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GREEN CURRENTS FOR MODULAR CYCLES IN ARITHMETIC
QUOTIENTS OF COMPLEX HYPERBALLS

MASAO TSUZUKI)
k F\'“'i? Ik {)
o T A= S 1)

0. INTRODUCTION AND BASIC NOTATIONS

0.1. Introduction. Let X be a complex manifold and Y its analytic subvariety of codi-
mension 7. The Green current for Y is defined to be a current G of (r — 1,7 — 1)-type
on X such that dd°G + Jy is represented by a C*®-form of (r,7)-type on X. In the arith-
metic intersection theory developed by Gillet and Soulé, the role played by the algebraic
cycles in the conventional intersection theory is replaced with the arithmetic cycles. In
a heuristic sense, the Green currents is regarded as the ‘archimedean’ ingredient of such
arithmetic cycles ([2]).

Let us consider the case when X is the quotient of a Hermitian symmetric domain
G/K by an arithmetic lattice I in the semisimple Lie group G, and Y is a modular cycle
stemming from a modular imbeding H/H N K — G/K, where H is a reductive subgroup
of G such that H N K is maximally compact in H. Then inspired by the classical works
on the resolvent kernel functions of the Laplacian on Riemannian surfaces and also by
a series of works of Miatello and Wallach ([5], [6]), T. Oda posed a plan to construct
a Green current for Y making use of a ‘secondary spherical function’ on H\G, giving
an evidence for divisorial case with some conjectures. Among many possible choices of
the Green currents for a modular cycle Y, this construction may provide a way to fix a
natural one. If r = 1, namely Y is a modular divisor, we already obtained a satisfactory
result by introducing the secondary spherical functions properly ([7]). Here we focus on
the case when G/K is an n-dimensional complex hyperball and H/H N K is a complex
sub-hyperball of codimension 7 > 1, and show that the same method also works well.

Thanks are due to Professor Takayuki Oda for his interest in this work, a constant en-
couragement and fruitful discussions which always stimulate the author.

0.2. Notations. The Lie algebra of a Lie group G is denoted by Lie(G). For a complex
matrix X = (z;;)ij, put X* := (Z;:)ij.

1. INVARIANT TENSORS .

Let n and r be integers such that 2 < 7 < n/2.

Let us consider the two involutions o and 6 in the Lie group G = U(n,1) := {g €
GLn+1(C)| 9*I,19 = 1,1} defined by 8(g9) = I,19 I, and o(g) = S¢S respectively. Here
1 = diag(I,, —1) and S = diag(In_r, —I,,1). Then K := {g € G|8(g) = g} = U(n) X
U(l) is ama.ximal compact subgroup in G and H := {g € G| o(g) = g} = U(n—r,1)xU(r)
is a symmetric subgroup of G such that Ky := HNK = U(n—7)xU(r)xU(1) is ma.ximally

compact in H.
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The Lie group G acts transitively on the complex hyperball

D={z="(2z,..,2) €EC'| D |z’ < 1}
=1

by the fractional linear transformation g.z = g;ji g;z, g= [Z; Z;:] €G, zeC". (Here

the matrix g € GL,41(C) is partitioned into blocks so that g;; is an n x n-matrix and
g2 is a scalar.) Since K is the stabilizer of the origin 0 € D, we have the identification
G/K = D of G-manifolds assigning the point z = g.0 to g € G. Then H/Ky C G/K
corresponds to the H-orbit of 0 in @, that is D7 := {2 € D]z, py1 =+ =2,=0}. In
particular the real codimension of H/Kpy in G/K is 2r.
The Lie algebra g := Lie(G) is realized in its complexification gc = gl,+1(C) as an R-
subalgebra of all X € gl,,;(C) such that X*I,;+I,1X = Op41. Let p be the orthogonal
complement of € := Lie(K) in g with respect to the G-invariant, non-degenerate bi-linear
form (X,Y) = 274r(XY) ong. For1 <4,j < n+1,let E; := (0uibuj)uww € 8ln+1(C)
be the matrix unit. The operator J := ad(Z,)|p with Zy := 3511:(2?:1 Ei; — nEnt1n+1)
gives a K-invariant complex structure of p, which induces the K-invariant decomposition
pc = Py ® p_ with py the (£4/—1)-eigenspace of J in pc. Since p is identified with
the tangent space of G/K at K, we can extend J to the G-invariant complex structure
of G/K making the identification G/K = ® bi-holomorphic. Put X; := Ej,41 (1 <
i < n—1), Xo := Eppnt1- Then p; = Yo CXy, po = 30 CX; with X; = Enpqy,
Xo = Enyin. Let {w;} and {@;} be the basis of p% and p* dual to {X;} and {X;}
respectively.

The exterior algebra A pg is decomposed to the direct sum of subspaces AP?pg =

(A"p3) A(A"9%) (p,g €N). Put
o= YT wna AR veli= 2wt (€ Asn AR,

i=0
The inner product (X,Y) on p yields the Hermitian inner product (-|-) of Apg in the
standard way. Then the Hodge star operator * is defined to be the C-linear automorphism
of A p% such that x& = *@ and such that (a|f) vol = aAx0, (Va,8 € Apg). Fora € ApE,
let us define the endomorphism e(a) : Apg — Ape by e(a)8 = a A 3. As usual, we
have the Lefschetz operator L := e(w) and its adjoint operator A acting on the finite
dimensional Hilbert space A p¢ ([8, Chap. V]).
Put h = Lie(H). Then 6 restricts to a Cartan involution of § giving the decomposition
b= (hNE)d(hNp). The complex structure J of p induces that of hNyp by restriction giving
the decomposition (h N p)c = (hNp)+ & (hNp)- with (hNp), = be Npy = 370 CX;
and (hNp)_ = hcNp_ =Y o, CX;. We introduce two tensors wy and 7 as

i=1

/——_1 n-r B —1 n—1 ) r———_l
wy :=——;w,~/\w,~, n:=—2—j=§+1w,—/\wi=w—w1{—

Wo A (Do.

The coadjoint representation of K on p* is extended to the unitary representaion 7 :
K — GL(A pg) in such a way that 7(k)(a A B) = 7(k)a A 7(k)B holds for all , 8 € A p¢
and k € K. The differential of 7 is also denoted by 7.
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The irreducible decomposition of the K-invariant subspaces A7 pg is well-known.

Lemma 1. Let p, g be non-negative integers such that p+q < n. Put

Fpy={a e \ptlAle) =0},

Then Fy, 4 is an irreducible K-invariant subspace of A\ pg. The K-homomorphism L in-
duces a linear injection AP~ 197  pt — AP pl whose image is the orthogonal complement

of Fpq in AP?pg,ie.,

p—1l,q-1
/\pc FRo@PL( N\ »e)

The R-subspace a of g generated by the element Yy := Xy + Xy € p is a maximal
abelian subalgebra in q N p with q the (—1)-eigenspace of do, the differential of o. Since
(G, H) is a symmetric pair, by the general theory, the group G is a union of double cosets
Ha:K (t > 0) with

cosht smht]) teR

a; := exp(tYp) = diag(I"—l’ [sinht cosht

Put A = {a¢|/t € R}. Let M be the group of all the elements k € H NnK such that
Ad(k)Yy =Yy and put M = MyN H. Then

M = {diag(uy, u, uo, uo)| w1 € U(n — 1), ug € U(r — 1), up € U(1)}.
Propostion 1. Let p be an integer such that 0 < p < r. Put

(») _ (P)Lp] e p— 1)
v anZp_, ( p—j+1)n +

-1 ) _ i
J(r—7)wo Ao A7y 1),

(P)______-_l____ ® rp-j Vg -1, o N ._1)
v’ p(n_zﬁl);cp__]f: (@97 + X5t = unnoo

with
-1
) i(p\ (n—p+1 r—l) )
= (=1 (© . . ., 0<j<p.
e = )<J>( J )(J STSP

Then )4 is a two dimensional space generated by v(()p ) and v&p ).
(0) © _

For convenience, we put vy =1, v = 0; these are elements of Fpo = C.

2. SECONDARY SPHERICAL FUNCTIONS

Before we state the main theorem of this section, we put a lemma which is important
not only here but in the ‘global theory’ to be developed in §4.

Lemma 2. For each integer p with 1 < p < r, there exists a unique holomorphic function
s ) on the domain C — L, with

(1) L, = {s € V=-1R|[Im(s)| < 2/(r —p)(n—p — 7+ 2)}




which takes a positive real value for s > 0 and such that
(VY2 = s 4 4(r —p)(n—p—T+2).

We have the functional equation I/(p) 2 (s € C— Ly). If Re(s) > 0, then we have
Re()) > Re(v¥™™) > |Re(s)].

For convenience, we put

p=r—1, A=n-—2r+2.
Consider the holomorphic function
d(s) : Hr Y PRI - N +1)7, seC-L,
p=1
and put
. m
D={seC~Lyd(s)#0}, D=[){s€ D| Re(t®)+Re(rf+)) > 4}.
=1

Theorem 1. There ezists a unique family of C™-functions ¢, : G — HK — A" pg
(s € D) with the following conditions.

(i) For each g € G — HK, the function s — ¢4(g) is holomorphzc
(ii) @s has the (H, K)-equivariance

¢s(hgk) = T(k)'¢s(9), he€ H ke K,ge G- HK.
(iii) ¢s satisfies the differential equation
Qps(9) = (s> = A)ds(9), 9€G—HK
(iv) We have
Jim t*#d,(ay) = (w — wr)*.
(v) If Re(s) > n, then ¢s(a:) decays ezponentially as t — +oo0.
We call the function ¢, the secondary spherical function.

2.1. Construction of ¢;. We set

(s) = F(s+1)T(u+2)
T G+n)/2+ ) T((5s=N/2+1)
and

hs(z):=2F1(_S;n ) S_;)\ ) ) )1

-n s+)\
(Z) -—2F1( 5 2 s+ 1;1— )
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Propostion 2 Let {’)p} _o be the sequence of real numbers defined by the reccurence
relation:

1

Yo = @ Z M€, p—]’ <J<p).
o p=j+1
Then we have

¢s(hak) /“"{Z B(n—p-r+lp T(k)‘ ( F®)(s; tanh?t) v +f1(p)(s;tanh2t)v§p))

P+1)) c(v P))

+ —l?l)— F9(s ; tanh?t) véo),} V(h,t,k) € H x (0,00) x K.
c(vs)
Here the functions fi(f ) are given as follows.
e Forp>0,

o5 (532) = fob (s z)am (s52) + £ (s32) o (s 2),
D(s;2) = £§ (s52) agi (53 2) +fn)(8;2) aff (s;2)

with
_ LD L D)y g

am)(s 2)=—2z"#(1 - z)( PPy e IHV§p+1)(Z)HV§p)(Z)

N /z w1 — w)(,,;p+1>+ugp>)/2—2(1 + w) Hu£p+1) (w)Hysp) (w) dw,
1
ag!]’.) (S : Z) — Z(l _ Z)(—V£P+1)+U§P))/2—1hu£p+1) (z)Hysp) (Z)
_ /z(l B w)(_y§p+1)+u§z’))/2-—2(1 + w) hy§,+1) (w)vap) (w) dw
and 0
1%)) (s;2) = (1— z)(~V§”“)+n)/2+1 hu§p+1)(z),

- (p+1)
fl(:f)(s;z) =2 (u+1)(1 — )(u,r +n)/2+1 H,,gp+1)(2),

») (1= )
§;2) =
o0 (57) (n—p—r+1)p
d v 4n—2 r—p)n—p+1
% (z(l _ Z)—- - pz + ( np)—( 2p _:’1 )(]_ — 2)) hu§p+1) (Z),
- (p+1)
f(”)(s ) = z (#+1)(1 — z)(u,r +n)/2
o (n—p—r+1)p
d -V 4n_2 n-— r+1
X (z(l —2)—+ : 5 pz - p( ~ p2p+ 1 )(1 z) Hv£p+1)(2).
e Forp=0,
- M 1) (1)
) 9 5 WD +n)/2 1) _ +X
é(l’)(s,z)-—- z ( (1)2) 2F1<Us n+1, §1)+1;1—Z .
+n 2 2
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2.2. Some properties of the secondary spherical function.

Theorem 2. Let ¢, (s € D) be the secondary spherical function constructed in Theo-
rem 1.
e There exist p polynomial functions aq(s) with values in (A" pE)M, positive number
e and (A" pg)™-valud holomorphic functions bi(s, 2) (i = 0,1,2) on {(s,2)|s €
D, |z| < €} such that

ao(s) = (w — wm)*,
aa(—38) = aq(s), deg(aa(s)) < 2

and such that

p—1

os(ag) = Z zz(sg +bg(s;2) + bi(s;2) log z + by(s; z) 2***(log 2)?,
a=0

s € D, z = tanh’t € (0, ¢).

o There exists a positive number €, (A\** p&)™ -valued holomorphic functions £ (s ;y) (0 <
p < u) on {(s,9)| |yl < €, Re(s) > n} such that

€ (0,¢)

®
Zy(”"p W2 EP)(s;y), Re(s)>n,y=
p=0

cosh?t

2.3. The function ;. For each s € D, let us define the function ¢, : G— HK — A™ pg
by

n—1
(2) Ye(9) = Y Rx,x,6s(9) Awi A@;, g€G—HK.
1,7=0
Theorem 3. e The function ¢ is C® on G — HK and satisfies
s(hgk) = 7(k)'¥s(9), Vh€ H,Vge G — HK, Vk € K.

o There exist u (A" p&)M-valued polynomial functions Eq(s), positive number € and
(A" p&)M -valud holomorphic functions d;(s, z) (i = 0,1,2) on {(s,2)|s € D, |z| < €}

such that
i~y
Co(—8) = Cu(s), deg(Cals)) < 2
and ‘
Ps(a;) = (s — \?) Z ca(s +do(s;2) +di(s;2)log z + da(s; 2) 2*(log 2)?,

se€D, z= ta,nth € (0,¢).
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o There exists a positive number €, (N p&)™ -valued holomorphic functions g® (s;y) (0 <
p < 1) on {(s,y)|Re(s) > n, |y| <€} such that

» 1
Zy(”’ )2 gP(s;y), Re(s)>n,y=—— € (0,€)
~ cosh”t

3. POINCARE SERIES

Let T be a discrete subgroup of G. We assume that (G, H,I') is arranged as follows.
There exists a connected reductive Q-group G, a @-subgroup H of G and an arithmetic
subgroup A of G(Q) such that there exists a morphism of Lie groups from G(R) onto G
with compact kernel which maps H(R) onto H and A onto I'.

3.1. Invariant measures. Let dk and dky be the Haar measures of compact groups K
and Ky with total volume 1. Then we can take a unique Haar measure dg (resp. dh) of
G (resp. H) such that the quotient measure g% (resp. & e 4h ) corresponds to the measure on
the symmetric space G/K (resp. H/Ky) determined by the invariant volume form vol
(resp. volg).

Lemma 3. For any measurable functions f on G we have

/G f(g)dg = /H dh /K dk /0 " Flhak)a(t) dt

with dt the usual Lebesgue measure on R and

o(t) = 2¢, (sinht)**(cosh )=l e = i
3.2. Currents defined by Poincaré series. Let § denote the set of the families of
functions {¢s},cp such that @, = 0,0, (s € D) or s = 51, (s € D) with some differential

operator d; with holomorphic coefficient on D.
For {p,} € §, let us introduce the Poincare seires

(3) Plp)(g)= > wslv9) 9€G,
YETH\T

which is the most basic object in our investigation. First of all, we discuss its convergence
in a weak sense. Note that ¢, takes its values in the finite dimensional Hilbert space A p¢
with the norm ||a|| = (a]a)Y2.

Theorem 4. The function in s defined by the integral

PUlel)o) = | . (= o)l ) da

yel y\I'

is locally bounded on Re(s) > n. For each s with Re(s) > n, the series (3) converges
absolutely almost everywhere in g € G to define an L*-function on T'\G.

If T is neat, then the quotient space I'\G/K acquires a structure of complex manifold
from the one on G/K = ®. Let 7 : G/K — I'\G/K be the natural projection. Let
A(T'\G/K) denote the space of C*- differential forms on I'\G/K and A, (T'\G/K) the



subspace of compactly supported forms. Given a € A(I'\G/K), we have a unique C*-
function & : G — A pg such that G(ygk) = 7(k)~*a(g), (v € T, k € K) and such that

(m*a)(gK), (AdLg)(&)) = (&(9),&0), g€ G, &€ \p=\To(G/K)

holds. Here L, denotes the left translation on G/K by the element g and we identify p
with T,(G/K), the tangent space of G/K at o = eK.
For any left '-invariant continuous function f on G, put

In(fi9) = /P fma)dn geG

We already discussed the convergence problem of this integral in [7, 3.2]. For convenience
we recall the result. If T is co-compact, we take a compact fundamental domain &* for I’
in G and te: the constant function 1. Hence G = I'G! in this case. If I is not co-compact,
then one can fix a complete set of representatives P* (1 < 3 < h) of A-conjugacy classes of
Q-parabolic subgroups in G together with Q-split tori G,, = A in the radical of P* such
that an eigencharacter of Ad(t) (t € G,,) in the Lie algebra of P is one of ¢ (j = 0, 1, 2).
For each 4, let T* and N* be the images in G of A*(R) and the unipotent radical of P*(R)
respectively. Then we can choose a Siegel domain G* in G with respect to the Iwasawa
decomposition G = N'T*K for each 4 such that G is a union of I'S* (1 < 4 < h) Let
tei : &' — (0, 00) be the function te:(n;t; k) = ¢, (n;t; k € &'). Here ¢t; denote the image
of t € G (R) = AY(R) in T%.
Given § € (2rn~1, 1), let 9 be the space of all left -invariant C*°-functions f :

G — Apg with the K—equlvarlam,e f(gk) = 7(k)~'f(g) such that for any € € (0,6) and
D € U(gc) the estimation

IRoe(9)l| < tes(9)®~9", Vg € &, Vi
holds.

Propostion 3. Let f € M; with 6 € (2rn~1,1) and D € U(gc).
o We have

Iu(|Rpfll;a) < ™9™ t>0
for any e € (2rn=1,8). The function Ig(f; g) is of class C™®, belongs to C> and
Ju(Rpf;g)= RpIu(f;9), 9€G.
e For any {ps} € §, the integral

[ IPe@IRos (o)) ds
neG
is finite if Re(s) > 3n — 2r. We have

/F PR f(6) 45 = / " o(t) (9alae)| RoTa(f ;) dg.
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Propostion 4. There exists a unique current P(ps) on I'\G/K such that

(Po), #a1) = / RSO O

- A " o(t) (0s(a)|In(@; a)) dt, @ € A(T\G/K)

Let 0, be a hdlomorphic differential operator on D. Then for any a € AJ(T\G/K), the
function s — (P(p,), ) is holomorphic on D and 8s(P(ps), a) = (P(8ss), @).

Definition
For s € C with Re(s) > n, we put

Go = P(¢s), W, := P(ts),
Gs = P('l/)s), U, = P('d)S)

The current G, and ¥, on T\G/K are of type (r — 1,7 — 1) and of type (r,r)
respectively.

4. SPECTRAL EXPANSION

In this section we investigate the spectral expansion of the functions 63-,3@3 with

J
55 :=l<—i-‘?—) . jeN

to obtain a meromorphic continuation of the current-valued function s — G, which is
already holomorphic on the half plane Re(s) > n.

4.1. Spectral expansion. In order to describe the spectral decomposition of the func-
tion 4, G, we need some preparations.

For ¢ > 0, let £%(r) denote the Banach space of all measurable functions f:G—
A pe such that f(ygk) = (k)" f(g), (Vv € T, Vk € K) and [.,;IIf(9)l|?dg < oo.
For 0 < d < m, let L4(7)@ denote the subspace of those functions f € Lf(r) with
values in /\d’d p¢- The inner product of two functions f; and f, in L%(7) is given as
{filfz) = fr\G(fl(g)lfg(g))dg. Let A be the operator on LZ(7) whose action on the

smooth functions in L2(7) is induced by —Rq. For each 0 < d < n, let DY en
be the increasing sequence of the eigenvalues of the bidegree (d, d)-part of A such that
each eigenvalue occurs with its multiplicity. Choose an orthonormal system {&,(zd)}neN in
LA(T)D consisting of automorphic forms such that A& = XD for each n and put
£2 5:6(T)@ to be the closed span of the functions & in L2(7)@. When T is co-compact
we have L2 4 (1)@ = L&(7)@. Otherwise we need the Eisenstein series to describe the
orthogonal complement of L 4 (7).

Recall the parabolic subgroups P* used to construct the Siegel domains G (see 3.2).
Let P' = M{T'N' be its Langlands decomposition with M{ := Zx(T"). For each i let
Tpi =TNP and T'y; = MGN(TpiNY). Then T'y is just a finite subgroup of the compact
group M¢.



i .

For a vector u € ng) = (A**pg) 6 and a complex number s, let us define the function

¢'(u; g) on G using the Iwasawa decomposition G = N*T"K by
O (usnit k) =t (k) "'y, m; € NLt>0,keK.
Then the Eisenstein series associated with u is defined by the infinite series
(4) E'(s;uig)= Y, #i(u;vg), 9€G
‘)’EFP,' \T

By the general theory, the series is convergent in Re(s) > n normally and the function g —
E'(s;u;g) is an automorphic form on I'\G. Moreover there exists a family of linear maps
Ei(s) from Vﬁd) to the space of automorphic forms on I'\G, which depends meromorphically

on s € C and is holomorphic on the imaginary axis, such that (E*(s)(u))(g) = E*(s;u;g)
coincides with (4) when Re(s) > n. For each 1 <4 < h, let Qs be the Casimir element

of M} corresponding to the invariant form (X,Y’) on its Lie algebra. Then ifue V(d)
an eigenvector of 7({;) with eigenvalue ¢ € C, then RoE(s;u) = (s? — n® +¢) E‘(s u)

for any s € C where E'(s) is regular.

Lemma 4. For 0 < p < d and € € {0,1}, let W(d) (p;€) be the eigenspace of T(Qy) on
V( ) corresponding to the eigenvalue (2p — 6)(2n — 2p +¢€). Then we have the orthogonal

decomposztzon
7
VO~ D B W,

p=0 ec{0,1}
For each index (d, i,p, €), fix an orthonormal basis B (p;€) of the space ng)(p; €).
4.2. Some properties of Eisenstein period.

Propostion 5. e forl i< handu € V(d) there exists a unique /\d’d pe-valued
“meromorphic function fP’ (s u) on C which is regular and has the value given by the
absolutely convergent integral Ig(E*(s;u);e) at any regular point s € C of Ei(s;u)
in |Re(s)| < 1 —2rn~1
e Let1<i< hand1 < p<d Then for anyu € W (p;1), we have Piy(s;u) = 0
identically.

4.3. Meromorphic continuation and functional equations. Put w := (w — wg)*.

Theorem 5. Let Re(s) > 3n — 2r. Then there exists € > 0 such that the function
8,.sGs(g) belongs to the space LE(T)®). The spectral expansion of 8,, .G is given as

[e.o]

P =Z 4(w|3H(am ;e))

=Y (/\2 — A — sty

4 (iIm(E(C9)3) ey g
47“/— /\/_RZ Bf%%p,o) ! (42“’ (V§p+1))2)r (C, ) ¢

where the summations in the right-hand side of this formula are convergent in L (7).
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Let Xr (T)~be the space of C'*™°-functions g:G — A\ p¢ with compact support modulo
I' such that B3(ygk) = 7(k)"8(g9) (Vy € T, Vk € K).

Theorem 6. Let Ly be the interval on the imaginary azis defined by (1). Let 0 € j <
p. Then for each B € Kr(r) the holomorphic function s — Sj(s,,é) = (5j,sés|ﬁ) on
Re(s) > n has a meromorphic continuation to the domain C — L,. A point so € C — L;
with Re(so) 2 0 is a pole of the meromorphic function G;(s, B) if and only if there exists
anm € N such that (w|Ig (6% ;e)) # 0, (&%]6) # 0 and s2— A2 =AY In this case,
the function

3 a(w|Tx (6% ; €))(aw))B)

ul (s = 52+

gj (S, /3) -
meN; W =A2—s2

18 holomorphic at s = sg. We have the functional equation

~ - [ (u) (p+1)
Si(=5.4) — Sy(s,B) = (~1)* 8, (Z (&} 2()/;“))1[3))

p=0 s

with

5)  EW(vig):= ,Z > (WIPy(-7;u)El(viusg), 9€G, veC.

i=1 ueB(“)(p ;0)

5. GREEN CURRENTS

We put the Kahler form w on I'\G/K such that ©&(g9) = w(Vg € G). The metric
on '\G/K corresponding to w defines the Laplacian A, the Lefschetz operator and its
adjoint A acting on the space of forms and currents on '\G/K.

5.1. Currents defined by modular cycles. Let D be the image of the map 'y \H/Ky —
I'\G/K induced by the natural holomorphic inclusion H/Ky < G/K. Then D, a closed
complex analytic subset of I'\G/K, defines an (r,r)-current ép on I'\G/K by the inte-
gration

(6) (6p,a) = / j*a, a € AJ(T\G/K).

Here j : D — I'\G/K is the natural inclusion and D, is the smooth locus of D. Since
dp is real and closed, it defines a cycle on I'\G/K of real codimension 2r ([4, p.32-33]).

5.2. Differential equations.

Theorem 7. Let Re(s) > n. Then we have
(A + 5% = A%)G, = —4Adp,
AT, = (A2 — s2)(¥, — 2v/—10p),
800G, = ¥, — 2v/~16p.



5.3. Main theorem. Let A{;j(I'\G/K) be the Hilbert space of the measurable (p, q)-
forms on I'\G/K with the finite L?-norm |af := fF\G/Ka A *&. For each ¢ € C, let
Al q(F\G /K ;c) be the c-eigenspace of the Laplacian A acting on AP{(I'\G/K). In par-
t1culaI 5 (T\G/K) := Al (I'\G/K ;0) is the space of the harmonic L?-forms of (p, q)-
type. For ea.ch p, let 8(“ ) (v) be the C®-form of (i, u)-type on I'NG/K corresponding
to the function Eg‘ )(1/) on G defined by (5). Then Theorem 6 immediately gives us the
following theorem.
Theorem 8. There exists a meromorphic family of (u, u)-currents G, (s € C — L) on
T\G/K with the following properties.

e For s € C with Re(s) > n, it is given by |

1 o ~

—————-/ o(t) (¢s(a)|Iu(@; ar))dt, «€ A(T\G/K).
(r=1)7" Jo
o A point s € C — Ly with Re(s) > 0 is a pole of G, if and only if there exists an

L2-form a € Al " H(T\G/K ; (n — 2r + 2)* — s}) such that

/ JH(wAa) #0.
D
In this case sg 18 a simple pole with the residue
2 . _
Res;=s,Gs = % };(/D] (w A am)) : Oty
Here {a,} is an arbitrary orthonormal basis ofAfz')l’r—l(F\G/K; (n—2r+2)% - s2).
e The functional equation

(Gs, *@) =

- (T 1) (P+1))
G-—s Z +1) , 8E€ C - L1

=0
holds.

Theorem 9. There exists a meromorphic family of (r,r)-currents ¥, (s € C — L;) on
[\G/K with the following properties.
e For s € C with Re(s) > n, it is given by
1 o ~
[ e Wua)Ia(E i) a € AT\G/K).
(r =17 Jo

o U, is holomorphic at s =n — 2r + 2.

(Qs, *@) =

Definition

We define the (r — 1,7 — 1)-current G on I'\G/K to be the quarter of the
constant term of the Laurent expansion of G at s = A. Namely, if {a,,} is any
orthonormal basis of 3(; L1(T\G/K), then we put

G( -)=Z§1-131(G () - 2r+22/3(w/\am) (:"—1(34”2)).
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Theorem 10. We have the equation

v—1
T\I}n—Z'H& + 6D1 Z5qln—21‘+2‘ =0

The current U,,_o,, 4 is represented by an element of A™"(I'\G/K).

ddcg =

6. THE CURRENT ¥,
We remark that xvoly = %(w — wy)" with voly = =25
H/Kpy.

Theorem 11. Let Re(s) > 3n — 2r. Then there exists € > 0 such that the function
8,s((s* — X*)71W,) belongs to the space L2*(1)"). The spectral expansion of 6, s((s* —
A2)~1,) is given as
I oo /—1 ~(r) .
6p ‘I’s — Z -2 (*VOlHle(am ,6)) &%)
F\ 82 — A2 — (a2 — AT _ g2)r

-wg " the ‘volume form’ of

r —2v/—-1 (*volHlfJH(Ei(C ;u)se)) o U
A

€8 (p:0)
where the summations in the right-hand side of this formula are convergent in L&(1)(").

Theorem 12. Let L, be the interval on the imaginary azis defined by (1). Let0 < j < p.
Then for each 3 € Kr(r) the holomorphic function s — F;(s, B) == (8;s(s? — A2)~10,|8)
on Re(s) > n has a meromorphic continuation to the domam C—L;. Apointsge C—L;
with Re(sg) > 0 is a pole of the meromorphic function F;(s, B) if and only if there ezists
an m € N such that (+voly|Tg (65 ;e)) # 0, (65|8) # 0 and s — M2 = M0 In this
case, the function '

Z 2v/—1(xvoly|Ig (&% ; e)){(@w|5)

(53— 7"

gj(sv B) -
meN;/\sf,)=z\2*s§
1s holomorphic at s = sg. We have the functional equation

T a(r) u§p+1) ~
Fi(—s,0) — F;(s,08) = (- 1)“61.,3(2 (€ ( )|ﬂ>).

with
-~ h . .
EN(v;g) = —2v~1 Z Z (xvoly|Ig(E'(—7;u);e)) El(v;usg), g€G.
=1 veB{" (p;0)

Theorem 13. e A point sg € C— L; with Re(s) 0, so #n—2r+2 is a pole of ¥,
if and only if there ezists an L?-form o € A (I\G/K ; (n—2r + 2)2 — s2) such that

/Dj*a%o.
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In this case sy 1s a simple pole with the residue

—(2 2
Res,_, U, = V=1(s2 - (n —2r +2)?%) Z(/ j*@m) .
D

So

m

Here {a;} is an arbitrary orthonormal basis of Al (T\G/K ;(n — 2r + 2)2 — s2).

o We have
\I’n~2r+2 - 2\/:1_2 (L j*Bm) : /Bm

with {Bm} an arbitrary orthonormal basis of ar)(I‘\G' /K). In particular ¥,,_o,.o €
375 (T\G/K).

The equations in Theorem 10 means the fundamental class [p] € H""(I'\G/K ; C) of
D has the harmonic L2-representative ¥, o, 1o.
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