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Abstract

We propose quantum bit-commitment schemes
based on quantum one-way permutations. Our
schemes reduces exponentially the number of bits
which Bob needs to store until the opening phase
compared with the classical counterpart.

1Introduction

Abit-commitment protocol involves two party: a
sender (say Alice) and areceiver (say Bob). Alice
has aclassical string inmind, which she wants to
communicate to Bob at alater time. In order to
guarantee that she will not change hermind in the
interim, Alice agrees to lock her commitment in a
safe which she sends to Bob, but keeps the key of
the safe. At themom ent of truth, Alice unveils her
commitment alld opens the safe to prove her hon-
esty. Abit-commitment protocol has two security
requirements. One is binding that Alice cannot
change her initial commitment without being de-
tected. The other is concealing that Bob has no
reasonable way of obtaining any information on
Alice’s commitment before she discloses it.

Since Bennett and Brassard [1] proposed
the quantum key-exchange protocol, various
quantum cryptographic protocols including bit-
commitment have been investigated. How-
ever, Mayers [6] proved that any quantum bit-

commitment scheme can either be defeated by Al-
ice or Bob as long as both have unrestricted quan-
tum $\mathrm{c}\mathrm{o}\mathrm{m}$ putational power.

This does not exclude the study on quantum
bit-commitment based on some quantum compu-
tational assumption. Generally speaking, abit-
commitment based on the computational assump-
tion comes in two flavors: (1) statistically (pe,r-
fectly) concealing and computationally binding,
and (2) statistically (perfectly) binding and com-
putationally concealing. Informally, statistically
concealingmeans that Bob cannot obtainmore
than anegligible amount of information about
the committed string. Statistically bindingmeans
that whatever Alice does it is impossible to open
both $x_{1}$ and $x_{2}$ with non-negligible probability of
success.

Recently, Dumais, Mayers, and Salvail proposed
aquantum bit-commitment scheme based on any
quantum one-way permutation [4]. This scheme is
statistically concealing and computationally bind-
ing, and reduces the number of interaction and the
total amount of communication compared with
the classical counterpart proposed by Noar, Os-
trovsky, Venkatesen, and Young [7].

There are severalmeasures for the cost of $\mathrm{c}\mathrm{o}\mathrm{m}$ .

munication, the number of interactions, the t0-
tal number of bits communicated, and so on.
In this paper, we focus on the number of bits
which Bob needs to store until the opening phase
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$\mathrm{b}\mathrm{V}\mathrm{e}$ consider this as crucial in the quan rum set
ting, since Bob must protect the received quan-
tum states against decoherence until the open-
ing phase. For some practical application, the
length between the committing phase and the
opening phase could be years. We will propose two
quantum bit-commitment schemes based on quan-
tum one-way permutations. One has the prop
erty of statistically binding and co mputationally
concealing. The other has the property of sta-
tistically concealing and computationally binding.
Our scheme reduces the number of bits which Bob
needs to store (i.e., Alice sends) compared with
the classical counterpart (e.g. see the textbook by
Schneier [8] $)$ . Particularly, in the first protocol of
statistically binding and computationally conceal-
ing, in order to commit an $n$-bit classical string
with security parameter $n$ , Bob needs to store only
an $O((\log n)^{3})$ -bit quantum string in our method,
while an $n$-bit string in the classical method, (all
logarithms in this paper are base two.)

In the second protocol of statistically concealing
and computationally binding, in order to commit
an $n$-bit classical string with security parameter $n$ ,
Bob needs to store only an $O(n(\log n)^{3})$-bit quan-
tum string in our method, while an $n^{2}$-bit string
in the classical method (also in the previous quan-
tarm method by Dumais, Mayers, Salvail [4] $)$ .

Our protocols are based on astandard clas-
sical bit-commitment method, aquantum bit-
$\mathrm{c}\mathrm{o}\mathrm{I}\mathrm{n}\mathrm{I}\mathrm{l}\dot{\mathrm{u}}\mathrm{t}\mathrm{I}\mathrm{I}\mathrm{l}\mathrm{e}\mathrm{I}\mathrm{l}\mathrm{t}$ method proposed by Dum $\mathrm{a}\mathrm{i}\mathrm{s}$ , May-
ers, Salvail [4], and aquantum fingerprinting
scheme proposed by Buhrman, Cleve, Watrous,
and de Wolf [2].

2Preliminaries

In this section, we briefly review the definition of
quantum one-way functions and the quantum fin-
gerprinting. First, we give the definition [4] of
quantum one-way functions. We denote quantum
circuits built out of the universal set of quan-
trun gates $\mathcal{U}G=$ CNot If, $\mathrm{R}Q$ }, where CNot
denotes the controlled-NOT, $\mathrm{H}$ is the one qubit
Hadamard gate, and $\mathrm{R}Q$ is an arbitrary one qubit
non-trivial rotation specified by amatrix contain-
ing only rational numbers.

secure quantum one-way if
$\bullet$ there exists an exact family of quantum cir-

bits $\mathrm{C}=\{\mathrm{C}_{n}^{-1}\}_{n>0}$ and for $F$ such that for
all $n>0$ , $||C_{n}||\leq poly(n)$ arid

. for all family of quantum circuits $\mathrm{C}^{-\mathrm{I}}$

$=$

$\{C_{n}^{-1}\}_{n>0}$

and for all $n$ sufficiently large, it is always
the case that $||C_{n}^{-1}||ucS(n)\geq R(n)$ where
$S(n)=\mathrm{P}\mathrm{r}(f_{7l}(C_{n}^{-1}(f_{n}(\mathrm{x}_{n})))=f_{n}(\mathrm{x}_{n}))$.

Each family of quantum circuits $C^{-1}$ is called
an inverter and the mapping $S(n)$ is called its
probability of success.

Note that whenever $f_{n}$ is apermutation, $S(n)$

can be written as $S(n)=\mathrm{P}\mathrm{r}(f_{n}(C_{n}^{-1}(\mathrm{y}_{n}))=\mathrm{y}_{n})$

where $\mathrm{y}_{n}$ is auniformly distributed random vari-
able in $\{0, 1\}^{n}$

Next, we review the quantum fingerprinting
proposed by Buhrman, Cleve, Watrous, and
de Wolf [2], which can distinguish any two dis-
tinct classical strings with high probability by us-
ing much shorter fingerprints associating them. It
should be mentioned that they do not investigate
their fingerprinting method in respect of security.

Suppose that for fixed $c>1$ and $\delta<1$ we have
an error-correcting code $e^{7l}$, : $\{0, 1\}^{7l}-+\{(), 1\}^{7n}$ for
each $n$ , where $m=\mathrm{c}n$ and such that the Hamil-
ton distance between distinct codewords $e^{n}(x)$ and
$e^{\mathrm{r}\iota},(y)$ is at $1\mathrm{e}\mathrm{a}_{\iota}\mathrm{s}\mathrm{t}(1-\delta)_{7}r\iota$ . For any choice of $n$ , we
define the (10g $rn+1$ )-qubit state $|h_{x},\rangle$ $\mathrm{a}_{\iota}\mathrm{s}$

$|h_{x} \rangle=\frac{1}{\sqrt{m}}\sum_{i=1}^{\nu\iota}|i\rangle|e_{i}^{n}(x)\rangle$

for each $x\in\{0,1\}^{n}$ , where $e_{i}^{n}(x)$ is the $i$-th bit of
$e^{\eta}(.\prime 1:)$ . this $|f\mathrm{t}_{x}\rangle$ is called aquantum fingerprint
of $x$ . Since two distinct codewords can be equal
in at most $\delta m$ positions, for any $x\neq y$ we have
$\langle h_{x}|h_{y}\rangle\leq\delta m/m=\delta$ . Justesen codes [5] is a
reasonable choice ($y\mathrm{f}$ such codes, which give $\delta<$

$9/10+1/(15\mathrm{c})$ for any chosen $\rho_{a}>2$ .
Distinguishing $|h_{x}\rangle$ a1ld $|h_{y}\rangle$ can be done with

One ided error probability by the procedure that
measures and outputs the first qubit of the state

$(H\otimes I)(controlled-SWAP)(H\otimes I)|\mathit{0}\rangle|\phi\rangle|\psi\rangle$ ,

Definition 1A family of deterministic functions
$F=\{f_{n} : \{0, 1\}^{n}arrow\{0,1\}^{m(n)}|n>0\}$ is $R(n)-$

where $H$ is Hadamard transform, which maps
$|b \ranglearrow\frac{1}{\sqrt{2}}(|0\rangle+(-1)^{b}|1\rangle)$ , SWAP is the operatio
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$|\phi\rangle|\psi\ranglearrow|\psi\rangle|\phi\rangle$ , and controlled-SWAP is SWAP
controlled by the first qubit. With these opera-
tions, we have the final state before measurement:

$\frac{1}{2}(|0\rangle(|\phi\rangle|\psi\rangle+|\psi\rangle|\phi\rangle)+|1\rangle(|\phi\rangle|\psi\rangle-|\psi\rangle|\phi\rangle))$ .

Measuring the first qubit of this state produces
outcome 1with probability $\underline{\frac{1}{9}}-\underline{\frac{1}{9}},|\langle\phi|\psi\rangle|^{2}$ . This
probability is 0if $x=y$ and is at least $\frac{1}{2}(1-\overline{\delta}^{2})>0$

if $x\neq y$ . Thus, the test determines which case
holds with one-sided error $\frac{1}{2}(1+\delta^{2})$ .

The error probability of this test can be reduced
to any $\epsilon>0$ . This can be done by making the
fingerprint $k=O(\log(1/\epsilon))$ times and from such
fingerprints, one can independently perform the
test $k$ times, resulting in an error probability be-
low $\epsilon$ . In this case, the length of each fingerprint
is $O((\log n)(\log(1/\epsilon)))$ .

3First Protocol

Notice that Bob must protect the received quan-
tum state, $k$ copies of $|\phi\rangle$ , against decoherence un-
til the opening phase.

In the committing phase, only Alice sends the
information to Bob, and there is no interaction.
The length of the string which Alice sends in this
phase is

$(\log m+1)$ x& $=(\log cn+1)\cross(\log n)^{2}=O((\log n)^{3})$ .

Thus, Bob needs to store only an $O((\log n)^{3})$ -bit
quantu$\mathrm{m}$ string until the opening phase.

The computation that Alice needs in this phase
is one evaluation of the one-way function an, one
evaluation of the coding function $e^{n}$ . Alice also
needs to make $k$ copies of the quantum state $|\phi\rangle$ .
Each $|\phi\rangle$ can be obtained by 10g $m$ operations of
the Hadamard transform, and one one bit addi-
tion corresponding to writing $e_{i}^{n}(\sigma^{n}(x))$ .

In this section, we describe the first protocol
Let $\Sigma=\{\sigma^{n} : \{0, 1\}^{n}arrow\{0, 1\}^{n}|n>0\}$ be
afamily of quantum one-way permutations, and
$E=\{e’\iota : \{0, 1\}^{n}arrow\{0,1\}^{m}|n>0\}$ afamily
of error-correcting codes mentioned above. The
commitment scheme takes, as common input, the
number of bits to be committed (a security pa-
rameter) $n$ , and the descriptions of family Iand
$E$ . Our protocol is based on astandard classical
bit-commitment method and the quantum finger-
printing scheme described above.

Given $n$ , $\Sigma$ , and $E$ (with fixed $c$ and $\delta$), Alice
and Bob determine the instances $\sigma^{n}$ : $\{0, 1\}^{n}arrow$

$\{0, 1\}^{n}\in \mathrm{I}$ and $e^{n}$ : $\{0, 1\}^{n}arrow\{0,1\}^{m}\in E$ . Fix
also $k=(\log n)^{2}$ .

3.2 Opening

1. Alice sends $x’$ to Bob. ($x’$ is supposed to be
$x.)$

2. Bob computes $\sigma^{n}(x’)$ , and then $e^{n}(\sigma^{n}(x’))$ .

3. For each $|\phi\rangle$ , Bob makes the quantum state
$|\psi\rangle$ :

$| \psi\rangle=\frac{1}{\sqrt{m}}\sum_{i=1}^{m}|i\rangle|e_{i}^{n}(\sigma^{n}(x’))\rangle$ ,

and tests $|\psi\rangle$ and $|\phi\rangle$ by the controlled-swap
method described above.

3.1 Committing

1. Alice decides aclassical string $x\in\{0, 1\}^{n}$ to
be committed.

2. Alice computes $\sigma^{n}(x)$ , and then $e^{n}(\sigma^{n}(x))$ .

3. Alice makes $k$ copies of the quantum state
$|\phi\rangle$ :

$| \phi\rangle=\frac{1}{\sqrt{m}}\sum_{i=1}^{m}|i\rangle|e_{i}^{n}(\sigma^{n}(x))\rangle$ ,

(Alice independently makes $|\phi\rangle$ , $k$ times.)
and sends them to Bob.

4. Bob determines whether $|\phi\rangle$
’

$\mathrm{s}$ are consistent
with $x’$ or not.

In the opening phase, again, only Alice sends
the information to Bob, and there is no interac-
tion. The string which Alice sends in this phase is
aclassical string of length $n$ .

The computation that Bob needs in this phase
is that Alice needs in the committing phase plus
the controlled-swap tests and the final decision.
Each controlled-swap test require 2operations of
the Hadamard transform, one controlled-swap op-
eration, and one observation.
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3.3 Binding and Concealing

In this section, we show that our bit-co $\mathrm{m}\mathrm{m}$ itment
scheme is statistically binding and computation-
ally concealing. First, we consider the binding
condition. Thus, we regard Alice as an adversary,
and define $S_{0}(n)$ and $S_{1}(n)$ as the probabilities
that Alice succeeds to unveil $x_{1}$ and $x_{2}$ , respec-
tively.

As mentioned in the paper by Dumais, May-
ers, and Salvail [4], when considering adversarial
Alice in the classical setting, one can always fix
Alice’s committed string by fixing the content of
her random tape, i.e., we can require that either
the probability to unveil 0or the probability to un-
veill vanishes, for every fixed value of the random
tape. This kind of definition of binding does not
apply in the quantum setting, since Alice could
introduce randomness in the quantum $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\sim$

tion even if we fix the random tape. In particular,
Alice can always commit to asuperposition of $x\circ$

and $x_{1}$ by preparing the quantum state:

$\sqrt{\mathrm{c}}|0\rangle|\Phi_{0}\rangle+\sqrt{1-\mathrm{c}}|1\rangle|\Phi_{1}\rangle$,

where $|\Phi_{0}\rangle$ and $|1\rangle$ $|\Phi_{1}\rangle$ are the honest states gen-
state: for committing to $x0$ and $x_{1}$ respectively,
and $|0\rangle$ and $|1\rangle$ are two orthogonal states of an
extra ancilla kept by Alice. In this case, Alice can
unveil $x_{0}$ and $x_{1}$ with some non zero probability,
i.e., $S_{0}(n)>0$ and $S_{1}(n)>0$ .

The binding condition that So(n) $=$ 0 or
$S_{1}(n)=0$ is too strong was previously noticed by
Mayers [6], and Dumais, Mayers, and Salvail [4]
proposed the weaker condition $S_{0}(n)+S_{1}(n)\leq$

$1+\mathrm{e}(\mathrm{n})$ , where $\mathrm{e}(\mathrm{n})$ is negligible (i.e. smaller than
$1/poly(n)$ for any polynomial poly(n) $)$ . In this pa-
per, we also follow this condition, and call abit-
commitment scheme statistically binding if it sat-
isfies this condition. This definition is also taken
by the paper by Crepeau, Legare, and Salvail [3].

Theorem 1Our bit-commitment protocol is sta-
tistically binding, $i.e.$ , it satisfies $S_{0}(n)+S_{1}(n)\leq$

$1+\epsilon(n)_{f}$ where $\epsilon(n)$ is negligible.

Proof. Without loss of generality, consider Al-
ice wants to open both $x_{1}$ and $x2(x_{2}\neq x_{1})$ . In
the opening phase of our protocol, after Bob re-
ceives aclassical string $x’$ from Alice, he makes
the quantum state $|\psi\rangle$ by himself. This quan-
tum state must corresponds to some codeword.

In particular, when Bob receives $\iota\tau_{1}(x_{\underline{9}})$ in the
opening phase, he makes tlie quantum state $|\psi_{1}\rangle$

$(|\psi_{\wedge}\mathrm{r}_{)}\rangle)$ corresponding to acodeword $e^{n}(\sigma^{71}(x_{1}))$

$(e^{n} (\sigma^{n}(x_{2})))$ .
Because of this, Alice has to send aquantum

state $|\phi\rangle$ close to both two codewords $e^{\prime l}(\sigma^{n}(x_{1}))$

and $e^{n}(\sigma^{n}(x_{2}))$ in the committing phase. In par-
ticular, Alice has to send $|\phi\rangle$ such that the proba-
bilities $\frac{1}{2}-\frac{1}{2}|\langle\phi|\psi_{1}\rangle|^{2}$ and $\frac{1}{2}-\frac{1}{2}|\langle\phi|\psi_{2}\rangle|^{2}$ are both
negligible. This implies
$|\langle\phi|\psi_{1}\rangle|=1-\epsilon(n)$ and $|\langle\phi|\psi_{2}\rangle|=1-\epsilon(n)$ , while
$|\langle\psi_{1}|\psi_{2}\rangle|\leq\delta$. Since $\delta<1$ is afixed constant, this
acontradiction.

One might be concerned with the situation that
$|\phi\rangle’ \mathrm{s}$ are entangled. As mentioned in the paper
by Watrous [9], asimple analysis reveals that en-
tanglement among $|\phi\rangle$

’
$\mathrm{s}$ sent by Alice can yield no

increase in the probability of success on the at-
tack as compared to the situation in which these
strings are not entangled, and that the probability
of error is bounded by the tail of abinomial series
as expected. $\bullet$

Next, we consider the concealing condition.
Thus, we regard Bob as a11 adversary.

Theorem 2Our bit-commitment protocol is
computationally concealing.

Proof. In the committing phase, Bob has the
quantum state $|\phi\rangle$ sent by Alice with acommitted
string $x$ . Observe that, from $|\phi\rangle$ , Bob can extract
the information no more than the configuration of
$|\phi\rangle$ , ae the formula:

$| \phi\rangle=\frac{1}{\sqrt{m}}\sum_{i=1}^{m}|i\rangle|y_{i}\rangle$ ,

where $y_{i}\in\{0,1\}$ . Notice that the coding function
employed in our method is not quantum one-way.
Thus, Bob can compute $\sigma^{n}(x)$ by decoding the
codeword
$y_{1}y_{2}\cdots$ $y_{m}$ . Thus, attacking $\sigma^{n}(x)$ to get $x$

with non-negligible probability of success implies
the ability to compute $x$ from $\sigma^{n}(x)$ with non-
negligible probability. I

4Second Protocol

In this section, we describe the second protocol
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In order to do this, we briefly explain $\mathrm{t}1$) $\mathrm{e}$ quan-
tum encoding. We denote the m-dimensional
Hilbert space by $\mathcal{H}_{\tau n}$ . The basis $\{|0\rangle, |1\rangle\}$ denotes
the computational or rectilinear or $\mathrm{t}\mathrm{t}+$”basis for
$\mathcal{H}_{2}$ . We also write $\{|0\rangle_{+}, |1\rangle_{+}\}$ to denote them.
The diagonal basis, denoted $”\cross"$ , is defined as The
basis $\{|0\rangle_{\mathrm{x}}, |1\rangle_{\mathrm{x}}\}$ where $|0 \rangle_{\mathrm{X}}=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ and
$|1 \rangle_{\mathrm{x}}=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$ . The states $|0\rangle$ , $|1\rangle$ , $|0\rangle_{\mathrm{X}}$ , and
$|1\rangle_{\cross}$ are the BB84 states.

We also define $\theta$ as $\theta(0)=+\mathrm{a}\mathrm{n}\mathrm{d}0(1)=\cross$ . For
any $x=$ $(x_{1}, x_{2}, .. ; , x_{n})\in\{0,1\}^{n}$ and $y\in\{0,1\}$ ,
the state $|x\rangle_{\theta(y)}$ is defined as $\otimes_{\iota=1}^{n}|x_{i}\rangle_{\theta(y)}$ .

4.2 Opening

1. Alice sends $x$ , $y^{1}$ , $\ldots$ , $y^{\gamma\prime l}$ to Bob.

2. Bob computes $\sigma^{n}(y^{1})$ , $\ldots$ , an (ym), and $e^{n}(x)$ .

3. For each $|\phi\rangle$ , Bob makes the quantum state
$|\psi\rangle$ :

$| \psi\rangle=\frac{1}{\sqrt{m}}\sum_{i=1}^{m}|i\rangle|\sigma^{n}(y^{i})\rangle_{\theta(e_{\dot{\mathrm{a}}}^{n}(x))}$ ,

and tests $|\psi\rangle$ and $|\phi\rangle$ by the controlled-swap
method described above.

4.1 Committing

1. Alice decides aclassical string $x\in\{0, 1\}^{n}$ to
be committed.

2. Alice randomly picks $m$ classical strings
$y^{1}$ , $\ldots$ , $y^{m}\in\{0,1\}^{n}$ , and aclassical bit $z\in$

$\{0, 1\}$ .

3. Alice computes $\sigma^{n}(y^{1})$ , $\ldots$ , an (ym), and
$e^{n}(x)$ .

4. Alice makes $k$ copies of the quantum state
$|\phi\rangle$ :

$| \phi\rangle=\frac{1}{\sqrt{m}}\sum_{i=1}^{m}|i\rangle|\sigma^{n}(y^{i})\rangle_{\theta(e_{\dot{\mathrm{i}}}^{\iota}(x))}$,

(Alice independently makes $|\phi\rangle$ , $k$. times.)
and sends them to Bob.

Notice that Bob must protect the received quan-
tum state, $k$ copies of $|\phi\rangle$ , against decoherence un-
til the opening phase.

In the committing phase, only Alice sends the
information to Bob, and there is no interaction.
The length of the string which Alice sends in this
phase is

$(\log m+n)$ $\mathrm{x}k=(\log cn+n)\mathrm{x}(\log n)^{2}=O(n(\log n)^{2})$

Thus, Bob needs to store only an $O(n(\log n)^{2})$ bit
quantum string until the opening phase.

The computation that Alice needs in this phase
is $m$ evaluation of the one-way function $\sigma^{n}$ , and
one evaluation of the coding function en. Alice
also needs to make $k$ copies of the quantum state
$|\phi\rangle$ . Each $|\phi\rangle$ can be obtained by at most nm $\log$ $m$

operations of the one-bit Hada mard transform.

4. Bob determines whether $|\phi\rangle$
’

$\mathrm{s}$ are consistent
with $x$ , $y^{1}$ , $\ldots$ , $y^{m}$ or not.

In the opening phase, again, only Alice sends
the information to Bob, and there is no interac-
tion. The string which Alice sends in this phase is
aclassical string of length $n(m+1)$ .

The computation that Bob needs in this phase
is that Alice needs in the committing phase plus
the controlled-swap tests and the final decision.
Each controlled-swap test require 2operations of
the Hadamard transform, one controlled-swap $0\triangleright$

eration, and one observation.

4.3 Binding and Concealing

In this section, we show that our scheme is sta-
tistically concealing and computationally binding.
First, we consider the concealing condition. Thus,
we regard Bob as an adversary.

Theorem 3Our bit-commitment protocol is sta-
tistically concealing.

Proof. Let us fix $i$ in $|\phi\rangle$ , and let $|\phi_{i}\rangle$ be

$|\phi_{i}\rangle=|\sigma^{n}(y^{i})\rangle_{\theta(e^{n}(x))}\dot{.}$ .

Let $\rho_{w}$ for $w\in\{0,1\}$ be the density matrix to the
mixture corresponding to $|\phi_{\dot{\mathrm{t}}}\rangle$ when $w=e_{\dot{l}}^{n}(x)$ .
Since $y^{i}$ is independent of $x$ (so is $w$) and $\sigma^{n}$ is a
permutation in the set $\{0, 1\}^{n}$ , we get

$\rho_{0}=\sum_{z\in\{0,1\}^{n}}2^{-n}|z\rangle_{+}\langle z|=2^{-n}I$

$= \sum_{z\in\{0,1\}^{n}}2^{-n}|z\rangle_{\mathrm{x}}\langle z|=\rho_{1}$
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where I is the identity operator in $\mathcal{H}_{2^{n}}$ .
Let $\rho_{x}$ for $x\in\{0,1\}^{n}$ be the density matrix to

the mixture corresponding to $|\phi\rangle$ when classical
string $x$ is committed. Since

$| \phi\rangle=\frac{1}{\sqrt{m}}\sum_{i=1}^{7\prime l}|i\rangle|\phi_{i}\rangle$

and $y^{1}$ , $\ldots$ , $y^{m}$ are mutually independent, all of
the quan rum states $\rho_{x}$ are the same. The theorem
follows that no quantum measurement can distin-
guish among the commitments of $x$ . $\bullet$

Next, we consider the binding condition. Thus,
we regard Alice as $\mathrm{a}\mathrm{I}1$ adversary.

Theorem 4Our bit-commitment protocol is
computationally binding, $i.e.$ , if we have the ad-
versary with $S\circ(n)+S_{1}(n)$ $\geq$ $1+\epsilon(n)$ where
$\epsilon(n)>0$ , then there is an inverter for the one-
way permutation $\sigma^{n}$ where the success probability
is non-negligible.

5Concluding Remarks

In this paper, we propose quantum bit-
commitment schemes based on quantum one-way
permutations. Our future work is replacing as-
sumption to quantum one-way functions from
quantum one-way permutations.
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