
Polynomial Time Inductive Inference of Ordered Term Trees
with Contractible Variables from Positive Data

鈴木祐介 (Yusuke Suzuki), 正代隆義 (Takayoshi Shoudai)
九州大学システム情報科学 {府, 研究院} 情報理学 {専攻, 部門}

Department of Informatics, Kyushu University
{y-suzuki . shoudai}@i. kyushu-u.ac.jp

松本哲志 (Satoshi Matsumoto)
東海大学 理学部 情報数理学科

Department of Mathematical Sciences, Tokai University
matumoto@ss. uTokai.ac.jp

内田智之 (Tomoyuki Uchida), 宮原哲浩 (Tetsuhiro Miyahara)
広島市立大学 情報科学部

Faculty of Information Sciences, Hiroshima City University
{uchida@cs,miyahara@its}.hiroshima-cu.ac.jp

1Introduction

Due to the rapid growth of Internet usage, tree structured data such as Web documents have been
rapidly increasing. In order to analyze such tree structured data, efficient learning from tree structured
data becomes more and more important. Tree structured data such as $\mathrm{H}\mathrm{T}\mathrm{M}\mathrm{L}/\mathrm{X}\mathrm{M}\mathrm{L}$ files are represented
by rooted trees with ordered children and edge labels [1]. In order to represent atree structured pattern
common to such tree structured data, we proposed an ordered term tree, which is arooted tree with
ordered children and structured variables [7]. Avariable can be substituted by an arbitrary tree. An
ordered term tree t is said to be regular if all variable labels in t are mutually distinct. Many tree
structured data such as $\mathrm{H}\mathrm{T}\mathrm{M}\mathrm{L}/\mathrm{X}\mathrm{M}\mathrm{L}$ files have no rigid structure and have essential information in
subtrees containing leaves. In order to deal with such tree structured data, we introduce anew tyPe of
variable, called acontractible variable, which is regarded as an anonymous subtree in an ordered term
tree and matches any subtree including asingleton vertex. Ausual variable, called an uncontractible
variable, in aterm tree does not match asingleton vertex.

The language of aregular ordered term tree t is the set of all ordered trees which are obtained ffom t

by substituting ordered trees for variables in t . The language of aregular ordered term tree t shows the
representing power of t . Aleast generalized regular ordered term tree t explaining given tree structured
data S is aterm tree t whose language contains S and is minimal. Consider the examples in Fig. 1. The
term tree t_{2} is aleast generalized regular ordered term tree for Ti, T_{2} and T_{3} . The ordered term tree t_{1}

also explains the three trees. But t_{1} explains any tree with 2or more vertices. So t_{1} is overgeneralized
and meaningless.

Let Λ be aset of edge labels used in tree structured data. $\mathcal{O}\Gamma\Gamma_{\Lambda}^{c}$ denotes the set of all regular ordered
term trees all of whose contractible variables are adjacent to leaves. First we give an efficient polynomial
time algorithm for deciding whether or not agiven regular ordered term tree in m_{Λ}^{c} matches atree,
where $|\Lambda|\geq 1$. Second when $|\Lambda|\geq 2$, we give apolynomial time algorithm for finding aleast generalized
regular ordered term tree in $\mathcal{O}\Gamma\Gamma_{\Lambda}^{\mathrm{c}}$ which explains all given data. These results imply that the class
$O\Gamma\Gamma_{\Lambda}^{\mathrm{c}}$ with $|\Lambda|\geq 2$ is polynomial time inductively inferable from positive data.

An ordered term tree is different from other representations of ordered tree structured patterns such
as in [2, 4, 13] in that an ordered term tree has structured variables which can be substituted by arbitrary
ordered trees. We showed that some classes of regular unordered term tree languages are polynomial time
inductively inferable from positive data $[5, 8_{\lambda}9]$. In $[10, 12]$, we showed that some fundamental classes of
regular ordered term tree languages without’ any contractible variable are polynomial time inductively
inferable from positive data. In [6], we showed that some classes of regular ordered term tree languages
without any contractible variable are exactly learnable in polynomial time using queries. In [7], we gave
adata mining method from semistructured data using ordered term trees.

数理解析研究所講究録 1325巻 2003年 69-74

69

$\mathrm{n}2\mathrm{O}$

g_{2}

Fig. 1. Term trees t_{1} , t_{2} and trees T_{1} , T_{2} and T_{3} . An uncontractible (resp. contractible) variable is represented
by asingle (resp. double) lined box with lines to its elements. The label inside abox is the variable label of the
variable.

2Ordered Term Trees with Contractible Variables

Let $T=(V_{T}, E_{T})$ be arooted tree with ordered children (or simply atree) which has aset $V\tau$ of vertices
and aset E_{T} of edges. Let E_{g} and H_{g} be apartition of Et, i.e., $E_{g}\cup H_{\mathit{9}}=E_{T}$ and $E_{g}\cap H_{g}=\emptyset$. And
let $V_{g}=V_{T}$. Atriplet $g=$ (V_{g},E_{g}, H_{g}) is called a tem tree, and elements in V_{g} , E_{g} and H_{g} are called
avertex, an edge and avariable, respectively. We assume that every edge and variable of aterm tree is
labeled with some words from specified languages. Alabel of avariable is called avariable label. Λ and
X denote aset of edge labels and aset of variable labels, respectively, where Λ $\cap X=\phi$. For aterm
tree g and its vertices v_{1} and $v:$, apath ffom v_{1} to v_{i} is asequence v_{1} , v_{2} , \ldots , v:of distinct vertices of
9such that for any j with $1\leq j<i$, there exists an edge or avariable which consists of v_{j} and v_{j+1} .
If there is an edge or avariable which consists of v and $v’$ such that v lies on the path from the root to
$v’$, then v is said to be the parent of $v’$ and $v’$ is achild of v . We use anotation $[v, v’]$ to represent a
variable $\{v, v’\}\in H_{g}$ such that v is the parent of $v’$. Then we call v the parent port of $[v, v’]$ and $v’$ the
child port of $[v,v’]$.

Definition 1. Let X^{c} be adistinguished subset of X . We call variable labels in X^{c} controctible variable
labels. Acontractible variable label can be attached to avariable whose child port is aleaf. We call
avariable with acontractible variable label acontractible variable, which is allowed to substitute
atree with asingleton vertex, as stated later. We call avariable which is not acontractible variable
an uncontractible variable. For avariable $[v,v’]$, when we pay attention to the kind of the variable, we
denote by $[v,v’]^{\mathrm{c}}$ and $[v, v’]^{u}$ acontractible variable and an uncontractible variable, respectively.

Aterm tree g is called ordered if every internal vertex u in g has atotal ordering on all children of
u . The ordering on the children of u is denoted by $<_{u}^{g}$. An ordered term tree 9is called regular if an
variables in H_{g} have mutually distinct variable labels in X . For aset S , the number of elements in S is
denoted by $|S|$.

Definition 2. An ordered term tree with no variable is called aground ordered term tree, which is
astandard ordered tree. σr_{Λ} denotes the set of all ground ordered term trees whose edge labels are in
A. $\mathcal{O}\Gamma\Gamma_{A}^{\mathrm{c}}$ denotes the set of all ordered term trees with contractible or uncontractible variables whose
edge labels are in Λ . In this paPer, we treat only regular ordered term trees with contractible variables.
Therefore we call it aterm tree simply

70

Let $f=(V_{f}, E_{f}, Hf)$ and $g=(V_{g},E_{g}, H_{g})$ be term trees. We say that f and g are isomorphic,
denoted by $f\equiv g$, if there is abijection φ from V_{f} to V_{g} such that (i) the root of f is mapped to
the root of g by φ , (ii) $\{u, v\}\in E_{f}$ if and only if $\{\varphi(u), \varphi(v)\}\in E_{g}$ and the two edges have the same
edge label, (iii) $[u,v]\in Hf$ if and only if $[\varphi(u), \varphi(v)]\in H_{g}$, in particular, $[u, v]^{\mathrm{c}}\in H_{f}$ if and only if
$[\varphi(u), \varphi(v)]^{\mathrm{c}}\in H_{\mathit{9}}$, and (iv) for any internal vertex u in f which has more than one child, and for any
two children $u’$ and $u’$ of u , $u’<_{u}^{f}u’$ if and only if $\varphi(u’)<_{\varphi(u)}^{g}\varphi(u’)$.

Let $\sigma=[\mathrm{u},\mathrm{v}]$’] be alist of two vertices in g where u is the root of g and $u’$ is aleaf of g . The form
$x:=[g, \sigma]$ is called abinding for x . If x is acontractible variable label in X^{c} , g may be atree with a
singleton vertex u and thus $\sigma=[u,u]$. It is the only case that atree with asingleton vertex is allowed
for abinding. Anew term tree $f[x :=[g,\sigma]\}$ is obtained by applying the binding $x:=[g, \sigma]$ to f in the
following way. Let $e=[v, v’]$ be avariable in f with the variable label x . Let $g’$ be one copy of g and
w , $w’$ the vertices of $g’$ corresponding to u , $u’$ of g , respectively. For the variable $e=[v, v’]$, we attach $g’$

to f by removing the variable e from H_{f} and by identifying the vertices $v,v’$ with the vertices w , $w’$ of
$g’$, respectively. If g is atree with asingleton vertex, i.e., $u=u’$, then v becomes identical to $v’$ after the
binding. Asubstitution θ is afinite collection of bindings $\{x_{1}:=[g_{1},\sigma_{1}], \cdots,x_{n}:=[g_{n}, \sigma_{n}]\}$, where x_{i} ’s
are mutually distinct variable labels in X . The term tree $\mathrm{f}\mathrm{O}$, called the instance of f by θ , is obtained
by aPplying the all bindings $x::=[g_{i}, \sigma:]$ on f simultaneously. Further we define anew total ordering
$<_{v}^{f\theta}$ on every vertex v of $f\theta$ in anatural way. In this paPer, we omit the exact definition of the ordering
after applying abinding to aterm tree. The readers can refer it to [10] or [12].

For example, let t_{2} be aterm tree described in Fig. 1and $\theta=\{x:=[g_{1}, [u_{1},v_{1}]],y:=[g_{2}, [u_{2},u_{2}]]\}$

be asubstitution, where g_{1} and g_{2} are trees in Fig. 1. Then the instance $t_{2}\theta$ of the term tree t_{2} by θ is
the tree T_{3} in Fig. 1.

3An Efficient Matching Algorithm for Term Trees

Amatching algorithm for term trees is an algorithm which decides whether or not aterm tree t matches
atree T . We gave matching algorithms for term trees with no contractible variable in [10] and for
term trees with variables having more than two child ports in [11]. In this section, we give amatching
algorithm for $\mathcal{O}\Gamma\Gamma_{\Lambda}^{\mathrm{c}}$ by extending the matching algorithm in [10].

Let $t=(V_{t}, E_{t},H_{t})$ and $T=(V\tau,E_{T})$ be aterm tree in $\mathcal{O}\Gamma\Gamma_{A}^{\mathrm{c}}$ and atree in $U\Gamma_{\Lambda}$, respectively. We
assume that all vertices of aterm tree t are associated with mutually distinct numbers, called vertex
identifiers. We denote by $I(u’)$ the vertex identifier of $u’\in V_{t}$. Acorrespondence-set (C-set for short)
is aset of vertex identifiers, which are with or without parentheses, of vertices of t . Avertex identifier
with parentheses shows that the vertex is achild port of avariable.

Our matching algorithm proceeds by constructing C-sets for each vertex of agiven tree T in the
bottom-up manner, that is, from the leaves to the root of T . At first, we construct the C-set-attaching
rule of avertex $u’$ of t as follows. Let $c_{1}’$, \cdots , $c_{m}’$, be all ordered children of $u’$. The C-set-attaching rule
of $u’$ is of the form $I(u’)\Leftarrow J(c_{1}’)$, \ldots , $\mathrm{J}\{\mathrm{d}\mathrm{m},$) where $J(c’.\cdot)=I(c_{\dot{1}}’)$ if $\{u’,d.\cdot\}$ is an edge, $J(c_{i}’)=I(\emptyset)$

if $[u’, d_{}]$ is acontractible variable, $J(d\dot{.})=(I(c^{}.))$ otherwise. $I(\emptyset)$ is aspecial symbol which shows d_{i} is
the child port of acontractible variable. The C-set-attaching rule of t , denoted by Rule(t), is defined as
follows.

Rule(t) $=$ {$I(u’)\Leftarrow J(d_{1})$, \ldots , $\mathrm{J}\{\mathrm{d}${ $)|$ the C-set-attaching rule of all inner vertices}
\cup { $(I(u’))\Leftarrow(I(u’))|u’$ is the child port of an uncontractible variable}
$\cup\{I(u’)\Leftarrow I(u’)|u’$ has just one child and connects to

the child with acontractible variable}.
The algorithm (Fig. 2) runs for $|\Lambda|=1$. Amatching algorithm for $|\Lambda|\geq 2$ can be easily constructed

ffom this algorithm. The only work we have to do is to check whether or not edge labels of atree is the
same as corresponding edge labels of aterm tree at the first foreach-loop of C-SET-ATTACHING. Then
we can prove this theorem in asimilar way to the proof of the correctness of the matching algorithm
for aterm tree [10].

Theorem 1. Let t be a term tree with n vertices in m_{A}^{c} and T a tree with N vertices in $\mathcal{O}\Gamma_{A}$. The
problem for deciding whether or not t matches T is solvable in $O(nN)$ $tree$.

71

Procedure MATCHING(t, T);
input t :aterm tree in $O\Gamma\Gamma_{\Lambda}^{c}$ with root r , T :atree in $\mathcal{O}\Gamma_{\Lambda}$ with root R;
begin
Construct Rule(tl ;
foreach leaf ℓ of T do

$CS(\ell):=\{I(\ell’)|\ell$’is aleaf of t that is not achild port of acontractible variable,
or ℓ has just one child and connects to it with acontractible variable};

while there is avertex v of $T\mathrm{s}.\mathrm{t}$. v has no C-set and all children of v have C-sets
do C-Set-Attaching(v, Rule{t) $)$;

if $I(r)$ $\in CS(R)$ then t matches T else t does not match T

end.
Procedure C-SET-ATTACHING(v , Rule(t)) ;
input v :avertex of T, Rule(t): the C-set-attaching rule of t ;
begin

$CS(v):=\emptyset$; Let c_{1} , \cdots , c_{m} be all ordered children of v in T;
foreach $I(u’)\Leftarrow J(c_{1}’)$, \cdots , $J(c_{m’}’)$ in Rule(t) do
if there is asequence $0=jo\leq j_{1}\leq\cdots\leq j*\cdot\leq\cdots\leq j_{m’-1}\leq j_{m’}=m\mathrm{s}.\mathrm{t}$.
1. if $J(c_{j}’)=I(c_{\dot{l}}’)$ then $j:-j\dot{.}-1=1$ and $I(c’.\cdot)\in CS(cj:)$,
2. if $J(c_{\dot{1}}’)=(I(c’\dot{.}))$ then $CS(c_{k}.)$ has $I(c’.\cdot)$ or $(I(c’.\cdot))$ for some k: $(j.\cdot-1<k_{:}\leq j)$

for all $i=1$, \ldots , $m’//\mathrm{w}\mathrm{e}$ have no condition on j. when $J(c_{\mathrm{i}}’)=I(\emptyset)$.
then $CS(v):=CS(v)\cup\{(I(u’)\}j$

foreach $(I(u’))\Leftarrow(I(u’))$ in Rule(t) do
if there is aset in $CS(c_{1})$, \cdots , $CS(c_{m})$ which has $I(u’)$ or $(I(u’))$ then $CS(v):=CS(v)\cup\{(I(u’)\}$;

foreach $I(u’)\Leftarrow I(u’)$ in Rule(t)$)$ do $CS(v):=CS(v)\cup\{I(u’)\}$

end.

Fig. 2. An algorithm for deciding whether or not aterm tree $t\in \mathcal{O}\Gamma\Gamma_{\Lambda}$ matches atree $T\in \mathcal{O}\Gamma_{A}$, where $|\Lambda|=1$.

4Algorithms for Finding aLeast Generalized Term Tree

In this section, we present polynomial time algorithm for finding aleast generalized term tree where
$|\Lambda|\geq 2$, explaining given semistructured data. We can consider the language $L_{\Lambda}(t)$ to be the descriptive
power of aterm tree t . Aleast generalized term tree explaining agiven set of trees $S\subseteq \mathcal{O}\Gamma_{\Lambda}$ is aterm
tree t such that $S\subseteq L_{\Lambda}(t)$ and there is no term tree $t’$ satisfying that $S\subseteq L_{\Lambda}(t’)$ (; $L_{\Lambda}(t)$. The problem
for finding aleast generalized term tree for agiven set of trees is discussed as the minimal language
problem (MINL for short) in computational learning theory. The main algorithm is described in Fig. 4.

Lemma 1. Let g and t be tem trees in $\mathcal{O}\Gamma\Gamma_{A}^{\mathrm{c}}$ for any Λ which are described in one of Cases 1-3 of
Fig. 3. Then $L_{\Lambda}(g)=L_{\Lambda}(t)$.

Fig. 3. Cases 1-3: $g\not\equiv t$ and $L_{\Lambda}(g)=L_{\Lambda}(t)$ for $|\Lambda|\geq 2$. The parts A , B , C, D of g are the same as the
corresponding parts A , B , C, D of t .

72

Algorithm MINL(S);
input $S=\{T_{1}, \ldots, T_{m}\}\subseteq U\Gamma_{\Lambda}$: aset of trees;
output t :aleast generalized term tree for S ;
begin

Let Λs be the set of all edge labels which appear in S ;
$t:=(\{u, v\}, \emptyset, \{[u, v]\})$;Let q be alist initialized to be $[[u, v]]$;
VARIABLE-EXTENSION (t, S, q) ;
Let r_{t} be the root of t ;
EDGE-REPLACING (t, S, r_{t}) ;
output t

end.
Procedure VARlABLE-ExTENsloN$(t:nput, S, q)$;
input input : aterm tree, S:aset of trees, q :aqueue of variables;
begin

$t:=t_{*nput;}$.

while q is not empty do begin
$[u, v]:=q[1]$;Let w_{1} , w_{2} , and W3 be new vertices;
$//w_{1}$ becomes avertex between u and v .
$t’:=$ (Vi $\cup\{w_{1}\}$, Et, $H_{t}\cup\{[u,$ $w_{1}],$ $[w_{1},$ $v]\}-\{[u,$ $v]\}$) i

if $S\subseteq L_{\Lambda}(t’)$ then begin $t:=t’$; $q:=q\ [[w_{1},v]]$;continue end else $q:=q[2..]$;
$//w_{2}$ and W3 become the previous and next siblings of v , respectively.
$t’:=$ $(\mathrm{V}\mathrm{C}\cup\{w_{2}\}, E_{t}, H_{t}\cup\{[u, w_{2}]\})$;
if $S\subseteq L_{\Lambda}(t’)$ then begin $t:=t’;q$:=q&[[u, $w_{2}]$] end;
$t’:=(V_{t}\cup\{w_{3}\}, E_{t}, H_{t}\cup\{[u, w_{\theta}]\})$;
if $S\subseteq L_{A}(t’)$ then begin $t:=t’j$ q:=q&[[u, $w\mathrm{a}]$] end;

end;
return t

end;

Procedure EDGE-REpLACING(t.nPut, S,u);
input input : aterm tree, S:aset of trees, u :avertex;
begin
if u is aleaf then return;
$t:=t:nput$;Let v_{1} , \ldots

Vk be the children of u ;
for : $:=1$ to k do LABELED-EDGE-REPLACING$(4S, v_{i})$;
for : $:=1$ to k do
foreach edge label A $\in As$ do

$//\mathrm{L}\mathrm{e}\mathrm{t}\{u, v.\}$ be an edge with label Aand w_{1} , w_{2} , and $w\mathrm{s}$ new vertices; w_{1} and w_{2} become
$//\mathrm{t}\mathrm{h}\mathrm{e}$ previous and next siblings of $v:$, respectively, and if v:is aleaf, $w\theta$ becomes achild of v_{τ}

if v:is aleaf then begin
$t’:=(V_{t}\cup\{w_{1}, w_{2}, w_{3}\}, E_{t}\cup\{\{u, v.\cdot\}\}, H_{t}\cup\{[u, w_{1}]^{\mathrm{c}}, [u, w_{2}]^{\mathrm{c}}, [v., w_{3}]^{\mathrm{c}}\}-\{[u, v:]\})$;
if $S\subseteq L_{A}(t’)$ then begin

$t_{1}:=(\mathrm{V}\mathrm{t}-\{w_{1}\}, E_{t’}, H_{t’}-\{[u,w_{1}]^{\mathrm{c}}\})$;if $S\subseteq L_{A}(t_{1})$ then $t’:=t_{1j}$

$t_{2}:=$ (Vt $-\{w_{2}\},$ $E_{t’},$ $H_{t’}-\{[u,w_{2}]^{\mathrm{c}}\}$);if $S\subseteq L_{\Lambda}(t_{2})$ then $t’:=t_{2}$;
$t_{3}:=$ $(V_{t’}-\{w_{3}\}, E_{t’}, H_{t’}-\{[v:, w_{S}]^{e}\})$;if $S\subseteq L_{A}(t_{3})$ then $t’:=t_{3}$;
t $:=t’$; continue

end
end else begin

$t’=(V_{t}\cup\{w_{1},w_{2}\}, E_{t}\cup\{\{u, v:1\}, H_{t}\cup\{[u, w_{1}]^{e}, [u, w_{2}]^{c}\}-\{[u,v:]\})$;
if $S\subseteq L_{\Lambda}(t’)$ then begin

$t_{1}:=$ (Vt $-\{w_{1}\},E_{t’},$ $H_{\ell’}-\{[u,$ $w_{1}]^{\mathrm{c}}\}$);if $S\subseteq L_{4}(t_{1})$ then $t’:=t_{1}$;
$t_{2}:=(\mathrm{V}\mathrm{t}-\{w_{2}\}, [\mathrm{t}\mathrm{i}, H_{l’}-\{[u,w_{2}]^{\epsilon}\})$;if $S\subseteq L_{\Lambda}(t_{2})$ then $t’:=t_{2}$;
t $:=t$’ : continue

end
end;

return t

end;

Fig. 4. Algorithm MINL

73

Definition 3. Let t be aterm tree in $\mathcal{O}\mathit{7}\Gamma_{\Lambda}^{c}$ for $|\Lambda|>2$. The term tree t is said to be acanonical tem

tree if t has no combination of variables and edges of the right term trees t described in Cases 1-3. For
an arbitrary term tree t , we can transform t into the canonical term tree g such that $L_{\Lambda}(g)=L_{\Lambda}(t)$ by
transforming the right trees in Cases 1-3 into the left trees.

Lemma 2. Let g and t be canonical term trees in $\mathcal{O}\Gamma\Gamma_{\Lambda}^{\mathrm{c}}$ for any Λ . If $L_{\Lambda}(g)\subseteq L_{\Lambda}(t)$ then there exists
a substitution θ such that $g\equiv t\theta$.

The procedure VARIABLE-EXTENSION extends aterm tree by adding uncontractible variables as
much as possible. Aterm tree outputted by VARIABLE-EXTENSION is aleast generalized term tree for
S consisting of only uncontractible variables. Then the procedure EDGE-REpLAClNG tries to replace
variables with labeled edges from leaves to the root. Since the output term tree is not larger than the
largest tree in S , we have the following lemma.

Lemma 3. Let t be the output of the algorithm MINL for an input S. Let $t’$ be a term tree satisfying
that S $\subseteq L_{\Lambda}(t’)\subseteq L_{\Lambda}(t)$. Let g and $g’$ be the canonical tem trees such that $L_{\Lambda}(g)=L_{\Lambda}(t)$ and
$L_{\Lambda}(g’)=L_{J1}(t’)$, respectively. Then $g\equiv g’$.
Theorem 2. Let Λ be a set of edge labels where $|\Lambda|\geq 2$. The algorithm MINL finds a least generalized
term tree in $\mathcal{O}\Gamma\Gamma_{\Lambda}^{\mathrm{c}}$ for a given set of trees in $U\Gamma_{A}$ in polynomial time.

In this paper, we have presented polynomial time algorithms for solving the membership and MINL
problems for the class of labeled term trees. From these algorithms and Angluin’s theorem [3], we can
show that the class is polynomial time inductively inferable ffom positive data.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: nvm Relations to Semistructured Data and
XML. Morgan Kaufmann, 2000.

2. T. R. Amoth, P. Cull, and P. Tadepalli. Exact learning of unordered tree patterns from queries. Proc.
COLT-99, A CM Press, pages 323-332, 1999.

3. D. Angluin. Finding patterns common to aset of strings. Journal of Computer and System Science, 21:46-62,
1980.

4. H. Arimura, H. Sakamoto, and S. Arikawa. Efficient learning of semi-structured data from queries. Proc.
ALT-2001, Springer- Verlag, LNAI 2225, pages 315-331, 2001.

5. S. Matsumoto, Y. Hayashi, and T. Shoudai. Polynomial time inductive inference of regular term tree
languages from positive data. Proc. ALT-97, Springer, Verlag, LNAI 1316, pages 212-227, 1997.

6. S. Matsumoto, T. Shoudai, T. Miyahara, and T. Uchida. Learning of finite unions of tree patterns with
internal structured variables from queries. Proc. AI-2002, Springer- Verlag, LNAI 2557 pages 523-534, 2002.

7. T. Miyahara, Y. Suzuki, T. Shoudai, T. Uchida, K. Takahashi, and H. Ueda. Discovery of frequent tag
tree patterns in semistructured web documents. Proc. PAKDD-20(E, Springer-Verlag, LNAI 2336, pages
341-355, 2002.

8. T. Shoudai, T. Miyahara, T. Uchida, and S. Matsumoto. Inductive inference of regular term tree languages
and its application to knowledge discovery. Info rmation Modelling and Knowledge Bases XI, IOS Press,
pages 85-102, 2000.

9. T. Shoudai, T. Uchida, and T. Miyahara. Polynomial time algorithms for finding unordered tree patterns
with internal variables. Proc. FCT-flOOl, Springer- Verlag, LNCS 2138, pages 335-346, 2001.

10. Y. Suzuki, R. Akanuma, T. Shoudai, T. Miyahara, and T. Uchida. Polynomial time inductive inference of
ordered tree patterns with internal structured variables from positive data. Proc. COLT-2002, Springer-
Verlag, LNAI 2375, pages 169-184, 2002.

11. Y. Suzuki, T. Shoudai, T. Miyahara, and T. Uchida. Apolynomial time matching algorithm of structured
ordered tree patterns for data mining from semistructured data. Proc. ILP-flOOfl, Springer-Verlag, LNAI
2583, pages 270-284, 2003.

12. Y. Suzuki, T. Shoudai, T. Uchida, and T. Miyahara. Ordered term tree languages which are polynomial
time inductively inferable from positive data. Proc. ALT-2002, Springer- Verlag, LNAI 2533, pages 188-202,
2002.

13. K. Wang and H. Liu. Discovering structural association of semistructured data. IEEE Trans. Knowledge
and Data Engineering, $12:35\succ 371$,2000.

74

