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Abstract
Amodel of phase separation of chemically reactive ternary mixtures is constructed. In this model,

spatially periodic structures which coherently propagate at aconstant speed emerges through a

Hopf bifurcation at afinite wavenumber. It is shown by computer simulations that both lamellar

and hexagonal structures undergo acoherent propagating motion in two dimensions and there are

two types of traveling hexagons depending on the relative direction between the traveling velocity

and the lattice vectors of the hexagonal structure. Amplitude equations for the traveling waves

are derived and the stability of the traveling and standing waves are discussed.
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I. INTRODUCTION

Oscillation of spatially periodic structure appears in various systems far ffom equilibrium.

One example is an oscillating roll structure in Rayleigh-Benard convection of binary mixtures
where adynamical coupling between the local concentration and the local temperature

causes an overshoot of domain motion resulting in an oscillation. See Ref. [1] and the
earlier references cited therein. Propagation of astripe structure has also been observed
experimentaly in the electro hydrodynamic instability of liquid crystals [2]. These are the
macroscopic dynamic pattern out of equilibrium.

Another example of formation of oscillating domains is microscopic. In contrast to the
macroscopic non-equilibrium structures, it is emphasized here that phase transitions gener-
ally play arelevant role for dynamics of microscopic domains. It has been found that adsor-
bates on metal surface exhibits propagating $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ standing oscillations of $\mathrm{n}\mathrm{a}\mathrm{n}\mathrm{o}/\mathrm{m}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{o}\mathrm{p}\mathrm{i}\mathrm{c}$

domains $[3, 4]$ . Hildebrand et al. [5] (see also [6]) have introduced amodel for traveling
nanoscale stripe structures in surface chemical reactions and have successfully reproduced

the traveling stripe structure. In their model, nonlocal attractive interactions between ad-
sorbates have been considered, which cause afirst order phase transition (phase separation)

of the adsorbates. This property together with achemical reaction between the adsorbates
is the origin of the traveling waves.

It is worth mentioning that atraveling mesoscopic stripe pattern has also been observed
experimentaly in Langmuir monolayers [7]. Quite recently, this phenomenon has been stud-
ied theoretically by introducing aset of model equations, which contains aphase separation

mechanism [8].

In phase separation in thermal equilibrium, domains generally grow indefinitely. However,
it is well known that the domain growth ceases at acertain length scale if chemical reactions
take place [9-12]. The resulting domain structure is periodic in space but not necessarily
oscillatory. The mechanism for formation of periodic structures is mathematically equivalent

with the microphase separation in block copolymers $[13, 14]$ .
The purpose of the present paper is to investigate, from ageneral point of view,

self-propagation of microscopic celular structures far from equilibrium. We consider a
ternary mixture with the components $A$ , $B$ and $C$ which undergo achemical reaction
$Aarrow Barrow Carrow A$ . The reason for introducing this hypothetical cyclic linear reaction
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is that it is the simplest way to maintain the system far-from-equilibrium and hence most

convenient to explore the feature of non-equilibrium systems without being involved heavily

in mathematical complication. The components $A$ and $B$ are assumed to be phase-separated

at low temperature. This is modeled by the usual Cahn-Hilliard type equation which has

been studied extensively for many years $[15, 16]$ .
Thus the new aspect of the present study is afusion of the theory of phase transitions

and physics of non-equilibrium systems. So far these two subjects have been thought of

unrelated problems. Recently, however, acombined study of these different fields has been

anticipated, for instance, to control various nanoscale structures.

Our main concern is the self-0rganized propagation not only of stripe structure but also

of hexagonal structure in two dimensions. We will show in computer simulations of the

present system that both alamellar structure and ahexagonal structure exhibit coherent

self-propulsion when the uniform stationary state becomes unstable.

Atraveling hexagonal pattern has been obtained in the damped KuramotO-Sivashinsky

equation [17] and in amodel equation for aneural field [18]. In these systems, the traveling

structures appear as secondary bifurcation after forming amotionless structure. Compared

with these studies, we believe that our system of ternary reactive mixtures has awider

applicability showing that both lamellae and hexagons can travel in aself-0rganized manner.
The preliminary results have been published in Ref. [19].

The organization of this paper is as follows. In the next section, we construct amodel

for phase-separating ternary reactive mixtures and perform alinear stability analysis of the

model equations. In Sec. III we carry out numerical simulations of our model in one and two

dimensions. It is shown that both lamellar and hexagonal structures in two dimensions can

travel through aHopf bifurcation at finite wavenumber. In Sec. IV we derive the amplitude

equations for asuper-critical Hopf bifurcation fiom our model equations. Stabilities of

traveling and standing wave solutions of the amplitude equations are analyzed and phase

dynamics of the traveling lamellar structure in one and two dimensions are also developed. In

Sec. $\mathrm{V}$ we discuss theoretically the traveling hexagonal structures considering the amplitude

equations obtained by the single mode approximation. Finally, we summarize our work and

touch the future problems in Sec. VI
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II. CHEMICALLY REACTIVE TERNARY MIXTURES

A. Generic model

Let us consider aternary reactive mixture that consists of molecules of type $A$ , $B$ , and
$C$ and denote their local concentrations by $\psi_{A}$ , $\psi_{B}$ , and $\psi_{C}$ , respectively. When the incom-
pressibility condition $\psi_{A}+\psi_{B}+\psi c=1$ is satisfied, two of these variables are chosen to be
independent. Hence we define the local kinetic variables $\psi(\mathrm{r},t)$ and $\phi(\mathrm{r},t)$ at position $\mathrm{r}$ and

.

time $t$ as $\psi$ $=\psi_{A}-\psi_{B}$ and $\phi=\psi_{A}+\psi_{B}$ . We assume that these variables obey the following
tyPe of kinetic equations:

$\frac{\partial\psi}{\partial t}=\nabla\cdot(M_{1}\nabla\frac{\delta F}{\delta\psi})+f(\psi, \phi)$ , (1)

$\frac{\partial\phi}{\partial t}=\nabla\cdot(M_{2}\nabla\frac{\delta F}{\delta\phi})+g(\psi, \phi)$ , (2)

where $M_{1}$ and $M_{2}$ are the mobilities associated with $\psi$ and $\phi$ and assumed to be positive

constants, although they may depend on $\psi$ and $\phi$ in general. $F$ is the free energy functional
of Ginzburg-Landau-type

$F= \int d\mathrm{r}[\frac{D_{1}}{2}|\nabla\psi|^{2}+\frac{D_{2}}{2}|\nabla\phi|^{2}+w(\psi, \phi)]$ , (3)

where $D_{1}$ and $D_{2}$ are positive constants and $w(\psi, \phi)$ is apotential function. The last terms
of Eqs. (1) and (2) are reaction terms and $f(\psi, \phi)$ and $g(\psi, \phi)$ are, in general, nonlinear
functions of $\psi$ and $\phi$ .

Kinetics of the block-copolymer systems is described by the same type equations as (1)

and (2). In this case, $f(\psi, \phi)$ and $g(\psi, \phi)$ , which are linear in $\psi$ and $\phi$ , come from the
nonlocal interaction between monomers.

Here we study the linear stability of auniform equilibrium solution $\psi$ $=\psi_{0}$ and $\phi=\phi_{0}$

which are determined by $\mathrm{f}(\mathrm{i}\mathrm{p}\mathrm{o}, \phi_{0})=0$ and $g(\psi_{0}, \phi_{0})=0$ . Using the Fourier components $\psi_{q}$

and $\phi_{q}$ with wavenumber $q$ for the deviation of $\psi$ and $\phi$ from $\psi_{0}$ and $\phi_{0}$ , respectively, we
have the linearized equations of (1) and (2) as

$\frac{d}{dt}$
$(\begin{array}{l}\psi_{q}\phi_{q}\end{array})=\mathcal{L}_{q}$ $(\begin{array}{l}\psi_{q}\phi_{q}\end{array})$ , (4)

where the linear evolution matrix $\mathcal{L}_{q}$ is given by

$\mathcal{L}_{q}=-q^{2}\mathcal{M}(q^{2}D+\mathcal{W})+A$ (5)
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where $\mathcal{M}$ and $D$ are diagonal matrices defined as $\mathcal{M}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(M_{1}, M_{2})$ and $V$ $=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(D_{1}, D_{2})$

and $\mathcal{W}=(w_{ij})$ and $A=(a_{ij})(\mathrm{z},\mathrm{j}=1,2)$ are matrices with their components $w_{11}=$

$w_{\not\in l\psi}(\psi_{0}, \phi_{0})$ , $w_{12}=w_{21}=w_{\psi\phi}(\psi_{0}, \phi_{0})$ , $w_{22}=w_{\phi\phi}(\psi_{0}, \phi_{0})$ , $a_{11}=f_{\psi}(\psi_{0}, \phi_{0})$ , $a_{12}=f_{\phi}(\psi_{0}, \phi_{0})$ ,

$a_{21}=g_{\psi}(\psi_{0}, \phi_{0})$ , and $a_{22}=g_{\phi}(\psi_{0}, \phi_{0})$ , where the functions with the subscripts $\psi$ and $\phi$ mean

the partial derivatives with respect to their variables. Note that the matrix $\mathcal{W}$ is always

symmetric, whereas the matrix $A$ is, in general, not symmetric although it is symmetric for

the block-copolymer systems.

Eigenvalues $\lambda_{q}$ of $\mathcal{L}_{q}$ determine the linear stability of the uniform equilibrium solution.

One of the control parameters for the stability in our model is the temperature $T$ which enters

through $w_{11}$ and $w_{22}$ as linear functions of $T$ . Hereafter, we introduce in convenience the

control parameter $\tau$ instead of $T$ such that the uniform state becomes unstable as increasing

$\tau$ . Note that $\mathcal{W}$ determines the thermodynamic stability of the uniform state $(\psi_{0}, \phi_{0})$ which

is stable if $w_{11}\geq 0$ and $\det \mathcal{W}\geq 0$ in the absence of chemical reactions.

Since eigenvalues $\mathrm{o}\mathrm{f}-q^{2}\mathcal{M}(q^{2}D+\mathcal{W})$ are always real, properties of $A$ prescribe the type

of instability. For simplicity, we set $M_{1}=M_{2}=1$ below, which does not change the essence

of the following argument. Suppose the system of ordinary differential equations for Eqs.

(1) and (2) ($q=0$ mode) is stable, that is,

$\mathrm{t}\mathrm{r}A<0$ and $\det A>0$ . (6)

As $\tau$ is increased, the largest ${\rm Re}\lambda_{q}$ becomes positive at afinite wavenumber $q=q_{c}\neq 0$

and either Turing-type $({\rm Im}\lambda_{q_{e}}=0)$ or Hopf-type $({\rm Im}\lambda_{q_{\mathrm{c}}}\neq 0)$ instabilities occur depending

on $A$. When $\det \mathcal{L}_{q_{l}}=0$ and $\mathrm{t}\mathrm{r}\mathcal{L}_{q_{e}}<0$ , the Turing-type instability occurs. In this case

we expect that stationary (motion-less) periodic structures emerge. On the other hand, the

Hopf-type instability, which we are concerned with, occurs when $\det \mathcal{L}_{q_{\mathrm{c}}}>0$ and

$\mathrm{t}\mathrm{r}\mathcal{L}_{q_{\mathrm{c}}}=\frac{(\mathrm{t}\mathrm{r}\mathcal{W})^{2}}{4\mathrm{t}\mathrm{r}D}+\mathrm{t}\mathrm{r}A=0$ (7)

with
$q_{\mathrm{c}}^{2}=- \frac{\mathrm{t}\mathrm{r}\mathcal{W}}{2\mathrm{t}\mathrm{r}D}$ (8)

for $\mathrm{t}\mathrm{r}\mathcal{W}<0$ . In this case atraveling wave or standing oscillation are expected to reveal.

The above analysis implies that an oscillatory instability at afinite wavenumber, which

is sometimes called awave instability, is induced by the thermodynamic instability of phase

separation. The wave instability occurs also in aFitzHugh-Nagumo model with nonloca
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coupling where drifting domains have been observed [20]. It should be noted that in the
block copolymer systems only the Turing-type instabilities can occur since the system is

variational.

B. Simplified model and its linear stability

Now we consider specific model which show aself-propagation of spatially periodic struc-
tures. We assume that there is astrong repulsive interaction between $A$ and $B$ molecules,

and other interactions between molecules are quite weak compared with the $A-B$ interaction
so that the potential $w(\psi, \phi)$ can be regarded as afunction of $\psi$ only. Hence, we simply put

$w( \psi, \phi)=-\frac{\tau}{2}\psi^{2}+\frac{1}{4}\psi^{4}$, (9)

where $\tau$ is the control parameter as mentioned in the preceding section. Furthermore we
assume $M_{1}=M_{2}=1$ and $D_{2}=0$ . Then Eqs. (1) and (2) become

$\frac{\partial\psi}{\partial t}=\nabla^{2}[-D_{1}\nabla^{2}\psi-\tau\psi+\psi^{3}]+f(\psi, \phi)$ , (10)

$\frac{\partial\phi}{\partial t}=g(\psi,\phi)$ . (11)

Equation (10) (and (9)) is asimplified model equation. In general, the third component
$C$ may influence the interaction between $A$ and $B$ and, for example, the parameter $\tau$ may
depend on $C$ . However, we here ignore such an effect.

Suppose that the system undergoes the following cyclic chemical reactions:

$A\gamma_{1}arrow B\gamma_{2}arrow C\gammaarrow A\mathrm{s}$ , (12)

where $\gamma_{1}$ , $\gamma_{2}$ , and $\gamma_{3}$ are the reaction rates. Prom the mass action law, the reaction terms
in Eqs. (10) and (11) can be written as

$f( \psi, \phi)=-(\gamma_{1}+\frac{\gamma_{2}}{2})\psi-(\gamma_{1}-\frac{\gamma_{2}}{2}+\gamma_{3})\phi+\gamma_{3}$, (13)

$g( \psi, \phi)=\frac{\gamma_{2}}{2}\psi-(\frac{\gamma_{2}}{2}+\gamma_{3})\phi+\gamma_{3}$ . (14)

In this case, the stationary uniform solutions $\psi_{0}$ and $\phi_{0}$ are given by

$\psi_{0}=\frac{\gamma \mathrm{s}(\gamma_{2}-\gamma_{1})}{\gamma_{1}\gamma_{2}+\gamma_{2}\gamma_{3}+\gamma_{3}\gamma_{1}}$ , (15)

$\phi_{0}=\frac{\gamma_{3}(\gamma_{2}+\gamma_{1})}{\gamma_{1}\gamma_{2}+\gamma_{2}\gamma_{3}+\gamma_{3}\gamma_{1}}$ , (16)
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and the matrix $A$ is given by

$A=(\begin{array}{l}-(\gamma_{1}+\frac{\gamma_{2}}{2})-(\gamma_{1}-2\mathrm{L}2+\gamma_{3})\frac{\gamma_{2}}{2}-(_{2}^{\mathrm{X}}+\gamma_{3})\end{array})$ . (17)

The Hopf-type instability occurs when

$\gamma_{1}\gamma_{2}+\gamma_{2}\gamma_{3}+\gamma_{3}\gamma_{1}-(\frac{\gamma_{2}}{2}+\gamma_{3})(\gamma_{1}+\gamma_{2}+\gamma_{3})>0$ (18)

and
$\frac{(\tau-3\psi_{0}^{2})^{2}}{4D_{1}}-(\gamma_{1}+\gamma_{2}+\gamma_{3})=0$ (19)

at $q=q_{c}$ where
$q_{\mathrm{c}}=( \frac{\tau-3\psi_{0}^{2}}{2D_{1}})^{1/2}$ (20)

The linear stability diagram for Eqs. (10) and (11) with Eqs. (13) and (14) in $\tau-\gamma_{2}$ plane

is shown in Fig. 1for $D_{1}=1$ , $\gamma_{1}=0.3$ , and $\gamma_{3}=0.05$ . The solid and dashed lnes in this

figure indicate the Hopf and Turing type instabilities, respectively. The stationary uniform

state is stable for the parameters below these lines.

III. NUMERICAL SIMULATIONS

In this section, we shall show, in one and two dimensions, the results obtained by computer

simulations of Eqs. (10) and (11) with Eqs. (13) and (14) above the stability lines in Fig. 1.

First, we confirm numerically that apropagating solution exists in one dimension. The

space mesh and the time increment have been set as 0.5 and 0.001, respectively. Figure $2(\mathrm{a})$

shows such asolution for $\tau=1.6$ and $\gamma_{2}=0.15$ , which is just above the Hopf instability line

(the solid line in Fig. 1). In Fig. 2(a) the profiles of $\psi(x, t)$ (solid line) and $\phi(x, t)$ (dashed

line) are plotted as functions of the spatial coordinate $x$ at $t=5000$. Both profiles of $\psi(x,t)$

and $\phi(x,t)$ are moving to the right, in this case, at aconstant speed keeping their shapes

and the phase difference between them, whereas Fig. 2(b) depicts stationary patterns of $\psi$

and $\phi$ without a phase difference for $\tau=1.6$ and $\gamma_{2}=0.25$ above the Turing instability line.

A. Traveling lamellar pattern

Now we extend the simulations to two dimensions. The simulations have been carried

out on a128 $\mathrm{x}128$ square lattice with the mesh size $\Delta x=0.5$ using the finite difference
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Euler scheme with afixed time step $At=10^{-3}$ for several values of parameters $\tau$ and $\gamma_{2}$ .
Other parameters are fixed at $D_{1}=1$ , $\gamma_{1}=0.3$ , and $\gamma_{3}=0.05$ . As the initial conditions we
start with homogeneous states with small random perturbations which satisfy ( $\psi\rangle=\psi_{0}$ and
$\langle\phi\rangle=\phi_{0}$ and used periodic boundary conditions, where the angle brackets mean the spatial
average.

As predicted by the linear stability analysis, no pattern appears for the parameters below
the solid or dashed lines in Fig. 1. For the parameters above the dashed line at which the
Turing-type instability occurs, stationary lamellar or hexagonal patterns appear depending
on the equilibrium values of $\psi_{0}$ and $\phi_{0}$ . For the parameters above the Hopf-type instability
line (solid line in Fig. 1), various traveling patterns are observed. Henceforth, we concentrate
on the parameter region near the Hopf instability line.

Figure 3displays three snapshots of $\psi(\mathrm{r},t)$ , indicated in gray scale increasing from bladc
to white, at $t=50(\mathrm{a})$ , 500 (b), and 5000 (c) for $\tau=1.6$ and $\gamma_{2}=0.2(\psi_{0}=$ -0.059,
$\phi 0=0.29)$ . At the early stage irregular patterns with motions of distorted standing waves
are formed [Fig. $3(\mathrm{a})$ ]. After this transient regime, partially coherent lamellar structures
which are traveling emerge [Fig. $3(\mathrm{b})$]. The system eventually reaches the state in which the
lamellar structure extended to the whole system is traveling at aconstant speed [Fig. $3(\mathrm{c})$ ].

The arrows in Fig. 3indicate the directions of propagation of the lamellar structures. The
behavior is similar to that reported by Hildebrand et al. [5] in the surface chemical reaction
systems, although the evolution equations are quite different.

B. Traveling hexagonal pattern

One of the characteristic features of the present model system (10) and (11) with Eqs.

(13) and (14) is that not only lamellar pattern but also hexagonal structure can undergo a
coherent propagation by choosing the values $\psi_{0}$ and $\phi_{0}$ appropriately.

Figure 4shows one example for $\psi_{0}=-0.20$ , $\phi_{0}=0.40$ where three snapshots of $\psi(\mathrm{r},t)$

are displayed in gray scale increasing from black to white at $t=50(\mathrm{a})$ , 500 (b), and 5000
(c) for $r$ $=1.6$ and $\gamma_{2}=0.1$ . At the early stage, droplet-like domains irregularly move
accompanied with breakups and coalescence of domains [Fig. $4(\mathrm{a})$ , (b)] and finally form a
regular hexagonal pattern traveling in one direction at aconstant speed [Fig. $4(\mathrm{c})$]. The
propagating direction of the hexagons is indicated by white arrows in Fig. 4.
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Another type of traveling hexagons appears as in Fig. 5where three snapshots of $\psi(\mathrm{r},t)$ ,

at $t=50(\mathrm{a})$ , 500 (b), and 5000 (c) are displayed for $\tau=2.0$ and $\gamma_{2}=0.06(\psi_{0}=-0.33$ ,

$\phi_{0}=0.50)$ . The transient behavior of this system is similar to that shown in Fig. 4.

However, the propagating direction (white arrows in this figure) at the asymptotic state is

perpendicular to one of the primary wave vectors.

Thus, it is found that there are at least two different types of traveling hexagons. Here-

after, we call the case shown in Fig. 4the Type-I and in Fig. 5the Type-II, respectively.

The several ‘phases’ of nonequilibrium states have been obtained by carrying out the

simulations for various parameters. Figure 6summarizes, in the parameter space $(\gamma_{2},\tau)$ ,

the various dynamic structures in two dimensions. Each symbol indicates, respectively,

stationary lamellar structure (closed squares), traveling lamellar structure (open circles),

traveling hexagonal structure of Type I (crosses), travelng hexagonal structure of Type-

II (pluses), and uniform stable state (open square). For some parameters we could not

distinguish between Type-I and type II hexagons within the present simulations. Such

parameters are plotted with asterisks in Fig. 6. In this figure the Hopf and Turing instability

lines are also shown for convenience, which are the same as those in Fig. 1.

It is noted here that the value of $\phi(\mathrm{r}, t)$ , which is the sum of the local concentration of
$A$ and $B$ molecules, becomes negative in some parameter region. This shortcoming is due

to the simplification of the free energy given by Eq. (9). However, we have carried out the

simulations avoiding this parameter region and believe that the results obtained would not

be altered even when amore refined free energy is employed.

The amplitude of the traveling waves is plotted in Fig. 7both for lamellar (open cir-

cles) and hexagonal (crosses) structures. It is evident that the bifurcation for lamellae is

supercritical whereas that for hexagons is subcritical.

$\mathrm{I}\mathrm{V}$. THEORETICAL ANALYSIS OF TRAVELING LAMELLAE

The computer simulations given in the previous section show that alamellar structure

exhibits aself-0rganized coherent propagation above the Hopf bifurcation threshold. It

should be noted that astanding oscillation has never been observed in simulations. In

order to understand this property, we derive the amplitude equation at post-threshold and

examine the stability of the oscillatory domains
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A. Amplitude equation

We study the time-evolution equations (10)-(14) in one dimension near the Hopf bifur-
cation point at the critical wavenumber $q_{\mathrm{c}}$ in aweakly nonlinear regime. The amplitude

equation for Eqs. (10) and (11) near the Hopf instability line is derived by means of the

usual reductive perturbation method $[21, 22]$ assuming that the bifurcation is super-critical,

which is indeed the case as has been shown in Fig. 7.
Near the bifurcation point, the most unstable mode $\mathrm{U}(x,t)$ is the relevant degrees of

freedom of Eqs. (10) and (11), that is, $\mathrm{u}\sim \mathrm{u}_{0}+\mathrm{U}$ , where $\mathrm{u}\equiv(\psi, \phi)^{T}$ and $\mathrm{u}_{0}\equiv(\psi_{0}, \phi_{0})^{T}$ .
In terms of the eigen functions $\mathrm{U}_{L}$ and $\mathrm{U}_{R}$ defined below, the unstable mode $\mathrm{U}(\mathrm{x}$, is
expressed as

$\mathrm{U}(x,t)=W_{L}(x,t)\mathrm{U}_{L}+WR(x,t)$ $+\mathrm{c}.\mathrm{c}$. (21)

where $\mathrm{c}.\mathrm{c}$ . denotes the complex conjugate and $Wi,(x,t)$ and $W_{R}(x,t)$ are the complex am-
plitudes of the plane wave solution propagating to the left and right, respectively. The wave
number $q_{\mathrm{c}}$ and the frequency $\omega_{\mathrm{c}}$ of the plane wave are determined by the eigenvalue problem:

$(\partial_{t}-\mathcal{L}_{q_{\mathrm{c}}})\mathrm{U}_{L}=0$ , (22)

where $\partial_{t}$ denotes the partial differential operator with respect to $t(\mathrm{U}_{R}$ also satisfies the
same equation). For the present problem we choose

$\mathrm{U}_{L}=(\begin{array}{l}1\alpha\end{array})$
$\mathrm{e}^{iq_{e}x+\dot{u}d_{\mathrm{C}}t}$

$\mathrm{U}_{R}=(\begin{array}{l}1\alpha\end{array})$
$\mathrm{e}^{-\dot{\eta}_{e}x+\dot{*}\omega_{\mathrm{C}}t}$ (23)

with $\alpha\equiv(a_{22}+i\omega_{c})/a_{12}$ and $\omega_{\mathrm{c}}(>0)$ is given by

$\omega_{\mathrm{c}}^{2}=\det \mathcal{L}_{q_{\mathrm{C}}}=-a_{22}^{2}-a_{12}a_{21}$ (21)

By the standard procedure of the perturbation $[21, 22]$ , the final amplitude equations for
$W_{L}$ and $W_{R}$ are given, respectively, by

$\partial_{t}W_{L}=\mu W_{L}+b\partial_{x}^{2}W_{L}-g|W_{L}|^{2}W_{L}-h|W_{R}|^{2}W_{L}$ , (23)

$\partial_{t}W_{R}=\mu W_{R}+b\partial_{x}^{2}W_{R}-g|W_{R}|^{2}W_{R}-h|W_{L}|^{2}W_{R}$ , (26)

where all the coefficients are complex and are given by

$\mu\equiv\frac{\tilde{\tau}}{2}q_{\mathrm{c}}^{2}(1+\frac{ia_{22}}{\omega_{\mathrm{c}}})$ , (27)
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$b \equiv 2D_{1}q_{c}^{2}(1+\frac{ia_{22}}{\omega_{\mathrm{c}}})$ ,

$g \equiv\frac{3}{2}q_{c}^{2}(1+\frac{ia_{22}}{\omega_{c}})[1+24\psi_{0}^{2}q_{\mathrm{c}}^{2}\frac{a_{22}-2i\omega_{c}}{9(a_{11}+a_{22})(a_{22}-2i\omega_{\mathrm{c}})-3\omega_{c}^{2}}]$ ,

$h \equiv 3q_{\mathrm{c}}^{2}(1+\frac{ia_{22}}{\omega_{\mathrm{c}}})[1+24\psi_{0}^{2}q_{\mathrm{c}}^{2}\frac{a_{22}}{9(a_{11}+a_{22})a_{22}+\omega_{\mathrm{c}}^{2}}]$ ,

(28)

(29)

(30)

and $\tilde{\tau}\equiv\tau-\tau_{\mathrm{c}}$ with acritical value $\tau_{\mathrm{c}}$ of $\tau$ at which the bifurcation occurs. The constant $g$

should not be confused with the function in Eq. (14). This type of amplitude equations was

also obtained in Refs. $[23, 24]$ . Note that Eqs. (25) and (26) do not have terms proportional

to $\partial_{x}W_{L}$ or $\partial_{x}W_{R}$ . This reflects the fact that in our model the group velocity is always zero,

that is, $d\omega(q_{c})/dq=0$ , where $\omega(q)\equiv\sqrt{\det \mathcal{L}_{q}}$ near the bifurcation point. This comes from

the particular choice of $D_{2}=0$ in Eq. (3).

B. Stability of traveling wave

Here we examine stability of the traveling wave solution of Eqs. (25) and (26). These

equations have aset of solutions $W_{L}^{(0)}$ and $W_{R}^{(0)}$ as

$W_{L}^{(0)}=0$ , $W_{R}^{(0)}=N_{0}\mathrm{e}^{-\dot{|}qx+\mathrm{f}\mathrm{f}1_{0}(q)t}$, (31)

where the real constants $\Omega_{0}$ and $N_{0}$ are given by

$N_{0}^{2}= \frac{1}{g_{1}}(\mu_{1}-b_{1}q^{2})$ , (32)

$\Omega_{0}=\mu_{2}-b_{2}q^{2}-\frac{g_{2}}{g_{1}}(\mu_{1}-b_{1}q^{2})$ , (33)

and $\mu=\mu_{1}+\mathrm{i}12$ , $b=b_{1}+ib_{2}$ with real numbers $\mu_{1}$ , $\mu_{2}$ , $b_{1}$ and $b_{2}$ . Asimilar notation has

also been utilized for $g$ and $h$ .
In order to study the stability of the solution (31), let us introduce deviations 4and $\eta$ as

$W_{L}=W_{L}^{(0)}+\xi$, (34)

$W_{R}=W_{R}^{(0)}+\eta$ . (35)

Substituting Eqs. (34) and (35) into Eqs. (25) and (26) yields up to the first order of the

deviations

$\partial_{t}\xi=\mu\xi+b\partial_{x}^{2}\xi-hN_{0}^{2}\xi$ , (36)

$\partial_{t}\eta=\mu\eta+b\partial_{x}^{2}\eta-(W_{R}^{(0)})^{2}\overline{\eta}-2gN_{0}^{2}\eta$, (37)
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where $\overline{\eta}$ is the complex conjugate to $\eta$ . Setting $\xi\propto\exp(iqx+\lambda t)$ , we obtain

A $=\mu-bq^{2}-hN_{0}^{2}$ . (38)

The growth rate of the deviation 4is given by

$\mathrm{R}\epsilon$ A $=( \mu_{1}-b_{1}q^{2})(1-\frac{h_{1}}{g_{1}})$ , (39)

where we have used Eq. (32). Since $(\mu_{1}-b_{1}q^{2})/g_{1}=N_{0}^{2}>0$, we need the stability condition
for the traveling wave $[23, 24]$

$h_{1}>g_{1}$ . (40)

Next, we investigate stability of the standing wave solution given by

$W_{L}^{(0)}=N_{0}\mathrm{e}^{\dot{|}}qx+\dot{l}\Omega_{0}l$ , $W_{R}^{(0)}=N_{0}\mathrm{e}^{-\dot{\eta}x+\cdot\Omega_{0}t}.$ , (41)

where $\Omega_{0}$ and $N_{0}$ satisfy the following relation,

$i\Omega_{0}=\mu-bq^{2}-gN_{0}^{2}-hN_{0}^{2}$ . (42)

We introduce the small deviations of the amplitudes $\xi(x, t)$ , $\eta(x, t)$ and the phases $\varphi(x, t)$ ,
$\theta(x,t)$ as

$W_{L}=N_{0}(1+\xi)\mathrm{e}^{\dot{\eta}x+\cdot\Omega_{\mathrm{O}^{\mathrm{Z}+\dot{1}}}\varphi}.$ , (43)

$W_{R}=N_{0}(1+\eta)\mathrm{e}^{-:}qx+|.\Omega_{0}t+\cdot.\theta$ , (44)

From Eqs. (25), (26), (43) and (44) we obtain the time evolution equations for the deviations.
The deviations of amplitudes obey up to the first order

$\partial_{t}\xi=-2g_{1}N_{0}^{2}\xi-2h_{1}N_{0}^{2}\eta+b_{1}\partial_{x}^{2}\xi-2qb_{2}\partial_{x}\xi-2qb_{1}\partial_{x}\varphi-b_{2}\partial_{x}^{2}\varphi$ , (43)

$\partial_{t}\eta=-2g_{1}N_{0}^{2}\eta-2h_{1}N_{0}^{2}\xi+b_{1}\partial_{x}^{2}\eta+2qb_{2}\partial_{x}\eta+2qb_{1}\partial_{x}\theta-b_{2}\partial_{x}^{2}\theta$, (46)

where we have used Eq. (42). In the long-wave-length limit, we may retain only the first
two terms of Eqs. (45) and (46). In this case, the eigenvalues of the time evolution matrix
are

A $=-2N_{0}^{2}(g_{1}\pm h_{1})$ . (47)

Since $g_{1}$ is positive when the bifurcation is super-critical, we have the stability condition of
the standing wave $[23, 24]$

$-g_{1}<h_{1}<g_{1}$ . (48)
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According to the numerical calculations based on Eqs. (29) and (30), we have not found the

parameters for which the standing wave is stable as long as $g_{1}>0$ . This agrees with the

fact that we have never found the standing wave in the simulations of Eqs. (10)-(14).

C. Phase dynamics for traveling wave

Now we discuss phase dynamics for the traveling wave solution. We write asolution of

Eqs. (25) and (26) with the deviations $\xi(x,t)$ and $\varphi(x,t)$ as

$W_{L}=0$ , $W_{R}=N_{0}(1+\xi)\mathrm{e}^{-\dot{\eta}x+\dot{\iota}\Omega_{0}t+\dot{|}\varphi}$ . (49)

The zeroth-0rder solution has been obtained in Eqs. (31). The first order equations are given

by

$\partial_{t}\xi=-2g_{1}N_{0}^{2}\xi+b_{1}\partial_{x}^{2}\xi+2qb_{2}\partial_{x}\xi+2qb_{1}\partial_{x}\varphi-b_{2}\partial_{x}^{2}\varphi$, (50)

$\partial_{t}\varphi=-2qb_{1}\partial_{x}\varphi+b_{1}\partial_{x}^{2}\varphi+b_{2}\partial_{x}^{2}\xi+qb_{2}\partial_{x}\varphi-2g_{2}N_{0}^{2}\xi$ . (51)

Since the amplitude deviation decays rapidly compared with the phase deviation in the long

wave ength modulation, we may eliminate 4adiabatically by putting $\partial_{t}\xi=0$ in Eq. (50) so

that we have
$\xi=\frac{1}{2g_{1}N_{0}^{2}}(2qb_{1}\partial\varphi-b_{2}\partial_{x}^{2}\varphi+2qb_{2}\partial_{x}\xi+b_{1}\partial_{x}^{2}\xi)$ . (52)

Applying Eq. (52) iteratively, we obtain the following expression of $\xi$ as gradient expansion

of $\varphi[23,24]$ ,
$\xi=\frac{qb_{1}}{g_{1}N_{0}^{2}}\partial_{x}\varphi+\frac{b_{2}}{2g_{1}N_{0}^{2}}(-1+\frac{2q^{2}b_{1}}{g_{1}N_{0}^{2}})\partial_{x}^{2}\varphi+\cdots$ . (53)

Substituting Eq. (53) into Eq. (51) we obtain up to the second-0rder derivatives of $\phi$

$\partial_{t}\varphi=C\partial_{x}\varphi+D\partial_{x}^{2}\varphi$, (54)

where

$C \equiv 2q(b_{2}-\frac{g_{2}}{g_{1}}b_{1})$ , (55)

$D \equiv(b_{1}+\frac{g_{2}}{g_{1}}b_{2})(1-\frac{2q^{2}b_{1}}{g_{1}N_{0}^{2}})$ . (56)

Here we consider the case that the factor $b_{1}+g_{2}b_{2}/g_{1}$ in Eq. (56) is positive so that the

traveling wave solution is stable for $|q|arrow \mathrm{O}$ . In this case, the coefficient $D$ becomes negativ
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for large value of $|q|$ , which causes an Ekhaus-type instability. Since $1-2q^{2}b_{1}/(g_{1}N_{0}^{2})=$

$(\mu_{1}-3q^{2}b_{1})/(g_{1}N_{0}^{2})$ , this instability occurs when

$q^{2}> \frac{\mu_{1}}{3b_{1}}$ . (57)

Note that the condition $q^{2}<\mu_{1}/b_{1}$ is required for the traveling wave solution to exist.
We can obtain amplitude equations for the traveling lamellar structures which are similar

to the equation for the one dimensional case. The complex amplitudes $W_{L}(\mathrm{r}, t)$ and $W_{R}(\mathrm{r},t)$

of waves propagating to the left and right in $x$-direction obey the following equations, cor-
responding to Eqs. (25) and (26),

$\partial_{t}W_{L}=\mu W_{L}+b(\partial_{x}-\frac{i}{2q_{\mathrm{c}}}\partial_{y}^{2})^{2}W_{L}-g|W_{L}|^{2}W_{L}-h|W_{R}|^{2}W_{L}$ , (58)

$\partial_{t}W_{R}=\mu W_{R}+b(\partial_{x}-\frac{i}{2q_{\mathrm{c}}}\partial_{y}^{2})^{2}W_{R}-g|W_{R}|^{2}W_{R}-h|W_{L}|^{2}W_{R}$, (59)

where the coeflBcients $\mu$ , $b$ , $g$ , and $h$ are defined in Eqs. (27)-(30).

We can also develop the phase dynamics in two dimensions from the above amplitude
equation. We write atraveling wave solution of Eqs. (58) and (59) propagating to x-direction
as

$W_{L}=0$ , $W_{R}=N_{0}[1+\xi(\mathrm{r},t)]\mathrm{e}^{-|qx+:\Omega_{0}t+|\varphi(\mathrm{r},t)}..$ , (60)

where $\xi(\mathrm{r},t)$ and $\varphi(\mathrm{r}, t)$ are the small deviations associated with the amplitude and phase,
respectively. Repeating the same procedure shown above, we obtain the phase equation

corresponding to Eq. (54) as

$\partial_{t}\varphi=C\partial_{x}\varphi+D\partial_{x}^{2}\varphi-\frac{q}{q_{C}}(b_{1}+\frac{g_{2}}{g_{1}}b_{2})\partial_{y}^{2}\varphi$, (61)

where $C$ and $D$ are given by Eqs. (55) and (56), respectively. Equation (61) implies that
when $q>0$ the phase deviation in $y$-direction is destabilized. This corresponds to the
zig-zag-type instability.

In the numerical simulations shown in Sec. III we have never found both the Ekhaus- and
the zig-zag-type instabilities. We should say that the traveling wave solution is quite stable
in our model system.

V. THEORETICAL ANALYSIS OF TRAVELING HEXAGONS

In two dimensional systems, not only alamelar structure but also ahexagonal structure
are allowed to exist as aspatially periodic structure. As was shown in the previous section
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the hexagonal structure also undergoes acoherent propagation above the Hopf instability

line.

We do not carry out asystematic derivation of the amplitude equations for the traveling

hexagons mainly because the bifurcation is subcritical and hence evaluation of each coeffi-

cient of the amplitude equation is more involved. Here we employ asimple mode expansion

focusing on the two types of the traveling pattern obtained in the simulations.

We seek asolution of Eqs. (10) and (11) in the following form, $\psi(\mathrm{r}, t)=\hat{\psi}(\mathrm{r}-\mathrm{V}t)$,

$\phi(\mathrm{r},t)=\hat{\phi}(\mathrm{r}-\mathrm{V}t)$ , with atraveling velocity V. Here we make the approximation that the

functions $\hat{\psi}(\mathrm{r})$ and $\hat{\phi}(\mathrm{r})$ are represented in terms of the lowest Fourier modes as

$\hat{\psi}(\mathrm{r})=\sum_{k=-3}^{3}\hat{\psi}_{\mathrm{q}k}e^{\mathrm{q}_{k}\cdot \mathrm{r}}.\cdot$, $\hat{\phi}(\mathrm{r})=\sum_{k=-3}^{3}\hat{\phi}_{\mathrm{q}k}e^{\dot{l}\mathrm{q}_{k}\cdot \mathrm{r}}$, (62)

where $\mathrm{q}_{k}\equiv(q_{\mathrm{c}}\cos\frac{2\pi}{3}k, q_{\mathrm{c}}\sin\frac{2\pi}{3}k)(k=\pm 1, \pm 2, \pm 3)$ and $\mathrm{q}_{0}\equiv 0$ . Note that $\hat{\psi}_{\mathrm{q}0}=\psi_{0}$, and
$\hat{\phi}_{\mathrm{q}0}=\phi_{0}$ . We have verified numerically that $\mathrm{t}\mathrm{h}\dot{\mathrm{e}}$ actual spatial profile is not substantially

deviated from Eq. (62) near the Hopf bifurcation line although it is subcritical.

Prom Eqs. (10), (11) and (62), we obtain aset of equation for $\hat{\psi}_{\mathrm{q}k},\hat{\phi}_{\mathrm{q}k}$ and V. Eliminating
$\hat{\phi}_{\mathrm{q}k}$ and introducing areal amplitude $A_{k}$ and aphase $\theta_{k}$ as $\hat{\psi}_{\mathrm{q}\mathrm{k}}=A_{k}\exp(i\theta_{k})$ , we finally

obtain
$\Omega(\omega_{k})A_{k}=\mu A_{k}-3q_{\mathrm{c}}^{2}[2\psi_{0}A_{l}A_{m}e^{-\dot{l}}\varphi+A_{k}^{3}+2(A_{l}^{2}+A_{m}^{2})A_{k}]$ (63)

for $k=1,2,3(l,m=k+1, k+2(\mathrm{m}\mathrm{o}\mathrm{d} 3))$ with

$\Omega(\omega)\equiv\frac{\omega^{2}-\omega_{c}^{2}}{\omega^{2}+a_{22}^{2}}(a_{22}-i\omega)$, (64)

where $\varphi\equiv\theta_{1}+\theta_{2}+\theta_{3}$ , $\mu\equiv-q_{\mathrm{c}}^{2}(Dq_{\mathrm{c}}^{2}-\tilde{\tau})-(\gamma_{1}+\gamma_{2}+\gamma_{3})$ , $\omega_{k}\equiv \mathrm{q}_{k}\cdot \mathrm{V}$, and $\omega_{\mathrm{c}}\equiv{\rm Im}\lambda(q_{c})$ is the

critical frequency at the Hopf bifurcation point. Note that two of the three phase variables
$\theta_{k}$ are arbitrary and only the sum $\varphi$ is determined by the above equations. Therefore, Eqs.

(63) and (64) under the condition $\omega_{1}+\omega_{2}+\omega_{3}=0$ determine $A_{\mathrm{k}}$ , $\varphi$ , and V.

When $A_{k}\neq 0$ , the imaginary part of Eq. (63) gives

$- \omega_{k}\frac{\omega_{k}^{2}-\omega_{\mathrm{c}}^{2}}{\omega_{k}^{2}+a_{22}}=6q_{c}^{2}\psi_{0}\frac{A_{l}A_{m}}{A_{k}}\sin\varphi$. (65)

In the special case that $\sin\varphi=0$ , Eq. (65) has solutions $\omega_{k}=0$ and $\pm\omega_{\mathrm{c}}$ . If we choose

$\omega_{1}=0$ , $\omega_{2}=\omega_{\mathrm{c}}$, and $\omega_{3}=-\omega_{\mathrm{c}}$ , then the traveling velocity $\mathrm{V}$ is perpendicular to $\mathrm{q}_{1}$ [see

Fig. $8(\mathrm{a})]$ . This is the Type-I solution. On the other hand, the Type-II solution of Eqs. (63)

is represented as $\omega_{1}=-2\omega_{2}$ and $\omega_{2}=\omega_{3}$ which satisfies the condition $\omega_{1}+\omega_{2}+\omega_{\theta}=0$. In

this case, $\mathrm{V}$ is indeed parallel to $\mathrm{q}_{1}$ as shown in Fig. $8(\mathrm{b})$ .
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VI. CONCLUDING REMARKS

In this paper, we have constructed the model equation for phase separation of chemically

reactive ternary mixtures. In this model the thermodynamic destabilization induces the
Turing- or Hopf-type instability at afinite wave number depending on the parameters in

the reaction terms. The phase diagram for the nonequilibrium states has been obtained
numerically. Traveling waves appear as aHopf bifurcation at afinite wavenumber. In two
dimensional simulations we have obtained the traveling lamellar structure and two types
(Type-I and types I) of traveling hexagonal structures. The mathematical structure of
these two types of traveling hexagons has been investigated by the amplitude equations

derived by the single mode approximation. What we have shown in this paper is that phase

transitions in anon-equilibrium condition produce arich variety of self-0rganized domain
dynamics which never occur in thermal equilibrium where the ordered state is motionless
and is simply uniform or at most modulated in space.

We have derived the amplitude equations for the supercritical Hopf bifurcation at afinite
wavenumber from the model equations and investigated the stability of the traveling wave
and the standing oscillation in $\mathrm{o}\mathrm{n}\triangleright$ imensional systems. The traveling wave is found to be
stable in some parameter regions. However we have never found, at least numerically, any
region in which the standing oscillation is stable.

There is asimple explanation as to why one needs three components of chemical species
for coherently propagating domains. Suppose that the species are arrayed in one dimensional
space as $A$ , $B$ , $C$ , $A$. After one cycle of chemical reaction, this order becomes $B$ , $C$ , $A$ , $B$ .
This means that domains are moving to the left. It is clear from this argument that the
relative phase difference of the chemical reaction determines the propagating direction and
that astanding oscillation is quite unlikely in the present system.

Thermal fluctuations have been believed to be unimportant for pattern formation far
from equilibrium as long as macroscopic patterns such as Rayleigh-B6nard convection and

Belousov-Zhabotinski reaction are concerned. (See, however, recent experiments [25] for
electroconvection of liquid crystals.) On the contrary, when the domain structure is of
microscopic scale as in the present model system, thermal fluctuations cannot be ignored

near the bifurcation points out of equilibrium and might alter qualitatively the properties of
the transition. Concentration fluctuations around the deterministic motion may also exhibi
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some characteristic features inherent to non-equilibrium systems. We hope to return to these

fundamental problems elsewhere in the future.
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Y2

FIG. 1: Linear stability diagram for Eqs. (10) and (11) with Eqs. (13) and (14) in $\mathcal{T}\neg 2$ plane for

$D_{1}=1$ , $\gamma_{1}=0.3$ , and $\gamma_{3}=0.05$ . The solid and dashed lines in this figure indicate the Hopf and

Turing type instabilities, respectively
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FIG. 2: Spatial profiles of 9 $(x,t)$ (solid lines) and $\phi(x,t)$ (dashed lines) obtained by one- imensional

simulations for (a) $\tau=1.6$ , $\gamma_{2}=0.15$ (just above the Hopf instability line) and (b) $\tau=1.6$ ,
$\gamma_{2}=0.25$ (just above the Turing instability line) at $t=5000$. Both profiles of $\mathrm{r}\mathrm{p}(\mathrm{x},\mathrm{t})$ and $\mathrm{r}\mathrm{p}(\mathrm{x},\mathrm{t})$

are propagating to $x$-direction indicated by the arrow with the same velocity in the case of (a),

whereas they are stationary in the case of (b)
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(a) (b) (c)

FIG. 3: Snapshots of $\psi(\mathrm{r}, t)$ , indicated in gray scale increasing from black to white, at $t=50$

(a), 500 (b), and 5000 (c) for $\tau$ $=1.6$ and $\gamma_{2}=0,2$ . The white arrow indicates the direction of

propagation of the lamellar structure.

(a) (b) (c)

FIG. 4: Snapshots of $\psi(\mathrm{r}, t)$ indicated in gray scale increasing from black to white at $t=50(\mathrm{a})$ , 500

(b), and 5000 (c) for $\tau=1.6$ and $\gamma_{2}=0.1$ . The white arrow indicates the direction of propagation

of the hexagonal structure (Type $\mathrm{I}$ ).

(a) (b) (c)

FIG. 5: Snapshots of $\psi(\mathrm{r}, t)$ indicated in gray scale increasing from black to white at $t=50(\mathrm{a})$ , 500

(b), and 5000 (c) for $\tau=2.0$ and $\gamma_{2}=0.06$ . The white arrow indicates the direction of propagation

of the hexagonal structure (Type- $\mathrm{I}$).

121



$\mathrm{P}$

$\gamma_{2}$

FIG. 6: Parameter dependence of the nonequilibrium states in $(\gamma_{2},\tau)$ space. Each symbol indicates,

respectively, stationary lamellar structure (closed squares), traveling lamellar structure (open cir-
cles), traveling hexagonal structure of Type-I (crosses), traveling hexagonal structure of Type-II

(pluses), and stationary uniform state (open square). The asterisks mean the states that we could

not distinguish between Type-I and Type-II hexagons within the present simulations. The Hopf

and Turing instability lines are also shown for convenience, which are the same as those in Fig. 1.
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$\tau$

FIG. 7: Amplitudes of $\psi$ in the travelng state for the lamellar (open circles) $[\gamma_{1}=0.3,$ $\gamma_{2}=0.2$ ,

and $\gamma_{3}=0.05$] and hexagonal (crosses) [$\gamma_{1}=0.3,$ $\gamma_{2}=0.1$ , and $\gamma_{3}=0.05$] structures as functions

of the control parameter $\tau$ .
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(a) (b)

FIG. 8: Schematic picture of the directions of traveling velocity $\mathrm{V}$ and wave vector $\mathrm{q}_{1}$ for traveling

hexagonal domains of Type-I (a) and Type II (b). Thick and thin arrows indicate the direction of

$\mathrm{V}$ and $\mathrm{q}_{1}$ , respectively, and the hatched regions represent $\psi$-rich domains
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