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1 Introduction

Let E and E’' be isogenous elliptic curves defined over a number
field k of degree d. Masser and Wiistholz [6] proved the existence
of a constant ¢ depending effectively only on d such that there is an
isogeny between F and E' whose degree is at most c{w(E)}*, where
w(E) = max{1, h(g2), h(gs)} when E is identified with its Weierstrass
equation y2 = 4x3 — gox — g3. Here h denotes the absolute logarithmic
‘Weil height. But they did not give an explicit formula of c. The purpose
of this paper is to express ¢ as an explicit function of d bounded by a
polynomial when E has no complex multiplication. The main result is
as follows.

Theorem. Given a positive integer d, there exists a constant c(d)
depending only on d with the following property. Let k be a number
field of degree at most d, and let E be an elliptic curve defined over
k without complex multiplication. Suppose E is isogenous to another
elliptic curve E’ defined over k.

(i) Then there is an isogeny between E and E’ whose degree is at most
c(d){w(E)}*, where

e(d) = 6.55x 10°%*{max(1.09 x 107d"*°[15.5 max{log(88.8d + 2.8),
38.4} + 342.3]145, 1.82 x 10%%)}21%(11.4d + 55.3)°.

In particular the function ¢(d) in d increases as 1.9 x 10'%8d%?® when
d goes to infinity.
(i) ¢(1) = 8.2 x 1034 whend =1,i. e, k= Q.

We proceed along the line of [6]. Main devices in calculating c are
as follows. First we distinguish five constants which are unified as c3
in [6, Lemma 3.3.] and those in [6, Lemmas 3.4 and 4.4]. Secondly
we improve the relative degree of the field generated by the values of
Weierstrass p-functions and their derivatives over k from 81 to 36.



Pellarin [8] found an upper bound of the form 4.2 x 1081d* max{1,
log d}2h(E)?, where h(E) = max{1, h(j)} + max{1, h(1, g2, g3)} and
j is the j-invariant of F. But his Lemme 3.2 seems to contain some mis-
takes, because the cardinality of C-linear independent monic monomials
X2 on G such that A < D, Mp, is [],,(Dn + 1) on line 21 of page 219.
This lemma is used in the proof of Proposition 3.1, and plays a crucial
role in the main estimate. We hope that his proof will be corrected.

2 Preliminary estimates

Let Q be a lattice in the complex plane. Let (w;, wa) be a basis of
Q such that 7 = ws/w; belongs to the standard fundamental region for
the modular group. So |7| > 1, z = Re 7 satisfies |z| < ,and y =Im 7
satisfies y > 123 Let A be the area of the unit of 2, which equals y|w |2.
Let g» and g3 be the invariants of Q, let p(z) be the corresponding
Weierstrass function, and v = max{|1g,|7, |1gs|5}.

Lemma 2.1. There exists a function 6o(z) such that 6(z) = v6p(2)
and 6(z) = p(z)8y(2) are entire functions, with no common zeros, that
satisfy

| log max{|6(2)|, |0(2)|} — 7|2|*/A| < 10.5y.
for all complex z.

Proof. This is [4, Lemma 3.1] except for the estimation of the constant
on the right-hand side of the inequality, which is 10.5. q. e. d.

Lemma 2.2. Let z be a complex number not in 2, and ||z|| be the
distance from z to the nearest element of 2. Then

lp(2) — p(w2/2)| < 77244]|2|| 2.

Proof. This is [6, Lemma 3.2] except for the estimation of the constant
on the right-hand side of the inequality, which is 77244. q. e. d.

Let d be a positive integer, and k be a number field of degree at most
d. Moreover, g, and g3 are assumed to lie in k, and w = max{1, h(g2),

h(gs)}.

Lemma 2.3. There are constants ¢; ; (1 < < 5), depending only on
d, such that

(i) cip™ <y <1,

(ii) y < 12w,
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(iii) A> 13" Y,

(iv) Jun] > 147",

(v) A Mws? < e 5w,
where c1,1 = 260’5d, C12 = 3.2d + 1.2, 1,3 = 16.663'8d, C14 = 4.3761'gd,
and Ci5 = 3.2d + 1.5.

Proof. This is [6, Lemma 3.3] except for the estimation of the constants
c1: (1<1<5). q. e. d.

Lemma 2.4. There are a constant ¢y depending only on d and a
positive integer b < 2.22¥ with the following properties. Suppose n is a
positive integer, ¢ is an element of Q/n not in 2, and write £ = p(().
Then

(i) ¢ is an algebraic number of degree at most dn? w1th h(¢) < 8.55w,

(i) bn2¢ is an algebraic integer, and |¢| < c®n?,
where ¢y = 2.951 x 10° exp(3.8d).

Proof. When % g2 and ;}gg are algebraic integers, from the proof of (6,
Lemma 3.4] £ has degree at most dn?, and n?¢ is an algebraic integer. In
the general case we can find a positive integer by < (\3/56%)"’ such that
%bo“gz and ;i—boﬁgg are algebraic integers. These correspond to the lattice
Qo = Q/bp with Weierstrass function po(z) = bo?p(bpz). So & = po(¢/bo)
has degree at most dn?, and n?&; is an algebraic integer. As § = bo~2¢o,
n2€y = bg?n?¢ is an algebraic integer, bo2n%¢ < (\?/Ze%)"’rﬁf < 2.22vn2%¢,
and ¢ is an algebraic number of degree at most dn?.

The Néron-Tate height g(P) of the point P in P? with projective
coordinates (1, p(¢), p'(¢)) satisfies ¢(P) = 0. By [3, Lemme 3.4] the
Weil height h(P) satisfies h(P) < g(P) + 3w + 8log2 < (3 + 8log 2)w.
So h(§) < h(P) < 8.55w.

By Lemma 2.2

€] < Ip(wa/2)] + esllCl >, (1)

where c3 = 77244. As p(w/2) is a root of 4z° — goz — gs = 0, from
Cardano’s Formula |p(wq/2)| < (|g3| + v/1g3]2 + ]ggl3/27)3 < (1. 3e7)v.
By Lemma 2.3(iv) ||¢||~2 < n?|wi|~? < n%c14%¥. From (1)

€] < (1.3¢%)" + e3c1,42n? < {2.951 x 106 exp(3.8d)}*n? = c*n’.
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3 The Main Proposition: construction

Let E and E* be elliptic curves defined over C, and €2 and Q* be their
period lattices respectively. Let ¢ be an isogeny from E* to E. It is
said to be normalized if it induces the identity on the tangent spaces.
Then Q* C Q, and [ : 2*] is the degree of . It is said to be cyclic if
its kernel is a cyclic group.

Main Proposition. Given a positive integer d, there exists a con-
stant c4(d) depending only on d, with the following property. Let k be a
number field of degree at most d, and let E and E* be elliptic curves de-
fined over k without complex multiplication. Suppose there is a normal-
ized cyclic isogeny ¢ from E* to E of degree N. Then there is an isogeny
between E and E* of degree at most cq(d){w(E) + w(E*) + log N}4,
where

ca(d) = 1.47 x 10'[max{(5910d[15.5 max{log(7.4d + 2.8), 38.4}
+342.3])145 1.82 x 1053})%2.

Before the proof of Main Proposition we need Lemmas 3.1-3.5. The
body of the proof is described in Section 4.

Let (w1, wa) and (w1*, w2*) be bases of {2 and Q" respectively such
that 7 = wo/w; and 7™ = wy*/wi* lie in the standard fundamental
region. Then there are integers m;; (¢, j = 1, 2) such that

*
w1 = mpw; + migws, wy* = Mmow; + Mmaaws (2)

and myi1moz — migmag; = N. Write h = w(E) + w(E*) > 2.

Lemma 3.1. We have |m;;| < (7.4d + 2.8)Nih (3, j=1, 2).

Proof. This is [6, Lemma 4.1} except for the estimation of the constant
on the right-hand side of the inequality, which is 7.4d + 2.8. g. e. d.

Let C be a sufficiently large constant depending only on d, L =
h+logN, D = [C®*L? and T = [C*L*]. Let p(z) and p*(z) be the
Weierstrass functions corresponding to 2 and Q* respectively. For ¢t > 0
and independent variables z; and z; let D;(t) be the set of differential
operators of the form

0= (6/6z1)t1 (a/azz)tz (120,120, t1 +t2 < t).

Lemma 3.2. There is a nonzero polynomial P(X;, X2, X1*, X2*) of
degree at most D in each variable, whose coefficients are rational integers
of absolute values at most exp(csT'L), such that the function

f(z1, z2) = P(p(21), p(z2), p*(mi121 + mia22), p*(ma121 + maaz2))
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satisfies 0 f(w1/2, wy/2) = 0 for all d in D;(8T), where

¢s = 156 log C + 12 max{log(7.4d + 2.8), 38.4} + 251.3.

L
Proof. Let M denote any monomial of degree at most D in each of

the four functions appearing in f, that is,

M = {19(21)]"11 {P(Zz)}d2 {p*(m1121 + mlzzz)}d3 {p* (ma121 + mz2zz)}d4

with 0 < d; < D (1 < i < 4), and let 8 be any operator of D;(8T). Then
OM can be written as a polynomial in the four numbers m;; (i, 7 = 1, 2)
and the twelve functions obtained from the above four by replacing the
Weierstrass functions by their first and second derivatives. From Baker’s
Lemma [2, Lemma 3] ’

d%{p(z)}" =" ut, t, ¢, 4, B){p){P @Y {"(2)},

where the sum is taken over nonnegetive integers ¢, t’ and t” which satisfy
2t + 3t' + 4" = j + 2k, and u(t, t/, t”, j, k) are integers of absolute
values at most j!487(7128)%. So the total degree of M is at most 3D +
8T —1+0.5%(87—1)+D < 12(D+T). And its coefficients are integers
of absolute values at most (8T — 1)!4887—1(7128)D « T8T (256 x 38)D+T,

By Lemma 3.1 we have log |m;;| < (log cs + 1)L/2, where cg = 7.4d +
2.8. From (2) the twelve functions at (21, z2) = (w1/2, wa2/2) take the
values

p9(w;/2), PO w;*/2) (£=0, 1, 2 j=1, 2).

By Lemma 2.4 h(p(w;/2)) and h(p*(w;*/2)) are at most 8.55L. Both
P’ (w;/2) and p*(w;*/2) are zero. And

h(p"(wi/2)) = h(Bp(w;/2)* — 92/2)
< 2h(p(w;/2)) + h(g2) +1og12 +log2 < 19.7L.

So does h(p*'(w;*/2)). Thus m;; and the values of the twelve functions
have heights at most c¢;L, where

cr = max{0.5 + 0.5log(7.4d + 2.8), 19.7}.

As p(w;/2) and p*(w;*/2) are roots of cubic equations with coefficients
in k, and p”(w;/2) and p*’(w;*/2) lie in the field generated by p(w;/2)
and p*(w;*/2) over k, these values lie in k' whose degree is at most 36d.

The conditions of Lemma 3.2 amount to R = 4T(8T +1) homogeneous
linear equations in S = (D + 1)* unknowns with coefficients in k. By
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Siegel’s Lemma [1, Proposition], if S > 2 x 36dR, these can be solved in
rational integers, not all zero, of absolute values at most S exp(cs), where
cs is the height of linear equations. To satisfy the condition S > 72dR
it suffices that

C80L8 > 2305dC™8LE, so C > 48.1Vd. (3)

Next we calculate cg. By Lemma 2.4 there is a positive integer b <
2.22% such that 4bp(w;/2) is an algebraic integer. Since p"(w;/2)
6p(w;/2)% — g2/2, and there is a positive integer by < e* such that bago

is an algebraic integer, 16b?bop”(w;/2) is an algebraic integer. If we
multiply M at (21, z2) = (w1/2, w2/2) by an integer at most (16 X
2.222LeL)12D+T) | every term is an algebraic integer. As h(3°7; a;) <
max h(a;) + logn for algebraic integers a;,

Sexp(cs) < (D +1)%(16 x 2.222eL) 120D (i Hp by
78T (256 x 38)P+T exp{12¢7(D + T)L} < exp(csTL).

q. e. d.
Let 6y(z) and 6y*(z) be the functions in Lemma 2.1 corresponding to
p(z) and p*(z) respectively. So the function

O(21, 22) = {Bo(21)00(22)80* (M1121 + M1222)00* (Ma121 + ma2z0)}P

is entire. Let F(21, 22) = O(z1, 22)f(21, 22).
Lemma 3.3. The function F(z;, 22) is entire. Further, for any
complex number z and any operator 9 in D;(4T + 1) we have

|0F (w12, w2)| < exp{coL(T + D|z|*)},
where

co = 234logC + 154.8d + 2log(7.4d + 2.8) + 12 max{log(7.4d + 2.8),
38.4} + 423.5.

Proof. Let v, ~*, 6, 6%, 0~, 6* be as in Lemma 2.1 corresponding to
p, p*. Then F(z1, 22) can be expressed as a polynomial in the eight
functions

Y0(z), 6(z), v* 710" (mizr + mizze), 0*(Mmaz1 + mizze) (i =1, 2),
(4)

so it is entire. It is the quadrihomogenized version of P in Lemma 3.2.
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Let Mo = max |mi;|, Ao = min(A, A*), and § = Mo 'Ag?, where
A and A* are determinants of Q and Q* respectively. For any complex
number z let z; and 29 be complex numbers satisfying

|zi —wiz| =90 (=1, 2). (5)

We claim that |F(z1, 22)] < exp{cioL(T + D|z|*)}, where cio =
156 log C + 147.2d + 12 max{log(7.4d + 2.8), 38.4} + 404.3. By Lemma
2.1

log max{|0(z:)|, 16(z:)|} < 105y+7A7 [
< 105(y+ A716% + A7 HwiPl2?) (=1, 2).

As A7162 < My—2 < 1, from Lemma 2.3(i)(ii)(v) the first two functions
in (4) have absolute values at most

c11F exp{10.5(c; 2L +1+c15L|2[%)} < exp{(11.5¢1,5+5.25)L(1+|2|*)},

for c15 > c1,2 > loges .
The last two expressions in (4) are estimated similarly. From (2) and
(5) z* := mi121 + Miazp satisfy |z;* — wi*z] < 2Mpd (i =1, 2). Thus

log max{|6* (2;*)|, Ié*(z,-*)l} < 10.5(y* + AM2 A*16% + A*”1|w.;*|2|z|2)
(i=1, 2).

By Lenﬁna 2.3 the last two functions have absolute values at most
117 exp{10.5(c1 2L + 4 + c15L|2|*)} < exp{(11.5¢c1,5 + 21)L(1 + 1z|%)}.
By Lemma 3.2

|F(z1, 22)] < exp(esTL)exp{(46c1 5+ 84)DL(1 + |2 )}(D +1)*
< exp{cioL(T + D|z|2)},

which is the claim.
By the Cauchy Integral Formula

tilta! F(z1, z2)
- dz1dz
(27rz f}{ (21 — wlz)tl‘*‘l(zg — woz)t2t+l 1542

< tyltold—rtt2) exple o L(T + D|z|%)},

|OF (w12, waz)] =

where the integrals are around the circles (5). From Lemma 2.3(iii) and
Lemma 3.1

§=MylApi > (7.4d+28) 'N~ih le;572
> {6.72(7.4d + 2.8)7 exp(1.9d)} X = enn 7T



|OF (w12, wz)| < (4T)!c114LT exp{cloL(T+D|z|2)}
< exp{cgL(T + D|z|*)}.

Let @ be the unique integral power of 2 that satisfies
C\7/8 < Q < 20178
Lemma 3.4. For any odd integer ¢ and { = q/Q, we have
|8(wi¢, wa()| > exp(—84DLQ?)..
Further, for any 8 in D;(4T + 1) such that 0f (w1, waf) # 0, we have

‘af(wlg) (U2C)| > exp(——cuTLQs),

where ¢12 = 16d[2901og C + 15.5 max{log(7.4d + 2.8), 38.4} + 342.3].
Proof. By Lemma 2.3(i) and Lemma 2.4(i)

max{y, |p(w;¢)|} < exp(8.55dhQ?) (j =1, 2).

From Lemma 3.1 and Lemma 2.3(ii)

[00(w;¢)| > exp(—10.5y — 8.55dhQ?) > exp{—10.5d(1 + ¢; 2/Q*)hQ?},
and the same bound holds for |6p* (w;*¢)| (7 = 1, 2). Thus

O(wiC, wil)| > exp{—4D x 10.5d(1 + 1,2/ Q?)hQ?} > exp(—84DLQY),

for by (3) Q* > C'7/* > 48%d? > 3.2d + 1.2 = ¢ 5.

a = 0f(wi1{, wo() is estimated as in the proof of Lemma 3.2. «
is a polynomial in the m;; (i, j = 1, 2) and the twelve numbers
pO(w;Q), PO (w;*¢) =1, 2; t =0, 1, 2). Let &M be as in the
proof of Lemma 3.2, and 8 be any operator of D;(47 +1). From Baker’s
Lemma the total degree of OM is at most 6(D + T'), and the absolute
values of its coefficients are at most T4T (224 x 34)D+T,

By Lemma 2.4 there is a positive integer b < 2.22% such that bQ?p(w;()
is an algebraic integer. Since p/'(w;¢)? = 4p(w;¢)® — gap(w;¢) — g3, and
there is a positive integer b3 < e such that bzgs is an algebraic inte-
ger, (b3byb3)1Qp/(w;¢) is an algebraic integer. And 2b%b,Q%p” (w;€) is
an algebraic integer. If we multiply OM at (21, z2) = (w1, w2() by
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a positive integer at most (2 x 2.222LelSLQN)8(D+T)  every term is an

algebraic integer. By Lemma 2.4 h(p(w;¢)) and h(p*(w;*()) are at most
8.55L,

M i) < 5{3h(p(ws)) +log 4+ hlgs) + h(p(w;C)) + hlgs)
+1log3} < 2% 855L + L +log3 < 19.7L,

and h(p* (w;*¢)), h(®"(w;¢)) and h(p*”(w;*¢)) are at most 19.7L. Thus
at (21, Zg) = (w1C7 w2<)-, ’
exp(h(M)) < (2 x 2.22%Le'5LQ*)12P+D) 1 Hy bty
T*T (224 x 3%)P+T exp{6c7(D + T)L}.

« is a linear combination of M with rational integer coefficients whose
absolute values are at most exp(csT'L). So

h(a) < log(D+ 1)* + ¢sTL + h(OM)
< [2901og C + 15.5 max{log(7.4d + 2.8), 38.4} + 342.3]TL.

Next we estimate the degree of , deg a. Since

Q@) = QY Ww;i(), PP (w;*Q) (=1, 2t=0,1,2)
C  k(p(wi¢), p*(wi*), P (w;i¢), p*(w;*¢)),

the degrees of p(w;¢) and p*(w;*¢) are at most dQ? by Lemma 2.4(i),
and [k(p(w;¢), P'(w;¢)) : k(p(w;{))] <2,

deg a = [Q(a) : Q] < d(Q?)*2* = 164Q°.

Hence || > exp{—(deg a)h(a)} > exp(—c12TLQ®). q. e. d.
Lemma 3.5. If C satisfies C > (256/ log 2)ci2 with the constant c12
in Lemma 3.4, then for any odd integer ¢ and any 8 in D;(4T + 1) we
have 0f(qu1/Q, qw2/Q) = 0.
Proof. Assume that there exist an odd integer ¢ and an operator 0

in D;(4T + 1) such that a = 8f(wi(, wal) # 0 for ( = q¢/Q. We can
suppose that 0 < ( < 1, and that

aB(w1i(, wal) = G(¢), (6)

where G(2) = 0F (w12, wez) and 9 is of minimal order.
G®(2) is a linear combination of the & f(w12, waz) for & in Di(t +
1+ 4T), so by Lemma 3.2 and periodicity

G®(s+1/2)=0 (7)
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for any integer t with 0 < t < 4T and any integer s. We apply the
Schwarz Lemma to (7) for 0 < s < S, where S = [C*8L]. Then |G(¢{)| <
2—4TS M, , where M is the supremum of |G(2)| for |z| < 5S. By Lemma
3.3 My < exp{25coL(T+ DS?)} < exp(50cg LDS?). If C > (25/ log 2)cg,
then exp(50coLDS?) < 2275 50 |G(¢)] < 27%TS. By (6) and Lemma 3.4

la| < 27275 exp(84DLQ?) < 2775, (8)

where the second inequality follows, because C' > (84/log2)*/!3!. But
also from Lemma 3.4 we have the lower bound

|| > exp(-—cuTLQs). (9)
It |

C > (256/log2)ci
= 5909d[290 log C + 15.5 max{log(7.4d + 2.8), 38.4}
+342.3), | (10)

then 27% > exp(c12TLQ®), which contradicts (8) and (9). As 256¢13 >
25¢g, (10) implies that C > (25/ log 2)cs. q. e. d.

4 Proof of Main Proposition: deconstruction

Let G = E? x E*? embedded in P8! by Segre embedding. Let € be the
exponential map from C* to G obtained from the functions p(z1), p(22),
p*(z1*), p*(22*) and their derivatives for independent complex variables
21, 2o, 21%, z*. Define a subspace Z of C* by the equations

*
z1* = my121 + mi22g, 2% = ma121 + Mmaaz2s.

Write Og for the zero of G, and let ¥ and ¥y be the sets of even and
odd multiples of the point 0 = e(w1/Q, w2/Q, w1*/Q, w2*/Q) in G
respectively. We use Philippon’s zero estimate.
Lemma 4. There is a connected algebraic subgroup H = ¢(W) # G
of G such that
T°RA < ¢13D", (11)

where W is a subspace of C4, p is the codimension of ZNW in Z, R is
the number of points in ¥ distinct modulo H, A is the degree of H, r is
the codimension of H in G, and cy3 = 4.032 x 107.
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Proof. By Lemma 3.5 there is a polynomial, homogeneous of degree
D, that vanishes to order at least 4T + 1 along £(Z) at all points of
Yo, but does not vanish identically on G. Let ¥(4) = (Si_oi| o €
%}, so g = o + £(4). From [5, Lemma 1] translations on an elliptic
curve are described by homogeneous polynomials of degree 2. Accroding
to Philippon’s zero estimate [9, Théoréme 1], there exists a connected
algebraic subgroup H = &(W) # G of G such that

TPRA < deg G x 2%4™ ¢(2D)".

Asdeg G=3%m G x 41 =23 x 3% andr < 4, TPRA <c13D". q. e. d.
Now we can give the proof of Main Proposition. We want to find a
nontrivial graph subgroup of an isogeny £ — E* of small degree. We
consider the three cases p = 2, 1, 0in (11).
When p = 2, T?RA < ci3D". So

R < c13D™T~2 < 4.04 x 107C?D"* =: ¢4C*>D™ . (12)
Thus r =4, H = Og, and R =Q/2. If
C > 28¢14% = 1.817 x 10%, (13)

then Q/2 > C'7/8/2 > ¢,4,C? contradicting (12). Hence the case p = 2
is ruled out under (13).

Next when p =1, ZN W has dimension 1,sor < 3. If H is nonsplit,
then by (8, Lemma 2.2] there is an isogeny of degree at most 9A? between
E and E*. From (11) A < ¢13D3T ! < 4.04 x 10"C* L2. Thus we get
an isogeny of degree at most

9 x (4.04 x 107)2C*2L* = 1.469 x 10'5C**L*. (14)

If H is split, we can not have r = 3 by the proof of [6, Proposition].
If r < 2, then R = Q/2 by [6, Lemma 5.2, and R < c13D?T ! < c14C.
The assumption of no complex multiplication is used to prove [6, Lemma
5.2] in applying Kolchin’s Theorem. Since C > (2c14)8/ 9 from (13),
Q/2 > C'7/8/2 > ¢14C. Hence a contradiction.

Lastly when p = 0, then Z € W and r < 2. If r = 2, then from the
proof of [6, Proposition] N < 9A < 9¢13D? < 9¢13C*°L?, so the original
isogeny ¢ satisfies the required estimate.

If r = 1, then by the proof of [6, Proposition] H is nonsplit, and there
is an isogeny of degree at most 9A% between E and E*. As by (11)
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A < ¢13D < ¢130%°L2, we get an isogeny of degree at most 9 x (4.04 x

107)2C40 L4 = 1.469 x 106C*0L4.
Next we estimate C, the conditions for which are (10) and (13), for
(10) implies (3). Let Cp be the solution of the equation

Co = 5910d[290 log Co + 15.5 max{log(7.4d + 2.8), 38.4} + 342.3.

Let zg = logCy, A; = 5910 x 290d, A; = 5910d[15.5 max{log(7.4d +
2.8), 38.4} + 342.3], and f(z) = €® — A1z — A3, s0 f(x0) =0. If 7 =
{A2/(A2— A1)} log Ay, then f(z1) > 0. As f(z) increases monotonously,
T < Z1, that is, Cp < expx; < A4,

Thus C = max{A4,4%, 1.82 x 1053} satisfies both (10) and (13). From
(14) we have proved Main Proposition with c4(d) = 1.47 x 1015C42.

5 Proof of Theorem

We normalize the isogeny by Lemma 5 to apply Main Proposition.

Lemma 5. Given a positive integer d, there exists a constant ¢;5 with
the following property. Let k be a number field of degree at most d, let
E and E;* be elliptic curves defined over k, and let ¢ be an isogeny
from E to Ei* of degree N. Suppose k' is the smallest extension field
of k over which ¢ is defined. Then [k’ : k] < 12, and there is an elliptic
curve E*, defined over k' and isomorphic over k' to Ei*, such that the
induced isogeny from E to E* is normalized. Further we have

w(E*) < (11.4d + 54.3)w(FE) + 13log N =: c;sw(FE) + 13log N.

Proof. This is [6, Lemma 3.2] except for the estimation of the constant
on the right-hand side of the inequality, which is 11.4d 4 54.3. q. e. d.

Now we give the proof of Theorem. Let N be the smallest degree
of any isogeny between E and E’. By [6, Lemma 6.2] there is a cyclic
isogeny from E to E' of degree N. According to Lemma 5 there are an
extension k' of k with [k’ : k] < 12 and an elliptic curve E* defined over
k' and isomorphic to E’ such that the induced isogeny ¢ from E to E*
is normalized and w(E*) < c;5{w(E) + log N'}.

As p is cyclic, by Main Proposition there is an isogeny between E and
E* whose degree N; satisfies

N; < es(12d){w(E)+w(E*)+log N}* < c4(12d)(c15+1)*{w(E)+log N}*.
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So there is an isogeny of degree N; between E and E’, and
N < N; < es(12d)(c1s5 + DH{w(E) +log N}

Thus N < ci6{w(F)}* for a constant c;s depending only on d.

Lastly we estimate c1g. Let 17 = c4(12d)(c15 + 1)*, w = w(E), Np
satisfy No = c17(w + log Np)*, and c;8 = Ng/w*. Then N < Ny, and
ciswt = c17(w + 4log w + log c18)*. Therefore

c18 = c17(1 + 4log w/w + log c18/w)* < c17(5 + log c18)t.

Let c19 satisfy c19 = c17(5+log c19)%. Then c15 < c19, and cig is estimated
similarly as Cp in the proof of Main Proposition. So c19 < 52%¢;7°, and

N < Ny = cigw? < cyow? < 5%%¢;7.5w* = 52°{c4(12d)}°(c15 + 1)20w4,

Hence cj6 = 52°{c4(12d)}5(c15 + 1)?° < c(d).

Acknowledgements. The author is most grateful to Professor
Takayuki Oda for helpful advice. He thanks Professor David W. Masser,
Professor Sinnou David and Professor Noriko Hirata-Kohno for valuable
advice about the estimation of heights.

References

[1] M. Anderson and D. W. Masser, Lower bounds for heights on
elliptic curves, Math. Z. 174 (1980), 23-34.

[2] A. Bakér, On the periods of the Weierstrass p-function, Symposia
Math. Vol. IV, INDAM Rome 1968, Academic Press, London (1970),
155-174.

[3] S. David, Minorations de formes linéaires de logarithmes elliptiques,
Mém. Soc. Math. France 62 (1995).

[4] D. W. Masser, Counting points of small height on elliptic curves,
Bull. Soc. Math. France, 117 (1989), 247-265.

[6] D. W. Masser and G. Wiistholz, Fields of large transcendence de-
gree generated by values of elliptic functions, Invent. Math. 72 (1983)
407-464.

[6] D. W. Masser and G. Wiistholz, Estimating isogenies on elliptic
curves, Invent. Math. 100 (1990), 1-24.

[7] D. W. Masser and G. Wiistholz, Isogeny estimates for abelian va-
rieties, and finiteness theorems, Ann. Math. 137 (1993), 459-472.

[8] F. Pellarin, Sur une majoration explicite pour un degré d’isogenie
liant deux courbes elliptiques, Acta Arithmetica C.3 (2001), 203-243.

[9] P. Philippon, Nouveaux lemmes de zéros dans les groupes
algébriques commutatifs, Rocky Mountain J. Math. 26 (1996), 1069-

173



