOH Ta)

a€l

where X, is a smooth projective variety, I a finite index set and ro € Z. We write 0 for the
corresponding symbol when I is an empty set.
Define dual, tensor product, and inner Hom of (a) finite symbol(s) as:

(®(Xa7a))’ = ®(Xa,dim Xo — 1a) -

(B(XayTa)) ® (XL, 7)) = B(Xa X Xy Ta + Tor) 5

and
Hom(®(Xa,Ta), (X, Tar)) = (B(Xa,7a))¥ ® (B(Xor,Tar)) -
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Define the cycle complez of a finite formal symbol by
Z2°®(Xa,7a),) = P 2™ (Xa-) -

One also uses cohomological notation Z%(@®(Xa,7a)) ™ = Z%(@®(Xa:Ta), n).
Note there is a partially defined map

Z°(Hom((X1,71), (X2,72) ), ) ® Z°(Hom((X2,72)(X3,73)),")

—— = 2°(Hom((X1,71), (X3,73)),")

given by the composition of correspondences
u®v > vou=p,[(ux X3) (X1 xv)].

By definition, an object of Dyinite(k) is a set of data K = (K™) = (K™, f™") where

(i) For each integer m, K™ = @4¢1(m)(Xa;Ta), a finite symbol.

(i) For (m,n) with m < n, given f™" = (f73") € Z%Hom(K™, K™))~"+t™+1 which are
subject to the conditions:

For fmemi+1 ¢ ZO(Hom(K ™k, K™k+1))~Mati+mutl (k =12,... r) one has

Fre et fMement, L fMLM2 g defined and € Z°(Hom (K™, K™r+1) ) Mt

For m < n, one has

(_1)n af‘m.,n + Z f!,n of‘m.,l =0 , .

m<e<n

On the left side the compositions of the correspondences are required to be defined.

There is the functor of cycle complezes Z° from Dyinite(k) to the derived category of Q-
vector spaces. To define Z%(K,-), for each m and a € I(m), take a distinguished subcomplex
Z%((Xas7a), ") so that each f7 5" induces the map fo 5, : Z2%((Xa,Ta),) = 2°((Xs,78),")"-
We then let

ZU(K'm’ '), = @azo((Xay Ta)7 '),

and have f™", : Z%(K™,.)" = Z°(K™,-+ (n—m —1))' is defined. We define Z°(K,-) to be
the total complez Tot(Z°(K™,-), fr*™), namely the complex (K, d) with

K =P 2%K,j-i),

i>i

and

&= Y00+ 1Y)

J i<t

Let (K, f) and (L, g) be objects in Dyinite(k). The function cycle complez
Hom(K,L)® is defined as follows. Let Z°(Hom(K™,L™),-)" be distinguished subcomplexes
such that /

For ueZo(Hom(Km,Lml),-), both uof™™ and g"‘"“'ou are defined.
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(This is possible since there are only finitely many non-zero f™™’s and g""""l’s.) The coho-
mological complex to be defined has the group of N-cochains

Hom(K,L) = @  Z%(Hom(K™,L™),p)
—m+4m/—p=N

The differential of this complex, which we denote by D, is the sum of the three kinds of maps:

(—1)prmntl (o frmy 20 Hom(K™,L™),p)’ — Z°(Hom(K™, L™ ),p+n' —m' — 1)’

(_l)m'+n’ (gm’,n' O) : ZO(M(Km,Lm'),p)' N ZO(-II_OTQ(Km,LnI),p+ ' —m — 1)1 ,

and
(-1)™ 8: Z°(Hom(K™,L™),") — Z°(Hom(K™,L™),-— 1) .

Given three objects K, L and M, the partially defined composition map

Hom(K, L)s ® Hom(L, M)' — — = Hom(K, M)*

u®v > vou; (vou)™ Z vimou™*
LeZ

satisfies the Leibniz formula
D(vou) = Dvou + (—1)%€voDu ,

where deg v is the total degree of v in the cohomological complex. There is a quasi-isomorphic
subcomplex of Hom(K, L), ® Hom(L, M)* on which the composition is defined. See [Ha, II,

§1].
By definition

Homp“we(k)(K, L) = HOZO(_}@_@(K, L) ). .
The composition of morphisms is induced from the composition of the function complexes. A

morphism u : K — L is represented by u™" € Hom(K™, L™)~"*+™ (non-zero only for m < n)
subject to the condition

(-1)"ou™" — Z( 1)m+£ én fmt+z £+n tn ™t =0.

It defines the zero morphism if there exist U™" € Hom(K™, L®)~"*™~! (non-zero only for
m < n — 1) such that

mn __ (_1)naUm,n + Z(_l)m+l Ul,nofm,t + Z(_l)t+n g_t,noUm,e )

We have the following. Let Q(r) = (pt, r)[2r], the Tate objects.
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1.1) Theorem. The category Dyinite(k) has a structure of triangulated category. Moreover
f
(1) Diinite(k) has dual, tensor product, inner Hom, the unit object Q, and the Tate objects
Q(r).
(2) There is a contravariant functor h : (Smooth Proj./k) = Dyginite(k)-
(3) If X is smooth and projective, one has

Homp,,,.. (5 (@ h(X)(r)[2r — m]) = Kn(X)J .

Here the right hand side is an Adams-graded piece of the K -group of X.
(4) There is the cycle complex functor Z° : Dyinite(k) — D(Q).

For the rest we will simply write D(k) for Dfinise (k).

§2. Etale realization.

For a smooth projective variety X over a field k and £ # chk, we have the £-adic coho-
mology H*(X,Qe(r)). We use complexes calculating the etale cohomology, which behave well
with respect to composition of correspondences. Let X,Y be smooth projective, and D any
variety. One can define a complex of Q,-vector spaces Hom(X,Y)p(r) satisfying the following
properties (cf. [Ha, II, §5] for details in case of Betti cohomology).

(1) H*Hom(X,Y)p(r) = H™*? (X x Y x D,Qq(r)). If the first variety of the pair is
pt = Spec k, Hom(pt, X)pe(r) = T(X,C*(Qe(r)) )[27] := imT (X,C*(Z/2"(r))) ® Qe[2r]. Here
C® denotes the Godement resolution.

(2) There is a map of complexes

Hom(X,Y)p(r) ® Hom(Y, Z) p(s) — Hom(X, Z)p(r + s — dimY)
which gives rise to the composition of correspondences
H*(X xY x D,Qq(r)) ® H*(Y x Z x D,Qq(r)) = H*(X x Z,Qq(r + s — dimY)) .

The map is associative.

(3) To a map « : D' — D, there corresponds to a map of complexes o* : Hom(X,Y)p(r) —
HOIII(X, Y)Df (r) . )

There is also the supported theory. Given a closed set V C X xY x D, there is a subcomplex
Hom(X,Y)y p(r) ¢ Hom(X,Y)p(r) satisfying H* Hom(X,Y)v,p(r) = HLP (X x x D, Qq(r)),
and properties analogous to (2) and (3).

Now we take as D the cubical scheme 0°. For r,s € Z, we define a double complex
C ((X,7), (Y, s))*" as follows.

C((X,r), (Y,8))"® = Hom(X,Y)g-s(s — r + dim X )4
where Alt denotes the alternating part with respect to the action of G_p on (7P, Define
8:C**((X,r), (¥, 5)) = C**((X,r), (¥ 9))

to be the alternating sum of the maps induced by the face maps 07°"! — 0~%. Denote the
associated simple complex by C ((X,r), (Y, s)) with differential D = d + (-1)%d.

The above definitions can be extended to finite symbols. For K and L finite symbols we
have the complex C(K,L). Set C(X,r) = C((pt,0),(X,r)) = Hom(pt, X)(r), and C(K) =
C ((pt,0), K). There is composition map

C(K,L)® C(L,M) = C(K,M), f®gwrgof,
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satisfying associativity. An element F € C(K, L)™ induces a map F, : C(K) — C(L)[n].
Given Z € Z"(X,n) define a subcomplex

Ciz| (X,r)°* cC(X,r)°* ="
cCc(x,r)**
where C|z| (X, r)“’b is defined by the support condition with respect to Us|d*Z|, § varying
over the face maps § : (0~% — (J*. Similarly given f € Hom(K,L)™™ there is a subcomplex
Ci#|(K,L). Here |f| denotes the support of f (we sometimes write just f). An element
f € Hom(K, L)~™ has cycle class cl(f) € H'C[;’(K, L).

(2.1) Proposition. Given an object (K™, f™") of D(k), there exist, for m < n, elements

m,n abim pn
Fm™n e &P Cl4} (K™, K™)

a+b=—(n—m-1),a<0 -
such that its (0, —n + m + 1)-component °F™n ¢ O3~ (""™"Y(Km KnY satisfies
f
CF™™g = (™) € H°Cp~ "D (K™, K™)

and one has the relation

() (-)"D(F™") + Y F'meF™ =0
m<é<n :
in &y Cy* (K™ K™) .

a+b=—(n—-m-—2),a<0

We call such (F™") a representative of (cl(f™")).
Choose (F™™); then the maps

Fn,  C(K™) = C(K™)[~(n - m —1)]

satisfy
(—l)nDoFm’n* + Fm’"*o(—-l)mD + ZFt'n*oFm’t* =0

where D is the differential of C(K™) or C(K™), namely (C(K™), F™",) is a C-complex. So
we have the total complex,

C(K) := Tot (®C(K™),D+ > F™",).

It can be shown that C(K) is well-defined independent of the choice of representatives F™".
By definition H*(K) = H*(K, Q) := H*C(K).

(2.2) Theorem. We have the functor of £-adic etale cohomology

H*("aQt) :D(k) - Vech .
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For K in D(k), we have K ® k in D(k); the cohomology
H*(K ® k,Q¢)
is a G(k/k)-module. We have the functor to the category of Galois modules
D(k) - (G(k/k) — Vecg,) -

§3. Polylogarithmic objects.

We define the category of mixed Tate motives to be the triangulated subcategory generated

by Q(r), r € Z.
We give two types of algebraic cycles, each parametrized by a € k*. For a € k*, f, =

Alt{t = a} € Z'(pt, 1), the alternation of the cycle {¢ = a}. For a € k* — {1} and r > 2, using
cubical coordinates and parameters ty,--- ,t,—2,

_ t‘f‘—-].]

to '
V7 i=[t,ta, - ytpo1, 1 — 1,1 — =,---,1
t1 ly—2

and CT := AltV" € Z7(pt,2r — 1). This was considered by Totaro (r = 2) and Bloch (r > 3).

Note ) )
9CT = { fi—aofa lf =2
* Cr=tof, if r>3
Define the object
L(a) = [(pt,0) %5 (pt, )]

where (pt,0), (pt,1) are placed in degrees 0 and 2, respectively. More precisely, L(a) =
(L™, f™") consists of

L*™ = (pt,m) for m=0,1, and L" =0 otherwise;

fO2 =f,, f™" =0 otherwise.

For p > 1 and a € k* — {1}, define the object K,(a) (called the polylogarithmic object of
weight p) by

K*™ = (pt,m) for m=0,1,---,p, K" =0 otherwise;

f0’2=f1-aa fzm'2m+2=fa for m=1,---,p—1,

fo?m=C™ for m=2,---,p and f™" =0 otherwise.

(3.1) Proposition. (1) H*(L(a) ® k,Q¢) = 0 for v # 0. There is an ezact sequence
0 — Qe(1) — H(L(e) @ k, Qe) = Qe(0) 0

whose extension class is [a] € H (G (k/k), Qe(1)). B

(2) H” (K,(a) ®x k,Q¢) = 0 for v # 0; The cohomology HO(K,(a) ®k k,Q¢) has a filtration
W, (the weight filiration), H® = Wy D W_3 D --+ D W_3p D W_zp_2 = 0 such that Gr¥y, =
Qe(q) for g=0,--- ,p and the extension class of the ezact sequence

0—- GT_WZq_z =Qulg+1) > W_g/W_2q_4 — Gr‘f’zq = Qe(g) = 0

is [1 —a] forq=0 and [a] forg=1,--- ,p—1.
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