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Analytic Truncation and Rankin-Selberg
versus
Algebraic Truncation and Non-Abelian Zeta

Lin WENG
Graduate School of Mathematics, Kyushu University, Fukuoka, Japan

— Dedicated to Professor S. Kobayashi for his 70th birthday

Zagier once said in his paper on Rankin-Selberg method: “one of the most fruitful ideas in the theory
of automorphic forms is the observation, made independently by Rankin and Selberg around 1939, that
the Mellin transform of the constant term in the Fourier development of an automorphic function can be
represented as the scalar product of the automorphic functions with an Eisenstein series and hence inherits
the analytic properties of the Eisenstein series.” For more detailed achievements of using Rankind-Selberg
methods, we recommend the reader to consult the paper of Bump on “The Rankind-Selberg Method: A
Survey”. In this paper, we find a way going slightly beyond the Rankind-Selberg method and constant
terms 5o as to obtain some new terms which are essentially non-abelian.

Surprisingly enough, our starting point is also the beautiful formula of Langlands on the inner product
of what I call Arthur’s analytic truncated Eisenstein series. It is well-known that Langlands’s formula plays
a key role in the theory of Eisenstein series, and the analytic truncation is systematically (introduced and)
studied by Arthur in his fundamental work on trace formula.

Put this in a simple term, we then see that Rankin-Selberg method is a kind of device, where we have the
analytic truncation, Eisenstein series as input, and the constant terms of the Fourier expansion as out put.
In other words, the Rankin-Selberg method may be viewed as a kind of linearization, or better, abelization
process.

In this paper, we introduce a new device to obtain non-abelian terms. More precisely, instead of using
analytic truncation, we use an algebraic truncation via a kind of intersection stability. While we also consider
the integration of Eisenstein series, due to the fact that such an algebraic truncation is essentially a geometric
one, we get finally the non-abelian aspect of automorphic functions.

This paper may be viewed as a supplementary to Part B of our Program paper, where we introduced
non-abelian zeta functions for global fields.

T would like to thank C. Deninger, T. Oda, and D. Zagier for their helpful discussions. Special thanks
also due to the participants, in particular, Y. Taguchi, of my Kyudai lectures on Lafforgue’s work. This
work is partially supported by JSPS.

L. Eisenstein Series and Non-Abelian Zeta Functions
1.1. Epstein Zeta Functions and Non-Abelian Zeta Functions

For simplicity, assume that the number field involved is the field of rationals. A lattice A over Qis
called semi-stable if for any sublattice A; of A,

(Vol Al)rank A > (Vol A) rank Ay )



Denote the moduli space of rank r semistable lattices over Q by Mq,-- By definition, the rank r non-abelian
zeta function £q r(s) of Q is

tan(s) = /M (@M —1) - () WV aua),  Re(s) >,
.

where h%(Q, A) := log (3 ep exp (- |z|?)) and deg(A) denotes the Arakelov degree of A. It is known that
£qQ,r(8) coincides with the (completed) Riemann-zeta function when r =1, can be meromorphically extended
to the whole complex plane, satisfies the function equation

fqr(s) = fqr(l— 8),

and has only two singularities, simple poles, at s = 0,1 with residues Vol (Mq,-(1]), the Tamagawa type
volume of the space of rank r semi-stable lattice of volume 1. For details, please see [Wel,2}.
Denote by Mq,-[T] the moduli space of rank r semi-stable lattices of volume T. We have a trivial

decomposition
Mq,r = Ur>oMaq,r(T]-

Moreover, there is a natural morphism
Mq[T] = Mq[l], ArTH- A

With this,

o0
far(s) = [ (#@m 1) P Dy = [(TE [ (a@rte 1) - du)
UrsoMaq, [Tl 0 T Maq,»[1]

where du; denotes the induced Tamagawa measure on Maq.r[1].

Thus note that
h°(Q,T* -A) =log (z exp (- |z|? -T%)) ,
TEA

and 0 ar 1
—ATB el 1 g el
/0 e T° T =B A I‘(B),
we have .
T _x T —rs
barle) =5 78T [ Yl | - dima).
Ma, (1] \ zeA\{o}

Set now the completed Epstein zeta function, a special kind of Eisenstein series, associated to the rank r
lattice A over Q by
E(A;s):=77°T(s)- > lal™,

z€A\{0}

then we have the following

Proposition. (Relation between Eisenstein series and Non-Abelian Zeta Functions) With the same notation
as above,
T
éq.r(s) = ) /
M

Thus to study our non-abelian zeta functions, we need to understand Eisenstein series and alge-
braic(=geometric) truncations.

E(A, o) du(A).
]

Q-'r'll



1.2. Rankin-Selberg Method: An Example with SL,

From the previous subsection, we know that
£q,a(s) = / E(A, s)dua(A).
Maq,ali]

Thus to study £q.2(s), we need to know what is the moduli space of Mq,2 and what is the integration of

~

the Eisenstein series E(A; s) over this space. Before discussing this, let us take a more traditional approach.
Consider the action of SL(2, Z) on the upper half plane H. A standard fundamental domain of SL(2,Z)
may be described by

D={z=z+iy€7{:iz]g%,y>0,z2+y221}.

Associated to this is aslo the Eisenstein series

n _ y"
E(z;8) :=7"°C(s)- Z —
ez ooy M2 1

At this stage, a natural question is to consider the integration

. dzd
/DE(z,s) Zzy. (1)

However, this integration diverges due to the following facts: Near the only cusp y = o0, E'(z, s) has the

Fourier expansion
o0

E(zis)= ) an(y,8)e’™ ™.

n=-o0

Here
£(28)y° + €(2 — 2s)y'~?, ifn=0

an(y,s) = {2|n|a-§01_2s(‘n|)\/§1{ _3(27inly), fn#0

where £(s) denotes the completed Riemann zeta function,

1 i 1y/2 dt
Us('n) = st, and Ks(y) = 5/ e-y(t+L)/ tsT

din 0
is the K-Bessel function. Moreover,

K@)l < e ¥?Kpes)(2), ify>4, and K,=K_,,

80 an0(y, 8) decay exponentially, and the problematic term comes from ao(y, $), which is of slow growth.
Therefore, to make the integration (1) meaningful, we need to cut-off the slow growth part. Naturally,
there are two ways to do so: the analytic one and the geometric one.

(a) Geometric Truncation :

Draw & horizontal line y = T > 1 and consider the part Dr of the domain D which is under the
line y = T. (So we get a compact subset.) Denote the complement of Dr in D by DT, the closure of a
neighborhood near the only cusp co. That is to say,

Dr={z=z+iyeD:y<T}, D ={z=z+iyeD:y>T}

Introduce the integration

o0 - dzd
I8 (s) := E(z,s) 2y.
Dy Y

(2)
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(b) Analytic Truncation R
Define a truncated Eisenstein series Er(z;s) by

2 . [ Ezes), ify<T
Brlz )= {E(z,s) ~ag(y;s), ify>T.
Introduce the integration
Ane A dzdy -
Ip™(s) = DET(Z;S),—yg—- 3)

With this, from the Rankin-Selberg method, we finally have the following:
Proposition. (Analytic Truncation=Ceometric Truncation in Rank 2) With the same notation.as above,

Ts—-l

1§%°(s) = €(29)— ~

€s -1 = I£"(). (@

1.3. Algebraic Truncation

Now we should justify why the above discussion has anything to do with our non-abelian zeta functions.
For this, we introduce yet another truncation, the algebraic one.

So back to the moduli space of rank 2 lattices of volume 1 over Q. There is a natural map from this space
to D: For any lattice A, choose a vector x; such that its length gives the first minimum A1 of Minkowski.
Then via rotation, we may assume that x; = (A1,0). It is well-known from the reduction theory that )‘—IIA
may be viewed as the lattice of the volume /\1‘2 = yo which is generated by (1,0) and w = zp +iyo € D.
That is to say, the points in Dr are in one-to-one corresponding to rank two lattices of volume one whose
first Minkowski minimum A; < VT Set Mé_zf ‘°ET[1] to be the moduli space of rank 2 lattices A of volume
1 over Q whose sublattices A; of rank 1 have degrees < —% logT. As a direct consequence, we have the
following

Fact. (Geometric Truncation = Algebraic Truncation) With the same notation as above, there is a natural
one-to-one, onto morphism

MEA T ~ Dr.

For example, Ms?z[ll = Mq.(l] ~ Di.

With this, by Proposition 1.2, we may introduce a more general type non-abelian zeta functions,
parametrized by T', with the help of a Harder-Narasimhan type discussion on intersection stability. (See
IL1 below.) As a special case, we have the following

‘Corollary. (Degeneration in Rank 2) With the same notation as above,

Eqals) =€) ~ €25~ D)5

(5)

Quite disappointed. Isn't it?! After all, what we previously claim is a non-abelian zeta, yet the calculation
gives only abelian zetas. However, a positive thinking then leads to the following three observations:

(i) The special values ¢(2n) and ¢(2n — 1) of the Riemann zeta function are naturally related via the rank
two zeta. That is to say, non-abelian zeta could be used to understand abelian zetss;

(ii) The volume of Dy may be evaluated from this formula via a residue argument;

(iii) The dependence on T of the integrations (4) is quite regular: The ‘main term’ is simply

£29) —— —g(2s-1) - .

s—1

Indeed, as the whole paper indicates, among all non-abelian zetas, rank 2 and only the rank two non-
abelian zeta degenerate: The practical purpose of this paper is to justify this latest assertion.



II. Algebraic, Geometric and Analytic Truncations

Still we need to answer the question on why non-abelian zeta degenerates to abelian zetas in rank 2,
as indicated from the Rankin-Selberg method above. For this, in this chapter, we study a more general
algebraic truncation for lattices over any number fields, motivated by Lafforgue’s work for vector bundles
over function fields [L}, and discuss its relation with the analytic truncation introduced by Arthur [Arl-6).

I1.1. Algebraic Truncation

Let G = GL, be the general linear group of rank r. Corresponding to each partition 7 = r1+72+.. .47,
we have the corresponding (standard) parabolic subgroup Pr,rs....m of G, consisting of blocked upper-
triangle submatrices whose diagonals are of size 71,72, ..., Tk- The natural order for these parabolic subgroups
corresponds to the natural order of partitions so that the group Py := Pya,..,1 (resp. Pr = G) is a minimal
(resp. the maximal) parabolic subgroup of G. Moreover, we know that all parabolic subgroups P are
conjugations of these standard parabolic subgroups. Denote by Po (resp. P) the collection of all standard
parabolic subgroups (resp. parabolic subgroups) of G. ’

For a fixed parabolic subgroup P, denote by Np the unipotent radical of P and let Mp be the unique
Levi component of P, which is supposed also to contain Mp, when P € Py. Denote the center of Mp by
Ap. Let X(Mp) be the group of characters of Mp defined over Q. Then ap = Hom(X(Mp),R) is the real
vector space whose dimension equals that of Ap. (Thus if P = Pr, . r., then the dimension is simply & — 1.
For this reason, we usually also write k as |P|.) Its dual space is ap = X(Mp)®R. Denote the set of simply
roots of (P, A) by Ap C X(Ap) C ap. The set Ag = Ap, is 2 base for a root system, which as usual we
write as {e; — e2,€2 — €3,...,€r-1 —€r} {H].

Fix a number field F. Denote its ring of integers by Of. For each place v of F, Denote by F, the
v-completion of F, and if v is finite, O, the ring of integers of F,. Denote the ring of adeles of F by A = Ap,
K =[] K, the maximal compact subgroup of G(A) = GL(r, A), where K, denotes GL(r,O,) if v is finite,
O(r) if v is real, and U(r) if v is complex. Then associated to each element of the quotient G(A)/K is an
Oy-lattice of rank r in (R™)™ x (C7)™. Indeed, (gu)v,fnite first gives a locally free sheaf £ of rank r over
Spec(OF) such that £ ®p,. F ~ F" which under the natural embedding F — R™ x C™ yields a lattice
above equipped with the metrics induced by geo := (g0 )oiinfinite from the standard one. For simplicity, write
this lattice by (£, goo) = £9 s0 that £9 ®o, OF, = gu(OF,) if v is finite. As noted by Weil, this association
gives a one-to-one, onto correspondence between the quotient G(F)\G(A)/K and the moduli of all rank r
Ox-lattices over F. As usual, define the degree of £9 associated to g € G(A) to be — log N(detg), where
N :Ir = GL(1,A) — R denotes the norm of the ideles of F, and the slope of £9 by u(£9) = %‘:—g;(%l).

Let P € Py be the parabolic subgroup corresponding to the partition 7 =71 + 72 + ... + 7p|- Then
the map 6 — §~1P§ gives a one-to-one correspondence between the quotient P(F)\G(F) and the subset
Pp of P whose associated filtrations have successive simple quotient factors of sizes r1,72,...,7|p|- For
Q € Pp, denote by £.9°Q the filtration of £9 which is stablized by Q. In this way, g — (£9,€ 9P) gives a
natural identification between P(F)\G(A)/K and collection of pairs consisting of O p-lattices of rank r and
their filtrations with the associated graded quotient ranks r1,72,...,7p}. Clearly, £.99F = €& 957 P8 gor all
g € G(A) and § € G(F).

Let p,q: [0,7] — R be two polygons. For any P € P, if

g(rankE?) > p(rankE["), i=1,...,|P|,

we say p is bigger than g with respect to P, and denote this as ¢ >p p. Moreover, introduce a canonical
polygon pg : [0,r] — R associated to g € G(A) and Q € P as follows: Divide the interval [0,7] into

subintervals consisting of [rankE! Q rank&? ‘Q] according to the partition of r corresponding to Q; Then pg,
is affine over all subintervals [rank€£i9 Q, ra.nké'i-" ’Q], and at the ends of the subintervals,

rank(E09) jog(e9).
.

% (rank(é'f‘Q)) .= deg(£9°9) —

Also as usual, denote the characteristic function of S by 1s for a subset S.

11
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With this, we may list the fundamental properties of algebraic truncation as follows:

Key Facts. (a) (Partial Canonical Polygon) For all g € G(A), and P € P, the collection of polygons pg

associated to all @ € Pp has a mazimal element, which we denote by p%. Moreover, there is a parabolic

subgroup in Pp, which we denote by Q%, such that p%,, = p%. Denote the associated filtration, the canonical
P

filtration associated to g and P by 9P,

(B) (Canonical Polygon) For all g € G(A), the collection of polygons p% associated to all Q@ € P has a
mazimal element, which we denote by p9. Moreover, there is a parabolic subgroup, which we denote by Qs,
such that pg@, = p9. Denote the associated filtration, the canonical filtration associated to g, by £.9;

(v) (Compactuess) For anyt € R and polygon p: [0,7] — Ry, the subset
{ge G(F)\G(A)/K : 7 <p}  endhence {g€ G(F)\G(A): 7 <p}

are compact;
(6) (Partial Algebraic Truncation versus Geometric Truncation) For any real cocharacter T of Mo, introduce

an associated polygon pr : [0,7] — R such that it is affine over [r',#' + 1] for all7 = 0,...,7 ~ 1 and
(82)pr(r' = 1) = (e = e )(T) where Af(@) = f(z +1) — f(z). Then

1(A2(p~§’,) >p Az(m)) = ftp(Hp(g) — T),

where #p(H(g) — T) is Arthur’s truncation as recalled in IL.2 below;
() (Global Algebraic Truncation versus Partial Algebraic Truncation) For any polygon p : [0,7] = Ry,

1@ <p) = S (-DF1 S 1p¥ >p )

PePy SEP(FI\G(F)

Sketch of the proof. (c),(B) come from the fact that for a fixed lattice, the collection of p-invariants of all
its sublattices is discrete in R. (7) is clear as the volume one condition gives a fundamental domain via the
ordinary reduction theory, while the stability is simply a finite closed bounded condition. Finally (4) is from
the definition while the proof of 4 for function fields of Lafforgue [Laf] works for number fields as well.

With the above discussion, we may introduce the following more general non-abelian zeta function for
number field F: Let p: [0,7] — R0 be a convex polygon which is symmetric with respect to the line z = %.

Set
0 _ e de;
£..(s) = fM . (@9 -1) ()P dute),  Re(s) >,

Ay

where Mi‘,’_, » denotes the adelic moduli space of rank r lattices whose canonical polygons are bounded
from above by p. One chects that ﬁ;’:(s) is well-defined and satisfies all the fundamental properties of our

non-abelian zeta functions. It is in fact a very interesting problem to understand such generalized non-
abelian zeta functions: For example, the structure of an analogy for function fields when p is sufficiently
large is rather simple since the constant terms of Eisenstein series along parabolic subgroups coincide with
the Eisenstein series itself. (See e.g., [MW)].) (In a certain sense, for the purpose of trace formula, what we
care is the asymptotic behaviors of integrations for more general test; while for the non-abelian zetas, what

we care is precise expressions for integrations of Eisenstein series.)
I1.2. Rankin-Selberg Method and Arthur’s Analytic Truncation

Following Arthur [Ar1-6], consider only Arthur’s analytic truncation over Q (but) for general reductive
algebraic groups. For a more general discussion over arbitrary number fields, see, e.g., (MW].

Let G be a reducitive algebraic group defined over Q. Let A be the split component of the center of
G and set ag = Hom(X(G),R) where X(G) is the group of characters of G defined over Q. Let G(A)! be
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the kernel of the map Hg : G(A) — ag defined by < Hg(z),£ >:= log lE(x)|,z € G(A),€ € X(G). Then
G(Q) embeds diagonally as a discrete subgroup of G(A)L.

Fix a minimal parabolic subgroup Py of G with Levi component My and unipotent radical Np. Fix also
a maximal compact subgroup X = [], Ky of G(A).

Associated to each standard parabolic subgroup P, i.e., those parabolic subgroups which contains Py,
is the geometric truncation #p: Write ap = apr,, and Ap = Ay, If Q is a parabolic subgroup that contains
P, there is a natural map from ap onto ag. Denote its kernel by a,Qp C ap. Let Ap denote the set of
simple roots of (P, Ap). Naturally, Ap C ap = X(Mp) ® R, the dual of ap. To each a € Ap, we have the
associated co-root a¥ € a§. Let Ap be the dual basis of ap/ag of {a" :a € Ap}. Then by definition 7p is
the characteristic function of {H € ap : w(H) > 0,w € Ap}.

Fix once and for all a suitably regular point T' € ap = ap,. (Recall that T is suitably regular if a(T)
is sufficiently large for all @ € Ag = Ap,.) If ¢ is a continuous function on G(Q)\G(A)?, define Arthur’s
analytic truncation (AT¢)(z) to be the function

3o (-pydimearz N / ¢(néz)dn - 7p(H(6z) — T).
P seP@\G(Q) I N(QN\N(A)

where Hp is the continuous function from G(A) to ap defined by Hp(nmk) = Hp.(m),n € Np(A),m €
Mp(A),k € K, the sum over P is over all parabolic subgroups. One checks that if ¢(z) is a cusp form,
then AT¢ = ¢ and if ¢(z) is of slow growth in the sense that |¢(z)| < C|lz||¥ for some C and N, then so
is AT¢(x). More generally, for a fixed P, and ¢ € C(GQN\G(A)Y), [n(@\Mi(a) AT¢(n1z)dny = 0 unless
w(Ho(z) — T) < 0 for each w € A,. As direct consequences, we have ATAT = AT and AT is a self-dual
operator.

Now recall some fact from the theory of Eisenstein series. Let W = Wy be the restricted Weil group
of G. Set X to be the set of W-orbits of pairs (Mp,rp) where B are standard parabolic subgroups of G
and rpg are irreducible cuspidal automorphic representations of Mp(A)!. For any given x € X let Py, an
associated class of standard parabolic subgroups, be the set of groups B appeared in the orbit x.

Suppose that x € X and P C Py are given. Let L*(Np(A)M P(Q)\G(A)!)x be the space of functions
é € L2(Np(A)Mp(Q)\G(A)?) with the following property: For every standard parabolic subgroup B C P,
and almost all z € G(A)!, the projection of the function

¢Bz(m) = / ¢(nmaz)dn, m € Mp(A)?
Ne(Q\Ni(A)

onto the space of cusp forms in L?*(Mp(Q)\Mp(A)!) transforms under Mp(A)! as a sum of representations
rg, in which the pair (Mp,rB) is in X. (If there is no such pairs in X, ¢, will be orthogonal to the space
of cusp forms on Mp(Q)\Mgs(A).)

Facts. (Langlands [La2]) (2) L*(Np(AMp(Q)\G(A)')x = {0} #f there is no groups in Px which are
contained in P;

(b) L*(Np(A) Mp(Q\G(A)}) = @yex L*(Np(A)Mp(Q\G(A) )y

Denote by F(Mp) the collection of parabolic subgroups of G defined over Q and containing M. For any
P € F(M,), denote by A%(P) the space of L?-automorphic forms on N p(A)Mp(Q)\G(A) whose retriction
to Mp(A)! is L? as well. For any ¢ € A%(P), define the associated Eisenstein series by

E(z,9,)) := Z ¢(5m)e()\+pl')(f1n(61)), z € G(A).
s€P(QN\G(Q)

Here pp € ap is the element such that the modular function 6p(p) = |det(Adp)n,.(a)),P € P(A) on P(A)
equals €2*(Hr(®) | where np stands for the Lie algebra of Np. E(z,$,)\) converges for A in a certain
chamber, and continuous analytically to a meromorphic function of A € ape lxeX and 7 € [I(Mp(A)),
the collection of equivalence classes of all irreducible unitary representations of Mp(A), let A2 . (P) be the
space of vectors ¢ € AZ(P) such that:



14

(i) The restriction of ¢ to G(A)! is in L}(Np(AMp(Q\G(A) )y
(ii) For every = € G(A), the function m ¢(mz),m € Mp(A) transforms under Mp(A) according to 7.

Let A2 . (P) be the completion of A? . (P) with respect to the inner product

= k kdm dk.
(6,%) /K fﬂ oy, TP

For each A € a} ¢ there is an induced representation py (P, A) of G(A) on A? , (P), defined by

(Pron(P ) 9) (@) i= dlay)eHor) ()= He,

One checks that py x is unitary if A is purely imaginary.
Given P C Py, m € II(Mp(A)), ) € ia} and a suitably regular T € ag, define an operator 9£‘W(P, A) on

A% (P) by
(O (PX8.Y) = [ ATE(z, 6, VATE (=, §, Ndz
G(QNG(A)!

for any pair of vectors ¢, 9 € A? (P). Naturally, we want to know how to evaluate the above inner product
of Eisenstein series. As the formula for SL; suggests, this is a kind of Rankin-Selberg type calculation, for
which a special case is derived by Arthur and Langlands.

More precisely, Langlands’ case is for P € Py. That is to say, when the Eisenstein series are cuspidal.
To describe it, recall that if P, P € F(Mp), s € W(ap,ap,), the set of isomorphisms from ap onto ap,
obtained by restricting elements in W to ap, and ¢ € A?(P), define the functional Mp, p(s,A) by

(Mp,p(s, ) () := / ¢(w;lnz)e('\+PP)(Hl’(w.—lﬂI))—(a)\+Pl‘1)(Hr'1(3))dn'
Npy (A)Nw, Np(A)wy \Np, (A)

Here w, denotes the element in G corresponding to s. This integral converges only for the real part of A
in a certain chamber, but Mp,|p(s, A) can be analytically continued to a meromorphic function of A € ap ¢
with values in the space of linear maps from A?(P) to A*(Py). Indeed, suppose 7 € MI(Mp(A)), Mp, p(s;7)
maps A2 ,(P) to A ,x(P1)-

Now for A € ia}, define wX (P, A) to be the value at A = X’ of

Z Z Mp,p(t, /\)_IMP1|P(t', )‘l)e(y,\/_u)(T)GPI (N - t/\)_l,

PyDPtt'€EW(ap,ap )

where
O, (N — tA)~! = Vol(aS/Z(A% )t T &N —tA)(aY).
a€d iy

Here Z(A}, ) is the lattice in a$ generated by {a¥ : a € Ap, }. Then wT (P, X) is an operator on A2 (P).
Fact. (Langlands [Lal,2] and [Ar 3]) If P € Py,

QT (P,A) = wi (P, }). (6)
That is, we have an ezplicit formula for the inner product of the truncated Eisenstein series when P e Py.

Unfortunately, if P ¢ Py, we may not have the above beautiful formula, as Arthur notices. However,
Arthur, for the purpose of trace formula, proves the following elegant results.

Recall that T € a}  is said to approach infinity strongly with respect to Py if ||T|| approaches infinity
but T remains within a region {T € ao : min{o(T) : & € Ao} > 8|71}, for some & > 0.

Fact. (Arthur [Ar 4,5]) If ¢,% € A2 ,(P), then (QF (P, X)¢,¥) — (I (P, \)¢,¥) approaches zero os T
approaches infinity strongly with respect to Fy. The convergence is uniform for X\ in compact subset of iap.
Moreover, by the analytic continuation, the above facts actually hold for all well-defined Aap c-
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IIL. Where Non-Abelian Contributions Come

In Chapter II, we show that the rank two non-abelian zeta functions degenerate. In this chapter, we
explain why this happens and use the example of rank three zeta functions to indicate where the non-abelian
contributions come. Moreover, we show that at least to find the special values of rank 3 zeta functions, a
Kronecker limit type formula using all terms of Fourier expansions is needed. As such the discussion here is
rather practical. I hope I would come back to this point later together with a more theoretical approach.

II1.1. The Group SL3

As indicated in II, the moduli of all rank three lattices of volume one may be viewed as the space
SL(3,Z)\SL(3,R)/SO(3,R). We start with a description of several coordinates for SL(3,R)/SO(3, R).
For this, consider the following standard parabolic subgroups of G = SL(3,R).

a;l ai2 413
Py = Py1,1: the subgroup of G consisting of all matrices oftheform | 0 a2 a2 |;
0 0 aszs
a;n 212 @13
Py = P, ;: the subgroup of G consisting of all matrices of the form | az; a22 a23 |; and
( 0 0 az3
a1 a2 013
Py = P, 5: the subgroup of G consisting of all matrices oftheform | 0 a2 as23
0 a3 ass

Write the corresponding Langlands decompositions as P; = N;A;M;,i =0,1, 2 where N; is the unipotent

radical of P;, A; is reducible and M; is simple. So,

1 0 O -1 0 O -1 0 O
My={I;,{0 -1 0}),{0 -1 0], 0 1 0 .
o 0 -1/ 0 0 1 0 0 -1

More generally, if we denote the matrices of each subgroup by the corresponding lower-case letters. The
subgroups above consists of the following elements:

1 a2 a3 an 0 O
no=|0 1 am|; ao=| 0 ax 0 ]; mo € Mo;
0.0 1 0 0 az3
1 0 = a; O 0 *x x 0
n1=(0 1 ¢t 1 ai={ 0 o 0 ;omp= | * * 0)-mo;
00 1 0 0 of 001
1 zp t2 a;? 0 O 100
ng=10 1 01}]; az= 0 ay 0 ]; me=]0 * x|} -mg,
0 0 1 0 0 o2 0 * =

where aij, Zi, ti € R,a:;,a; > 0.

Note that by the Iwasawa decomposition with respect to P,, we have G = A{ NoK. Thus choose a coset
G/K amounts to choosing an element of Ny and one of AZ, the identity component of Ap. Hence, identify
G/K with

nn O 0 1 x1 o
Y:=| 0 u 0 10 1 zx3 :y;,y2>0,x1,mg,x3€R
0 0 (yy)™? 0 0 1

As such it is then convenient to introduce two coordinate systems according to the parabolic subgroups P
and P,. In fact, notice that My /M; N K ~ SL(2,R)/SO(2,R) so natural coordinates for G/K are given by

1/2 ~1/2

(3 V1Uy 0 4 3] 0 0 1 0 T1
0 wY* o)-|0 a 0 ]-]10 1t
0 0 1 0 0 o 00 1
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where z; = v1 +u; can be regarded as a point in the Poincare upper half plane. Similarly, consideration of
P, yields coordinates

10 0 a? 0 0 1ty z2
0 uf? wvuV? 0 a O0J]-[0 1 0
0 0 u? 0 0 o 0 0 1

1

Let y; = b, 1 = 1,2 then a Haar measure on G/K may be given in terms of Langlands coordinates as follows

d d
dp = L8 gy, = B2 0% g g,
i ™ L

where z; = v + tu; and 2z = v + fua.
Let I' = SL(3,Z) acting on G/K, and D be & fundamental domain for I'. Then by the theory of
Eisenstein series,
LX(T\G/K) = Hy & 6" @ 6" & 6{)

where H, denotes the cusp forms of I, while the Theta’s may be defined as follows using Eisenstein series:
Associated to minimal parabolic subgroup Po we have the Eisenstein series

E(Y;st)i= Y, n(Y) u(y). (7)
~EPyNI'\I' .

It is known that this series converges when 3Re(s) — Re(t) > 2,Re(t) > 1 and admits a meromorphic to the
whole (s,t)-space. Despite that there are many poles, but these which are of some interests to us are on the
lines t = 1,3s —t = 2,35+t = 3. The residues at these poles are meromorphically continued Eisenstein
series of one variable and generate the closed subspace 8, One checks that 982) is simply the span of
EO(Y,1/2 +iry,1/2 +irp).

Now, let ¢ be an even cusp forms for SL(2, Z) on the upper half-plans. Set

E(Y;¢i8) = Y (1Y) -¢(z(rY), i=L2 8)

PiOC\T'

These series converge for Re(s) > 1 and have meromorphic extension on the whole s-plane which has no
poles on the line (1/2,1). So the space ©; 2 generated by E;(Y;;8),i = 1,2 for all ¢ coincides with 6(12'%,
the closed space spanned by E; along the line Re(s) =1 /2. Indeed, one may also hav a refined orthogonal
decomposition of 9&23 according to that of ¢. For details, see [Venkov].

I11.2. Fourier Expansions

To go further, we need to understand the Fourier expansion of Eisenstein series near cusps. However,
before that let us briefly discuss the relation between the above general theory of Eisenstein series and the
Epstein zeta function used in our construction of non-abelian zeta functions. (In fact, to have a completed
theory, we should equally use the algebraic truncation and general Eisenstein series to define a more general
type of non-abelian L-functions.) The main references are [IT], [T] and [V]. A parallel discussion may also
be carried out by using Whittaker functions (see e.g. [Bu]).

It is the space 981) which is of interests to us. In fact, two types of functions are used: the constant
functions and the Epstein zeta functions. It is quite clear why Epstein zeta function is needed: the integration
of a single Epstein zeta function may be viewed as an inner product of it with the constant functions.

Thus it suffices to study the Eisenstein series E°(Y;s,t) of the highest level. Recall that E%(Y;s,t) as
in (7) may also be written in the style of (8) as follows:

E°(Y;s;t) = EO(Y; E(21,1); 8) = Z E( (YY) + tui(7Y);t) - 511 (7Y)’,
~€SL(3,2)NP; \SL(3.2)
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where E(z,s) denotes the standard Eisenstein series appeared in 1.3. So after taking the residues on either
s or t (resp. on s and t), we get naturally the Epstein zeta function (resp. constant functions).

Let us start with the simplest terms, i.e., the so-called constant terms appeared in the Fourier expansion
for the cusps. As the cusps correspond to parabolic subgroups of G. Thus for an automorphic function f(Y),
set

fr0)i= [ fYian, =012

AN\ N;
the constant term along P;. Set also

(s—1/2) ¢@2s=1)
NORNENICON

Proposition. (Venkov[V]) With the same notation as above,

c(s) = 7r1/2F

= - - — t—1
3s—t 1-0/2 12,1 3/25+t/2c(t)c((382 t)c(38+ )

ES (Y;8,t) =yiul + yiur™e( )+y

2 2
s —3s— - - —1/2s— - t—
+yi/2(1 s tui/z(s 3s t)c(332 t)c(3s +2t 1)4'-1/% 1/2s 1/2tu§sa/2 t/zc(t)c(&? +2 1);
—s—t) ,38—1 3s+t—1
ER,(Yis,t) =yi B(z1,1) + 1,70 V(=) B(ar, —5—)

1-8/2-t/2 3s+1t— 3—-3s—t

1
+u c(t)e( 2 YE(21, ) )
—a—t) ,35—1 3s+t—1
BY,(Yis,t) =13 B(m,1) + 45/ Ve =) e, ——)
—8/2— 3s+t-1 3-3s—-t
+ 337 el t)e( ) Bz, —5—)-

For the proof see, e.g., that of Lemmas 2 and 8 of [Venkov].

Next, let us recall the Fourier expansions of E°(Y;s,t) along the parabolic subgroups P, and P, due
to Imai and Terras. (In theory, we should also know the Fourier expansion along Po. However, as the later
calculation shows, by an induction on the rank, to see the non-abelian contributions, we need not to have
detailed information about such an expansion: the terms involved will finally lead to a combination of abelian
zeta functions by reducing to the case discussed in Chapter L) For this, view the rank lattice of volume one
as positive quadratic forms of determinant 1, write

Y = U 0 I 2 T _ I 2 0 X U o . I 2 T
“\0o w/j0 1] \z 1 0 w 0 1
and define the first type of matrix k-Bessel function to be

-1{1 0 ,
eraa? T8 (Y 1 [ﬁt Iz}) &P (2MTr(At ~X))dX

for (s1,82) € C%, Y € §P3, A € R**! and p,, 5, (Y) = |Y1|*|Y2[** where ¥; € SP; is the j x j upper left
hand corner in Y, j = 1,2. Here as usual, we denote by SP,, the collection of rank n positive quadratic
forms of determinant 1. Set also

kn1(¥;s1, 52; A) = /

X

A(s) "') ’ A(S,T') a'l_zr(k)
Q) =710 = ——t arwo = A(8, 1) ———,
0 B(3,3-71) %o B,r— 1) k740 (s,7) T
Afsyr) ==6=9T(s ~ D= 51 - 250,

o(s,7) =E(2r)e(2s ~T)E(2s 1 47) E(\/—’-l’ﬁ;r)wr“; with

E(V;r) =% m%‘::l Via]™",  Re(r)> L.
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Proposition. ([IT]) With the same notation as above, we have

ey (2 2) (3 3]0

6 —2s—3r r 3+3r—2s 1-7
=c(s,r)+c(-——z———,s—§)+c( y 1§ )

P>

AESL(2,Z)/P(1,1) ¢,d2€Z>0,d1€Z\{0}

-1 -t
A [0‘6 c?~2 " ™™ exp (27N':vtA- (cgl)) -k2,1(<A I(,)/'A 3)) 's— -;-,r;vr(czl))

-1 -t _
et drray (arsta (2)) s (4754 00 25E=n ()]

+>
k#0 ¢,d2 €Z>u,dzlk,d1€Z\{0}

cd A-WUA"t O T cd
2-28—1 Jr—28 .ot 1 . AP, 1
g € dy %% exp (2mzz: A(ck/dz)) kz,l(( 0 w),s 2’T’"(ck/d2>))’

where P(1,1) is the subgroup of upper triangle matrices of determinant 1. Similar Fourier expansion holds
for E®(E(z; s),t) with respect to Pa.

II1.3. Non-abelian Contributions

To give a precise expression for the rank 3 non-abelian zeta functions for Q, by definition, what we need
to do is the follows: '
1) Give a concrete description of Mgqall] as a closed subset of a certain fundamental domain of SL(3,Z);
and
2) Calculate the integration of the Epstein zeta function over Mq,31].

However, as the details are much more complicated, we in this paper only indicate the key points for
doing so. (The reader who wants to know how complicated it would be may turn to the paper of Venkov
on the Trace Formula for SL(3,Z), where only the so-called dominate terms, i.e, the principal asymptotic
terms nearing the cusps of type P, are calculated: the formulas run pages even there.)

First, for simplicity, consider the geometric truncated fundamental domain of ' := SL(3,Z) obtained
by cutting off the cusp regions corresponding to Py, P; and Pp.

More precisely, put [; =T NP, j =0, 1,2 and 'y, = I' " No. Then the fundamental domain F, in
S := SL(3,R)/SO(3,R) for the groups * = Ty, Ty, T2, Ty, may be choosen to be

Fy,:={Y € S:y1 >0,u1 >0,-1/2 <v1,Z1,81 < 1/2};
Fy :={Y €Fn,:n1 +x1 > 0,v1 +t1 > 0,71 +t; > 0};
Fj={Y eFy:vl+u}21}, Jj=12

With this, by a discussion following Selberg, (see e.g. Thm 7 in [V],) we know that there exists a compact
set FO C S such that
FiNF,=F'UF

where F denotes the fundamental domain of I'. That is to say, the cusp regions for Pj, j = 0, 1,2 in the
fundamental region F of SL(3,Z) may be read from F} and Fj.

As usual, we may then introduce a geometric truncated compact subset in F by cutting off the neigh-
borhood of cusps along Fi and F, so as to get Fr = F\(DT U DY). Note that Dj := DT n DY gives
a neighborhood for the cusps with respect to P,. Thus, we may analytically understand this geometric
truncation as

1p, =1p — ID"I‘ - 1D'3" + 1D;{‘1
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which is compactible with the truncations in Chapter 1L

Secondly, let us simply look at the contributions of standard parabolic subgroups so as to get the analytic
truncation

ArEY(Y;s,t) :
=E%(Y;s,t) — Ep (Y;s,t)- lpr — E}, (Y;s,t)-1pr + E%,(Y;ist)-1pr
=((E°(Y; 5,8) — B3 (Vs 5,8)- 1pr) + (B(Y;8,1) — ER(Yis1) - 1 or))
- (EO(Y; s,t) — E} (Y;s,t) - lD;:;)
=HY (Y;s,t) + HY, (Y;s,) — Hp, (Y58, 1).
Here
H} (Y;s,t) = E°(Y;s,t)— E3,(Y;s,t)-1pr,  J= 1,2,0

denotes the non-constant part of the corresponding Fourier expansion.
Thirdly, we want to know the integration /] Py E°(Y;s,t)du(Y). For this, we go as follows:

E%(Y;s,t)du(Y) =/ ATEY(Y;s,t)du(Y) —-/ ATE°(Y;s,t)du(Y)
F F\Fy

F'r T

- / ATEO(Y; s, )dp(Y) — / ATEO(Y; 5, £)du(Y),
F FT

where FT := F\Fr = DT u DY.

Finally, let us look at the structure of this latest expression:
(A) (Abelian Term: Application of Rankin-Selberg Method) By the Rankin-Selberg method, in particular,
the version generalized by Langlands and Arthur recalled in II, the part [ ATE®(Y;s,t)du(Y), being the
integration of analytic truncation of Eisenstein series on the whole fundamental domain of SL(3,Z), is
essentially abelian;

Thus, it suffices to know the structure of [r ATE®(Y; s, t)du(Y). Clearly,

/ ATEY(Y; s, £)du(Y)
F7

= / ATEC(Y; s, t)dp(Y) + f ATES(Y; s, t)du(Y) — / ATES(Y; s, t)du(Y)
by D} DY

- / (HR,(v;s,8) + HY,(Yis,t) — HY, (¥35,2) ) du(Y)
DY

+ / , (H%,(Y;s,t)+ng(Y;s,t)—Hg"(y; s,t))dp.(Y)
D['

3

_ / (H(V;88) + HE, (Vi 8,6) — HR(Yss, £)) du(Y)
DT

[

=IT(s,t) + I (s,t) = I (s, 1),

where
I7(s,1) = / (B8, (¥s,0) + B, (Vis,0) - B, (Yis,8))du(Y), 5 = 0,1,2

DY

(B) (Terms obtained from Lower Rank Non-Abelian Zeta: Induction on the Rank) Consider the integrations

IT(s,t) = /D (H%, (Yss,8) + HY, (Vs s,t) — Hp (Y s,t))du(Y),j =0,1,2.

1
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If the fundamental domain F is chosen so that F is of exact box shape as Y approaches to all levels of cusps,

we have
Hp,(Y; s,t) =0.
o
(This is possible by a result of Grenier [G] as also recalled in [T]. From now on, we always assume this
condition for the fundamental domain.) Then what left is to consider the following integrations:

1T (s,t) == / (H%z(Y;s,t)—H?;u(Y; s,t))dp(Y);

T
D 1

107 (s, t) := /D g_ (B8, (¥55,8) = B, (¥is,8))du(¥ )

7 (o,8) = [ (BB i)+ H (V30,0)) ducY):
by
With this, we see that II,T(S, t) is in fact essentially a rank two zeta functions, which may be understood
via an induction argument. So we are left with only

1017 (s, 1) = [ REGXE 5,8) + H, (Y3 5,1) Jan(Y),

1
DO

which in the case of rank 3, is the only essential non-abelian contribution.

(C) (Essential Non-abelain Contributions: New Ingredients) The evaluation of the integration 17 (s, t) is
rather difficult: what we should do is to calculate the integration of all non-constant terms of the Fourier
expansion of EY(Y; 3,t) with respect to P, and P; for the cusp region corresponding to that for Po = PiNPs.
By the result of Imai and Terras cited above, these coefficients consist of matrix version of k-Bessal functions.
So an impossible mission.

On the other hand, to finally get our non-abelian zeta functions, what we need is not the integration
of E°(Y;s,t), we still need to take residues with respect to the t variable. Indeed, what we discuss here
is the integration for the Eisenstein series E°(Y;s,t), while what is used in Prop. L1 for non-abelain zeta
functions is the integration for the Epstein zeta functions associated to maximal parabolic subgroups. So at
this level of discussion, it is then much better to directly use the Fourier expansion of Epstein zeta function,
a special kind of Eisenstein series:

For any Y € Py, set

EnYis)== 3 (Yl  Re(s) >3-
2&62\{0} 2

Then we have the following result of Berndt and Terras:

Proposition. ([B] & [T]) With the same notation as above, if Y = (‘g ‘2,) [(I) )I(j with V € Py, W €
Pr—mm, then
7 *T(s)E(Y; s)
=n"0T(8) Em(V;8) + 7 °T(s) - [V|"Y2Ep_m(W;s —m/2)
avrr Y en(emibtxe) (ST Kemaleny VIR WD,
_ bezm\{0},c€Z»~"\{0} : .
where K, denotes the K-Bessel function.

Thus, by taking n = 3 and m = 1,2, we see that the non-constant terms of the Fourier expansions of
E;(Y; s) are given in terms of K-Bessel functions K -1 and K,—1. It is the integration of these terms over
DT that gives the essential non-sbelian contribution to our rank three zeta functions. From here we also
expect that a kind of Kronecker limit formuls holds for our non-abelian zeta functions.
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