POLYLOGARITHMS AND MIXED MOTIVES

Masaki Hanamura

§1. The category of mixed motives $\mathcal{D}_{finite}(k)$.

Let k be a field, $\Box^1 = \mathbb{P}^1_k - \{1\}$ and $\Box^n = (\Box^1)^n$ with coordinates (x_1, \dots, x_n) . Faces of \Box^n are intersections of codimension one faces, and the latter are divisors of the form $\Box^{n-1}_{i,a} = \{x_i = a\}$ where a = 0 or ∞ . A face of dimension m is canonically isomorphic to \Box^m .

Let Σ_n be the permutation group of the set $\{1, \dots, n\}$; it acts on $(\mathbb{Z}/2\mathbb{Z})^n$ by permutations. Let G_n be the semi-direct product of $(\mathbb{Z}/2\mathbb{Z})^n$ and Σ_n ; an element is of the form $(i_1, \dots, i_n; \tau)$ with $i_1, \dots, i_n \in \mathbb{Z}/2\mathbb{Z} = \{\pm 1\}$ and $\tau \in \Sigma_n$. Σ_n acts on \square^n by permutations of coordinates, and $(\mathbb{Z}/2\mathbb{Z})^n$ acts by: $(i_1, \dots, i_n) \cdot (x_1, \dots, x_n) = (x_1^{i_1}, \dots, x_n^{i_n})$. So G_n acts of \square^n . There is a homomorphism $sgn: G_n \to \{\pm 1\}, (i_1, \dots, i_n; \tau) \mapsto i_1 \dots i_n \cdot sgn \tau$.

Let X be an equi-dimensional variety (or a scheme) over a field k. Let $\mathcal{Z}^r(X,n)$ be the \mathbb{Q} -vector space of \mathbb{Q} -cycles z of codimension r on $X \times \square^n$ such that

- (i) each irreducible component of z meets each face $X \times \square^m$ properly, and
- (ii) z is alternating with respect to G_n , namely, for any $\sigma \in G_n$, $\sigma(z) = sgn(\sigma)z$.

The inclusions of codimension one faces $\delta_{i,a}: \square_{i,a}^{n-1} \hookrightarrow \square^n$ induce the map

$$\partial = \sum (-1)^{i+a} \delta_{i,a}^* : \mathcal{Z}^r(X,n) \to \mathcal{Z}^r(X,n-1)$$

(namely, ∂ sends alternating cycles to alternating ones) and $(\mathcal{Z}^r(X,\cdot),\partial)$ is a homology complex. We call this the *cycle complex* (of codimension r) of X. By definition the (rational) higher Chow groups are the homology groups of this complex:

$$CH^r(X,n) = H_n \mathcal{Z}^r(X,\cdot)$$
.

Note $CH^r(X,0) = CH^r(X)$, the rational Chow group of X.

The following notion will be of frequent use. A C-complex (of abelian groups) consists of

- (i) Complexes $A^m = (A^{m,\bullet}, d_{A^m})$ (each of which is not necessarily bounded) for $m \in \mathbb{Z}$, such that for all but finitely many m's, $A^m = 0$; and
 - (ii) For m < n, maps of graded groups

$$F^{m,n}:A^{m,\bullet}\to A^{n,\bullet-(n-m-1)}$$

subject to the condition

$$F^{m,n} \circ (-1)^m d_{A^m} + (-1)^n d_{A^n} \circ F^{m,n} + \sum_{m < \ell < n} F^{\ell,n} \circ F^{m,\ell} = 0$$

as a map $A^{m,\bullet} \to A^{n,\bullet-n+m+2}$.

MASAKI HANAMURA

One can associate with it a complex, the total complex $Tot(A) = (Tot(A)^{\bullet}, \mathbf{d})$, defined as:

$$Tot (A)^p = \bigoplus_{p \in \mathbb{Z}} A^{m, p-m}$$

(which is a finite sum), and the differential **d** is the direct sum, for m, of $(-1)^m d_{A^m} + F^{m,n}$: $A^{m,\bullet} \to \bigoplus_{n>m} A^{n,\bullet-(n-m-1)}$. The condition in (ii) is equivalent to **d** being a differential.

Let X and Y be smooth projective. For an element $f \in \mathcal{Z}^s(X \times Y, \ell)$, one has the partially defined map (of graded vector spaces)

$$f_*: \mathcal{Z}^r(X,n) \longrightarrow \mathcal{Z}^{r+s}(Y,n+\ell), \qquad f_*(z) = p_{Y_*}[(f \times \square^n) \cdot (z \times Y \times \square^\ell)].$$

Here $(f \times \square^n) \cdot (z \times Y \times \square^\ell)$ denotes the alternation (with respect to the action of $G_{n+\ell}$) of the cycle theoretic intersection $(f \times \square^n) \odot (z \times Y \times \square^\ell)$, and $p_Y : X \times Y \times \square^{n+\ell} \to Y \times \square^{n+\ell}$ is the projection.

Similarly there is the partially defined map

$$\mathcal{Z}^r(X \times Y, \cdot) \otimes \mathcal{Z}^s(Y \times Z, \cdot) -- \to \mathcal{Z}^{r+s-\dim Y}(X \times Z, \cdot)$$

which sends $u \otimes v \in \mathcal{Z}^r(X \times Y, n) \otimes \mathcal{Z}^s(Y \times Z, m)$ to

$$v \circ u := \text{ the alternation of } p_{XZ*}[(X \times v \times \square^n) \odot (u \times Z \times \square^m)].$$

For each smooth projective variety X there is a collection of distinguished subcomplexes of $\mathcal{Z}^r(X,\cdot)$ satisfying:

- (i) For a distinguished subcomplex $\mathcal{Z}^r(X,\cdot)'$, the inclusion into $\mathcal{Z}^r(X,\cdot)$ is a quasi- isomorphism:
- (ii) For any cycle $f \in \mathcal{Z}^s(X \times Y, \ell)$ and a distinguished subcomplex $\mathcal{Z}^{r+s-\dim X}(Y, \cdot)'$ there is a distinguished subcomplex $\mathcal{Z}^r(X, \cdot)'$ on which f_* is defined and induces a map $f_* : \mathcal{Z}^r(X, \cdot)' \to \mathcal{Z}^{r+s-\dim X}(Y, \cdot + \ell)'$;
- (iii) The intersection of a finite collection of distinguished subcomplexes is again distinguished.

For details on the category $\mathcal{D}(k)$ of mixed motives, we refer the reader to [Ha, II]. We will only need the subcategory $\mathcal{D}_{finite}(k)$ of mixed motives of finite type; the definitions are briefly recalled.

A finite symbol is a formal sum

$$\bigoplus_{\alpha\in I}(X_\alpha,r_\alpha)$$

where X_{α} is a smooth projective variety, I a finite index set and $r_{\alpha} \in \mathbb{Z}$. We write 0 for the corresponding symbol when I is an empty set.

Define dual, tensor product, and inner Hom of (a) finite symbol(s) as:

$$ig(\oplus (X_lpha, r_lpha) ig)^ee = \oplus (X_lpha, \dim X_lpha - r_lpha) \; .$$
 $(\oplus (X_lpha, r_lpha)) \otimes (\oplus (X'_{lpha'}, r_{lpha'})) = \oplus (X_lpha imes X'_{lpha'}, r_lpha + r'_{lpha'}) \; ;$

and

$$\underline{Hom}(\oplus(X_{\alpha},r_{\alpha}),\oplus(X'_{\alpha'},r_{\alpha'}))=(\oplus(X_{\alpha},r_{\alpha}))^{\vee}\otimes(\oplus(X'_{\alpha'},r_{\alpha'})).$$

Define the *cycle complex* of a finite formal symbol by

$$\mathcal{Z}^0(\oplus(X_{\alpha},r_{\alpha}),\cdot)=\bigoplus\mathcal{Z}^{r_{\alpha}}(X_{\alpha},\cdot)$$
.

One also uses cohomological notation $\mathcal{Z}^0(\oplus(X_\alpha,r_\alpha))^{-n}=\mathcal{Z}^0(\oplus(X_\alpha,r_\alpha),n)$. Note there is a partially defined map

$$\mathcal{Z}^{0}(\underline{Hom}((X_{1},r_{1}),(X_{2},r_{2})),\cdot)\otimes\mathcal{Z}^{0}(\underline{Hom}((X_{2},r_{2})(X_{3},r_{3})),\cdot)$$

$$--\to\mathcal{Z}^{0}(Hom((X_{1},r_{1}),(X_{3},r_{3})),\cdot)$$

given by the composition of correspondences

$$u \otimes v \mapsto v \circ u = p_{13*}[(u \times X_3) \cdot (X_1 \times v)]$$
.

By definition, an object of $\mathcal{D}_{finite}(k)$ is a set of data $K = (K^m) = (K^m, f^{m,n})$ where

(i) For each integer $m, K^m = \bigoplus_{\alpha \in I(m)} (X_{\alpha}, r_{\alpha})$, a finite symbol. (ii) For (m, n) with m < n, given $f^{m,n} = (f^{m,n}_{\alpha\beta}) \in \mathcal{Z}^0(\underline{Hom}(K^m, K^n))^{-n+m+1}$, which are subject to the conditions:

For
$$f^{m_k,m_{k+1}} \in \mathcal{Z}^0(\underline{Hom}(K^{m_k},K^{m_{k+1}}))^{-m_{k+1}+m_k+1}$$
 $(k=1,2,\cdots,r)$ one has

$$f^{m_r,m_{r+1}} \circ f^{m_r,m_{r-1}} \circ \cdots \circ f^{m_1,m_2}$$
 is defined and $\in \mathcal{Z}^0(\underline{Hom}(K^{m_1},K^{m_{r+1}}))^{-m_{r+1}+m_1+r}$.

For m < n, one has

$$(-1)^n \partial f^{m,n} + \sum_{m < \ell < n} f^{\ell,n} \circ f^{m,\ell} = 0 , .$$

On the left side the compositions of the correspondences are required to be defined.

There is the functor of cycle complexes \mathcal{Z}^0 from $\mathcal{D}_{finite}(k)$ to the derived category of \mathbb{Q} vector spaces. To define $\mathcal{Z}^0(K,\cdot)$, for each m and $\alpha \in I(m)$, take a distinguished subcomplex $\mathcal{Z}^0((X_{\alpha},r_{\alpha}),\cdot)'$ so that each $f_{\alpha,\beta}^{m,n}$ induces the map $f_{\alpha,\beta}^{m,n}:\mathcal{Z}^0((X_{\alpha},r_{\alpha}),\cdot)'\to\mathcal{Z}^0((X_{\beta},r_{\beta}),\cdot)'$. We then let

$$\mathcal{Z}^0(K^m,\cdot)':=\oplus_{lpha}\mathcal{Z}^0((X_lpha,r_lpha),\cdot)'$$

and have $f^{m,n}_{*}:\mathcal{Z}^0(K^m,\cdot)'\to\mathcal{Z}^0(K^n,\cdot+(n-m-1))'$ is defined. We define $\mathcal{Z}^0(K,\cdot)$ to be the total complex $Tot(\mathcal{Z}^0(K^m,\cdot),f_*^{m,n})$, namely the complex (\mathbb{K},d) with

$$\mathbb{K}^i = \bigoplus_{j \geq i} \mathcal{Z}^0(K^j, j - i)' ,$$

and

$$d^{i} = \sum_{j} \left((-1)^{j} \partial_{j} + \sum_{j < \ell} f_{*}^{j,\ell} \right) .$$

Let (K, f) and (L, g) be objects in $\mathcal{D}_{finite}(k)$. The function cycle complex $\operatorname{Hom}(K,L)^{\bullet}$ is defined as follows. Let $\mathcal{Z}^{0}(\operatorname{\underline{Hom}}(K^{m},L^{m'}),\cdot)'$ be distinguished subcomplexes such that

For $u \in \mathcal{Z}^0(\underline{Hom}(K^m, L^{m'}), \cdot)$, both $u \circ f^{n,m}$ and $g^{m',n'} \circ u$ are defined.

(This is possible since there are only finitely many non-zero $f^{n,m}$'s and $g^{m',n'}$'s.) The cohomological complex to be defined has the group of N-cochains

$$\operatorname{Hom}(K,L)^N = \bigoplus_{-m+m'-p=N} \mathcal{Z}^0(\underline{Hom}(K^m,L^{m'}),p)'$$

The differential of this complex, which we denote by D, is the sum of the three kinds of maps:

$$(-1)^{p+m'+n+1} (\circ f^{n,m}) : \mathcal{Z}^0(\underline{Hom}(K^m,L^{m'}),p)' \to \mathcal{Z}^0(\underline{Hom}(K^n,L^{m'}),p+n'-m'-1)' ,$$

$$(-1)^{m'+n'}(g^{m',n'}\circ): \mathcal{Z}^0(\underline{Hom}(K^m,L^{m'}),p)' \to \mathcal{Z}^0(\underline{Hom}(K^m,L^{n'}),p+n'-m'-1)',$$

and

$$(-1)^{m'} \partial: \mathcal{Z}^0(\underline{Hom}(K^m, L^{m'}), \cdot)' \to \mathcal{Z}^0(\underline{Hom}(K^m, L^{m'}), \cdot -1)'$$
.

Given three objects K, L and M, the partially defined composition map

$$\operatorname{Hom}(K,L)_{\bullet} \otimes \operatorname{Hom}(L,M)^{\bullet} - - \to \operatorname{Hom}(K,M)^{\bullet}$$
$$u \otimes v \mapsto v \circ u; \quad (v \circ u)^{m,n} = \sum_{\ell \in \mathbb{Z}} v^{\ell,n} \circ u^{m,\ell}$$

satisfies the Leibniz formula

$$D(v \circ u) = Dv \circ u + (-1)^{\deg v} v \circ Du ,$$

where deg v is the total degree of v in the cohomological complex. There is a quasi-isomorphic subcomplex of $\text{Hom}(K,L)_{\bullet} \otimes \text{Hom}(L,M)^{\bullet}$ on which the composition is defined. See [Ha, II, §1].

By definition

$$\operatorname{Hom}_{\mathcal{D}_{finite}(k)}(K,L) = H^0 \mathcal{Z}^0(\underline{Hom}(K,L))^{\bullet}$$
.

The composition of morphisms is induced from the composition of the function complexes. A morphism $u: K \to L$ is represented by $u^{m,n} \in \text{Hom}(K^m, L^n)^{-n+m}$ (non-zero only for $m \le n$) subject to the condition

$$(-1)^{n} \partial u^{m,n} - \sum_{\ell} (-1)^{m+\ell} u^{\ell,n} \circ f^{m,\ell} + \sum_{\ell} (-1)^{\ell+n} g^{\ell,n} \circ u^{m,\ell} = 0$$

It defines the zero morphism if there exist $U^{m,n} \in \text{Hom}(K^m, L^n)^{-n+m-1}$ (non-zero only for $m \leq n-1$) such that

$$u^{m,n} = (-1)^n \partial U^{m,n} + \sum_{\ell} (-1)^{m+\ell} U^{\ell,n} \circ f^{m,\ell} + \sum_{\ell} (-1)^{\ell+n} g^{\ell,n} \circ U^{m,\ell}.$$

We have the following. Let $\mathbb{Q}(r) = (pt, r)[2r]$, the Tate objects.

- (1.1) **Theorem.** The category $\mathcal{D}_{finite}(k)$ has a structure of triangulated category. Moreover
- (1) $\mathcal{D}_{finite}(k)$ has dual, tensor product, inner Hom, the unit object \mathbb{Q} , and the Tate objects $\mathbb{Q}(r)$.
 - (2) There is a contravariant functor $h: (Smooth Proj./k) \to \mathcal{D}_{finite}(k)$.
 - (3) If X is smooth and projective, one has

$$\operatorname{Hom}_{\mathcal{D}_{finite}(k)}(\mathbb{Q}, h(X)(r)[2r-m]) = K_m(X)_{\mathbb{Q}}^{(r)}.$$

Here the right hand side is an Adams-graded piece of the K-group of X.

(4) There is the cycle complex functor $\mathcal{Z}^0:\mathcal{D}_{finite}(k)\to D(\mathbb{Q})$.

For the rest we will simply write $\mathcal{D}(k)$ for $\mathcal{D}_{finite}(k)$.

§2. Etale realization.

For a smooth projective variety X over a field k and $\ell \neq \operatorname{ch} k$, we have the ℓ -adic cohomology $H^*(X, \mathbb{Q}_{\ell}(r))$. We use complexes calculating the etale cohomology, which behave well with respect to composition of correspondences. Let X, Y be smooth projective, and D any variety. One can define a complex of \mathbb{Q}_{ℓ} -vector spaces $\operatorname{Hom}(X,Y)_D(r)$ satisfying the following properties (cf. [Ha, II, §5] for details in case of Betti cohomology).

- (1) $H^i \operatorname{Hom}(X,Y)_D(r) = H^{i+2r}(X \times Y \times D, \mathbb{Q}_{\ell}(r))$. If the first variety of the pair is $\operatorname{pt} = \operatorname{Spec} k$, $\operatorname{Hom}(\operatorname{pt},X)_{\operatorname{pt}}(r) = \Gamma(X,\mathcal{C}^{\bullet}(\mathbb{Q}_{\ell}(r)))[2r] := \varprojlim \Gamma(X,\mathcal{C}^{\bullet}(\mathbb{Z}/\ell^{\nu}(r))) \otimes \mathbb{Q}_{\ell}[2r]$. Here \mathcal{C}^{\bullet} denotes the Godement resolution.
 - (2) There is a map of complexes

$$\operatorname{Hom}(X,Y)_D(r) \otimes \operatorname{Hom}(Y,Z)_D(s) \to \operatorname{Hom}(X,Z)_D(r+s-\dim Y)$$

which gives rise to the composition of correspondences

$$H^*(X \times Y \times D, \mathbb{Q}_{\ell}(r)) \otimes H^*(Y \times Z \times D, \mathbb{Q}_{\ell}(r)) \to H^*(X \times Z, \mathbb{Q}_{\ell}(r+s-\dim Y))$$
.

The map is associative.

(3) To a map $\alpha: D' \to D$, there corresponds to a map of complexes $\alpha^* : \text{Hom}(X,Y)_D(r) \to \text{Hom}(X,Y)_{D'}(r)$.

There is also the supported theory. Given a closed set $V \subset X \times Y \times D$, there is a subcomplex $\operatorname{Hom}(X,Y)_{V,D}(r) \subset \operatorname{Hom}(X,Y)_D(r)$ satisfying $H^i \operatorname{Hom}(X,Y)_{V,D}(r) = H_V^{i+2r}(X \times XD, \mathbb{Q}_{\ell}(r))$, and properties analogous to (2) and (3).

Now we take as D the cubical scheme \square^{\bullet} . For $r, s \in \mathbb{Z}$, we define a double complex $C((X, r), (Y, s))^{a,b}$ as follows.

$$C\left((X,r),(Y,s)\right)^{\bullet,b} = \operatorname{Hom}(X,Y)_{\square^{-b}}(s-r+\dim X)^{Alt}$$

where Alt denotes the alternating part with respect to the action of G_{-b} on \Box^{-b} . Define

$$\partial:C^{\bullet\;b}((X,r),(Y,s))\to C^{\bullet\;b+1}((X,r),(Y,s))$$

to be the alternating sum of the maps induced by the face maps $\Box^{-b-1} \to \Box^{-b}$. Denote the associated simple complex by C((X,r),(Y,s)) with differential $D=d+(-1)^b\partial$.

The above definitions can be extended to finite symbols. For K and L finite symbols we have the complex C(K, L). Set C(X, r) = C((pt, 0), (X, r)) = Hom(pt, X)(r), and C(K) = C((pt, 0), K). There is composition map

$$C(K,L)\otimes C(L,M)\to C(K,M)$$
, $f\otimes g\mapsto g\circ f$,

MASAKI HANAMURA

satisfying associativity. An element $F \in C(K, L)^n$ induces a map $F_* : C(K) \to C(L)[n]$. Given $Z \in \mathcal{Z}^r(X, n)$ define a subcomplex

$$C_{|Z|}(X,r)^{\bullet \bullet} \subset C(X,r)^{\bullet \geq -n}$$

 $\subset C(X,r)^{\bullet \bullet}$

where $C_{|Z|}(X,r)^{a,b}$ is defined by the support condition with respect to $\bigcup_{\delta} |\delta^*Z|$, δ varying over the face maps $\delta: \Box^{-b} \to \Box^n$. Similarly given $f \in \operatorname{Hom}(K,L)^{-n}$ there is a subcomplex $C_{|f|}(K,L)$. Here |f| denotes the support of f (we sometimes write just f). An element $f \in \operatorname{Hom}(K,L)^{-n}$ has cycle class $cl(f) \in H^0C_{|f|}^{\bullet,b}(K,L)$.

(2.1) Proposition. Given an object $(K^m, f^{m,n})$ of $\mathcal{D}(k)$, there exist, for m < n, elements

$$F^{m,n} \in \bigoplus_{a+b=-(n-m-1), a \leq 0} C^{a,b}_{|f|}(K^m, K^n)$$

such that its (0, -n+m+1)-component ${}^0\!F^{m,n} \in C^{ullet, -(n-m-1)}_f(K^m, K^n)$ satisfies

$$[{}^{0}F^{m,n}]_{d} = cl(f^{m,n}) \in H^{0}C_{f}^{\bullet,-(n-m-1)}(K^{m},K^{n})$$

and one has the relation

(*)
$$(-1)^{n}D(F^{m,n}) + \sum_{m<\ell < n} F^{\ell,n} \circ F^{m,\ell} = 0$$

$$in \bigoplus_{a+b=-(n-m-2), a \leq 0} C^{a,b}_{f}(K^{m}, K^{n}) .$$

We call such $(F^{m,n})$ a representative of $(cl(f^{m,n}))$.

Choose $(F^{m,n})$; then the maps

$$F^{m,n}_*: C(K^m) \to C(K^n)[-(n-m-1)]$$

satisfy

$$(-1)^{n} D \circ F^{m,n} * + F^{m,n} \circ (-1)^{m} D + \sum_{i} F^{\ell,n} \circ F^{m,\ell} * = 0$$

where D is the differential of $C(K^m)$ or $C(K^n)$, namely $(C(K^m), F^{m,n})$ is a C-complex. So we have the total complex,

$$C(K) := Tot\left(\oplus C(K^m), D + \sum F^{m,n}_*\right).$$

It can be shown that C(K) is well-defined independent of the choice of representatives $F^{m,n}$. By definition $H^*(K) = H^*(K, \mathbb{Q}_{\ell}) := H^*C(K)$.

(2.2) Theorem. We have the functor of ℓ -adic etale cohomology

$$H^*(-,\mathbb{Q}_{\ell}):\mathcal{D}(k)\to Vec_{\mathbb{Q}_{\ell}}$$
.

For K in $\mathcal{D}(k)$, we have $K \otimes_k \bar{k}$ in $\mathcal{D}(\bar{k})$; the cohomology

$$H^*(K \otimes_k \bar{k}, \mathbb{Q}_{\ell})$$

is a $G(\bar{k}/k)$ -module. We have the functor to the category of Galois modules

$$\mathcal{D}(k)
ightarrow \left(G(\bar{k}/k) - Vec_{\mathbb{Q}_{\ell}} \right)$$
.

§3. Polylogarithmic objects.

We define the category of mixed Tate motives to be the triangulated subcategory generated by $\mathbb{Q}(r)$, $r \in \mathbb{Z}$.

We give two types of algebraic cycles, each parametrized by $a \in k^*$. For $a \in k^*$, $f_a := Alt\{t = a\} \in \mathcal{Z}^1(\mathrm{pt}, 1)$, the alternation of the cycle $\{t = a\}$. For $a \in k^* - \{1\}$ and $r \geq 2$, using cubical coordinates and parameters t_1, \dots, t_{r-2} ,

$$V_a^r := [t_1, t_2, \cdots, t_{r-1}, 1 - t_1, 1 - \frac{t_2}{t_1}, \cdots, 1 - \frac{t_{r-1}}{t_{r-2}}]$$

and $C_a^r := Alt V_a^r \in \mathcal{Z}^r(\text{pt}, 2r-1)$. This was considered by Totaro (r=2) and Bloch $(r \geq 3)$. Note

$$\partial C_a^r = \begin{cases} f_{1-a} \circ f_a & \text{if} \quad r = 2\\ C_a^{r-1} \circ f_a & \text{if} \quad r \ge 3 \end{cases}$$

Define the object

$$L(a) := [(\operatorname{pt}, 0) \xrightarrow{f_a} (\operatorname{pt}, 1)]$$

where (pt, 0), (pt, 1) are placed in degrees 0 and 2, respectively. More precisely, $L(a) = (L^m, f^{m,n})$ consists of

$$L^{2m} = (pt, m)$$
 for $m = 0, 1$, and $L^n = 0$ otherwise; $f^{0,2} = f_a$, $f^{m,n} = 0$ otherwise.

For $p \ge 1$ and $a \in k^* - \{1\}$, define the object $K_p(a)$ (called the polylogarithmic object of weight p) by

$$K^{2m} = (\mathrm{pt}, m)$$
 for $m = 0, 1, \dots, p$, $K^n = 0$ otherwise; $f^{0,2} = f_{1-a}$, $f^{2m,2m+2} = f_a$ for $m = 1, \dots, p-1$, $f^{0,2m} = C_a^m$ for $m = 2, \dots, p$ and $f^{m,n} = 0$ otherwise.

(3.1) Proposition. (1) $H^{\nu}(L(a) \otimes \bar{k}, \mathbb{Q}_{\ell}) = 0$ for $\nu \neq 0$. There is an exact sequence

$$0 \to \mathbb{Q}_{\ell}(1) \to H^0(L(a) \otimes \bar{k}, \mathbb{Q}_{\ell}) \to \mathbb{Q}_{\ell}(0) \to 0$$

whose extension class is $[a] \in H^1(G(\bar{k}/k), \mathbb{Q}_{\ell}(1))$.

(2) $H^{\nu}(K_p(a) \otimes_k \bar{k}, \mathbb{Q}_{\ell}) = 0$ for $\nu \neq 0$; The cohomology $H^0(K_p(a) \otimes_k \bar{k}, \mathbb{Q}_{\ell})$ has a filtration W_{\bullet} (the weight filtration), $H^0 = W_0 \supset W_{-2} \supset \cdots \supset W_{-2p} \supset W_{-2p-2} = 0$ such that $Gr_{-2q}^W = \mathbb{Q}_{\ell}(q)$ for $q = 0, \cdots, p$ and the extension class of the exact sequence

$$0 \to Gr^W_{-2q-2} = \mathbb{Q}_{\ell}(q+1) \to W_{-2q}/W_{-2q-4} \to Gr^W_{-2q} = \mathbb{Q}_{\ell}(q) \to 0$$

is [1-a] for q=0 and [a] for $q=1,\cdots,p-1$.

MASAKI HANAMURA

REFERENCES

[B1]	S. Bloch, Algebraic cycles and the Lie algebra of mixed Tate motives, J. Amer. Math. Soc. 4 (1991),
-	771–791.

- [Ha I] M. Hanamura, Mixed motives and algebraic cycles, I, Math. Res. Letters 2 (1995), 811-821.
- [Ha II] M. Hanamura, Mixed motives and algebraic cycles, II.
- [Ha III] M. Hanamura, Mixed motives and algebraic cycles, III, Math. Res. Letters 6 (1999), 61-82.
- [To] B. Totaro, Milnor K-theory is the simplest part of algebraic K-theory, K-theory 6 (1992), 177-189.

[Ha, II] is available from www.math.tohoku.ac.jp/ hanamura

Masaki Hanamura

Mathematical Institute, Tohoku University