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Abstract
Diblock copolymer melts, dubbed “designer materials”, have the remarkable ability to self-Bemble

into various ordered structures. These structures are key to the many properties that make diblock
copolymers of great technological interest. The density functional theory of Ohta and Kawasaki leads to
anonlocal variational problem, and presents an excellent setting for the analysis of microphases.

In this note we will first discuss the origins and derivation of this theory, presenting it in connection
with the self-consistent mean field theory. Then, focusing on what is know as the strong segregation
regime, we will discuss some analytical techniques which provide insight on the scales of minimizing
structures (phases). These techniques have the advantage that they are ansatz-free, that is they are not
based upon any preassigned bias for the phase geometry. In particular, we will derive ascaling law for the
minimum energy in three space dimensions, and will address properties of optimal structures achieving
this scaling law.

This note includes joint work with X. Ren (Utah State University) and work in progress with G.
Alberti (University of Pisa) and F. Otto (University of Bonn).

1The Physical Problem
Adiblock copolymer is alinear-chain molecule consisting of two subchains joined covalently to each other.
One of the subchains is made of monomers of type Aand the other of type B. Below acritical temperature,
even aweak repulsion between unlike monomers Aand $\mathrm{B}$ induces astrong repulsion between the subchains,
causing the subchains to segregate. Amacroscopic segregation whereby the subchains detach from one
another can not occur because the chains are chemically bonded. Rather, in asystem of many such macr0-
molecules, the immisibility of these monomers drives the system to form structures which minimize contacts
between the unlike monomers and this tendency to separate the monomers into Aand $\mathrm{B}\sim$-rich domains is
counter balanced by the entropy cost associated with chain stretching. Because of this energetic competi-
tion, aphase separation on amesoscopic scale with Aand $\mathrm{B}$-rich domains emerges. The mesoscopic domains
which are observed are highly regular periodic structures; for example lamellar, bcc centered spheres, circular
tubes, and bicontinuous gyroids (see for example, [4], [11]). These ordered structures are key to the material
properties which make diblock copolymers of great technological importance.

Three dimensionless material parameters are needed for modeling the microphase separation: $\chi$ , the
Flory-Huggins interaction parameter measuring the incompatibility of the two monomers and is inversely
proportional to the temperature; $N$ , the index of polymerization measuring the number of monomers per
macromolecule; and $a$ , the relative length of the A-monomer chain compared with the length of the whole
macromolecule. In the mean field approximation, where thermal fluctuations are ignored, one finds that the
microphase separation depends only on the two quantities $\chi N$ and $a$ . The phase diagram (either theoretically
or experimentally constructed) indicates several regimes for the phase separation. In particular, for afixed
value of $a$ one finds with increasing $\chi N$;adisordered regime wherein the melt exhibits no observable phase
separation, the weak segregation regime (WSR) where the size of the $A$ and $B$-rich domains are of roughly of
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the same order as the interfacial (overlapping) regions around the bonding points, an intermediate segregation
regime, and the strong segregation regime (SSR) wherein the domain size is much larger than the interfacial
length. In the SSR, it has been observed (cf. [12, 13]) that the domain size scales like $\chi^{1/6}N^{2/3}$ where as
the interfacial length scales like $\chi^{-1/2}$ .

2Ohta-Kawasaki Density Functional Theory

In [22], Ohta and Kawasaki derived adensity functional $\mathrm{t}\mathrm{h}\infty \mathrm{r}\mathrm{y}^{1}$ (DFT) which reduces to the niinimization
of aCahn-Hilliard-like free energy. Following $[21, 8]$ , we write the functional in arescaled, nondimensional
form as afunction of the relative (averaged) macroscopic monomer density $u$ (i.e. the difference between the
averaged Aand $\mathrm{B}$ monomer densities):

$E_{\epsilon,\sigma}(u)$ $:= \frac{\epsilon^{2}}{2}\int_{D}|\nabla u|^{2}d\mathrm{x}+\int_{D}W(u)d\mathrm{x}$ $+ \frac{\sigma}{2}\int_{D}|(-\triangle)^{-:}(u(x)-m)|^{2}d\mathrm{x}$ , (2.1)

where 6is the Laplacian operator with Neumann boundary conditions; $D$ is asubset of $R^{3}$ with unit volume
(representing the rescaled physical space $\Omega$ upon which the melt exists); $W$ has adouble well structure
preferring pure Aand $\mathrm{B}$ phases $(u=\pm 1);\epsilon$ represents the interfacial thickness (suitably rescaled) at the $A$

and $B$ monomer intersections; and ais inversely proportional to $N^{2}$ . More precisely, the parameters $\epsilon$ , $\sigma$

are related to the parameters $\chi$ , $N$, $a$ , $|\Omega|$ via (cf. [8])

$\epsilon^{2}=\frac{l^{2}}{3a(1-a)\chi|\Omega|^{2/3}}$ $\sigma=\frac{36|\Omega|^{2/3}}{a^{2}(1-a)^{2}l^{2}\chi N^{2}}$, (2.2)

where $l$ denotes the Kuhn statistical length which measures the average distance between two adjacent
monomers. Conservation of the order parameter $u$ requires we maintain the constraint

$\int_{D}ud\mathrm{x}$ $=m=2a-1$ .

Prom this functional it is easy to see the incentive for pattern formation. The double-well term prefers
pure phases of $A$ or $B$ monomers, but for $m\neq\pm 1$ , the conservation constraint dictates amixture. Transitions
between phases are penalized by the gradient term but the nonlocal term prefers oscillations between phases.
The latter is best seen in one space dimension. Indeed, this functional can be regarded as ahigher-dimensional
analogue of afunctional introduced by Miiller in [20] as atoy problem for capturing multiple scales Let
$m=0$, $\sigma/2=1$ . Setting $u=v_{x}$ , gives

$\int_{0}^{1}\frac{\epsilon^{2}}{2}|v_{xx}|^{2}+W(v_{x})+v^{2}dx$ . (2.3)

In particular, in one space dimension the nonlocal energy is in fact local: every function in $L^{2}$ is itself a
derivative. In higher dimensions the analogue for the $L^{2}$ norm of the primitive is the nonlocal term in (2.1),
which for periodic functions $u$ on the cube is simply the $H^{-1}$ norm squared. From (2.3), one can easily see
why the third term induces fine structure. If $\epsilon=0$ asaw-tooth function $v(x)$ with slopes 81 lowers its $L^{2}$

norm with increasing oscillations. Hence the minimum energy is zero but is not attained. If $\epsilon>0$ , such
oscillations are penalized and one expects the competition to result in oscillations on afine but specific scale.

3Derivation of the Ohta-Kawasaki DFT
In this section we give asummary of the main steps in deriving the free energy (2.1). The purpose is to give
the reader some idea of how one derives such afunctional from the statistical physics of Gaussian chains.

lsae related work in [3], [16], [20]

11



We follow [8] but provide few details. The derivation is based on two steps. The first is what is commonly
referred to as the Self-Consistent Mean Field Theory (SCMFT) which has been developed and applied over
the years by many researchers, see for example [11], [17] and the references therein. The copolymer melt is
modeled with aphase space of $n$ of continuous chains which prefer to be randomly coiled. Thus we consider
aphase space

$\Gamma=\{r=(r_{1}, \ldots,r_{n}):r:\in C([0,N],\mathrm{R}^{3})\}$

equipped with aproduct measure $d\mu$ consisting essentially of $n$ copies of Wiener measure. The $A(B$
respectively) monomers “occuPy” the interval $\mathrm{I}_{A}=(0, N_{A})(\mathrm{I}_{B}=(NA, N)$ respectively). Within this
space one introduces amonomer interaction Hamiltonian to reflect the immisibilty of the different monomer
types. At this point one can write the associated partition function $Z$ , the free $\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{y}-\beta^{-1}\log Z$ , and Gibbs
canonical distribution $D(r)$ . Defining the microscopic densities as

$\beta k(X, r)=\sum_{\dot{*}=1}^{11}\int_{\mathrm{I}_{k}}\delta(x-r:(\tau))d\tau$, $k=A$, $B$ ,

the desired macroscopic monomer densities should be given by

$( \rho_{k}(x)\rangle=\int_{\Gamma}\rho_{k}(x,r)D(r)$ tip. $k=A,B$ (3.4)

None of these can actually be calculated because of the nonlocal character of the Hamiltonian. The Self-
Consistent Mean Field Theory is based upon avariational principle whereby the true free energy is approx-
imated by aminimization over aclass of distributions generated by asingle external field $U=(U^{A}, U^{B})$

acting separately on the $A$ and $B$ monomers. More specifically, setting

$H_{U}(r)= \sum_{\dot{|}=1}^{n}\sum_{k}\int_{\mathrm{I}_{k}}U^{k}(r:(\tau))$dr.

with the resulting partition function and Gibbs canonical distribution

$Z_{U}= \int_{\Gamma}\exp(-\beta H_{U}(r))d\mu$, $D_{U}(r)= \frac{1}{Z_{U}}\exp(-\beta H_{U}(r))$ ,

one approximates the true ffae energy by minimizing

$F(U)= \int_{\Omega}[\frac{V^{km}}{2\rho_{0}}\langle\rho_{k}(x))_{U}(\rho_{m}(x)\rangle_{U}-U^{k}(x)\langle\rho_{k}(x))_{U}]d\mathrm{x}$ $- \frac{1}{\beta}\log Z_{U}$ . (3.5)

over all external fields $U=(U^{A}, U^{B})$ . Here, $\langle\cdot\rangle_{U}$ denotes the expectation with respect to $D_{U}(r)d\mu;\beta$ is the
reciprocal of the absolute temperature measured in units of $(\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{y})^{-1}$ (the Boltzmann constant has been
set to one); $V^{km}$ represents the interaction Parameters with

$\chi=\beta V^{AB}-(\beta/2)(V^{AA}+V^{BB})>0$ ;
and $\rho 0=nN/|\Omega|$ (the average monomer density number). The explicit nature of the external field allows
one to compute all the variational integrals via Feynman-Kac integration theory.

The second step entails writing the ffee energy entirely in terms of the macroscopic monomer density.
The&st term (i.e. the interaction term) in (3.5) is already written in terms of the monomer density and
naturally gives rise to the double well energy in (2.1). The main step in turning the second and third term
in (3.5) to afunctional of $\langle\rho\rangle$ involves the inversion of the relationship between the dependence of ($\rho\rangle u$ on
$\beta U$ via the linearization about $\beta=0$ (i.e. at infinite temperature). This is done via the solutions to the
backward and forward modified heat equations which come ffom the Feynman-Kac integration theory. The
details are too cumbersome to summarize here but very briefly, this linearization entails convolution of $\beta U$

with acertain tensor whose Fourier transform can be computed explicitly. We keep only the short and long
range expansions. After some calculations and the introduction of the monomer difference order parameter,
$,\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{r}\mathrm{i}\mathrm{v}\mathrm{e}\cap\cap\backslash$ at both the squared gradient and nonlocal term in (2.1), with the respective coefficients reflectin
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4Scaling Laws
Accepting the free energy (2.1), the natural question arises as to what minimizers look like for small $\epsilon j$ or
worded slightly differently, what are necessary properties for configurations to be minimizing. One approach
could be via the asociated gradient flow dynamic equations which for the conserved order parameter $u$

would be the Cahn-Hillia $rd$ dynamics, formally written as

t4 $= \triangle\frac{\delta F}{\delta u}$ .

More precisely, this is gradient flow with respect to the $H^{-1}$ norm (see [10]). Here we take adifferent
approach, namely adirect method, and address the issue of scaling of the minimum energy and the resulting
consequences on minimizing structures. That is, we ask: In the material parameter regime of interest, how
does the minimum energy scale with respect to the material parameters, and which structures attain this
optimal $\mathrm{s}\mathrm{c}\mathrm{a}\mathrm{h}.\mathrm{n}\mathrm{g}^{7}$

The simplest approach to this question is based upon setting an ansatz for possible structures with afew
degrees of freedom, and then minimizing the free energy amongst these structures alone. This approach,
often dubbed domain theory is ubiquitous; for example Landau used it in his study of ferromagnetism and
tyPe-I superconductivity (cf. [15]). In the present context of copolymers, this has been done to to determine
the optimal period size ([22], [4]) which one can also infer via formal dimensional analysis ([3]). These
calculations all yield that the domain width (or periodicity) scales like $(\epsilon/\sigma)^{1/3}$ , or in terms of $N$ , lke
$N^{2/3}$ . This scaling law has been experimentally confirmed in $[12, 13]$ . While these calculations provide a
lot of physical insight they leave open the fundamental question of what exactly sets the optimal scale. Are
periodic structures truly minimizing or could anonperiodic geometry yet to be observed and constructed by
an ingenious theorist result in even lower energy?

To address these questions rigorously, Ohnishi et al [23] worked in one space dimension with the extra
assumption that admissible structures were what they called “

$\mathrm{n}$-layered”solutions (see [23] for the definition).
They concluded that within this smaller class, the global minimizer had aperiod of order $(\epsilon/\sigma)^{1/3}$ , and
an energy of order $\epsilon^{2/3}\sigma^{1/3}$ . Ren and Wei ([24]) recently obtained the same result with no assumption
on admissible structures. In higher space dimensions it is unlikely that minimizing structures are exactly
periodic. What then can one prove? One approach, first used in solid-solid phase transformations (cf. [14]),
is via ageometry-independent lower bound on the total free energy. To motivate this, let us go back to an
ansatz driven calculation. We consider an ansatz of lamellar structures with the periodicity $d$ as the only
degree of ffaedom. One can then write the free energy entirely in terms of the material parameters and $d$:
$E_{\epsilon,\sigma}(d)$ . Factoring out (frnomalizing) the conjectured scaling gives

$E_{\epsilon,\sigma}(d)=\epsilon\S\sigma\# F(d, \epsilon, \sigma)$ .

One then optimizes in $d$ to find that, in the parameter regime of interest $(0<\epsilon\leq\sigma<C)$ ,

$d_{\mathrm{o}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{a}1}\sim(\epsilon/\sigma)^{1}3$ and $F(d_{\mathrm{o}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{a}1}, \epsilon,\sigma)\sim 1$ . (4.6)

For the lower bound, we make no assumption on the domain structure (essentially $u\in H^{1}$ ) and after
renormalzation

$E_{\epsilon,\sigma}(u)=\epsilon\S\sigma:F(u,\epsilon, \sigma)$ , (4.7)

we find that, in the relevant parameter regime,

$F(u, \epsilon,\sigma)\geq C$ , (4.8)

for some constant $C$ independent of $\epsilon$ , $\sigma$ , and $u$ .
$2\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{y}$ also deduced the dependence on $m(=2a-1)$ . Through out this note, we will fix $m\in$ (-), 1) and do not address

scaling issues pertinent to this parameter.
sFbr adetailed look at more complicated ansatz driven calculations see [7]
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To be more specific, we follow [5]. Let D be the unit cube, and since we are interested here in the scaling
with respect to $\epsilon$ and $\sigma$ , let m $=0$ , and $W(u)=1-u^{2}$ . Our approach would give the same scaling in $\epsilon$ and
$\sigma$ for m $\in(-1,$ 1) fixed. We work for convenience within the class of admissible states which satisfy the zero
flux (Neumann) boundary condition. That is, the class of admissible states A is,

$A:= \{u\in H^{1}(D)|\frac{\partial u}{\partial\nu}|\partial D=0$, $\int_{D}ud\mathrm{x}=0\}$ ,

where $\nu$ denotes the outer normal to $\partial D$ . Hence,

$\int_{\Omega}|(-\triangle)^{-:}u|^{2}d\mathrm{x}=\sum_{\mathrm{n}\in \mathrm{Z}^{\theta}}\frac{|u_{\mathrm{n}}|^{2}}{|\mathrm{n}|^{2}}$ ,

where $u_{\mathrm{n}}(\mathrm{n}\in \mathrm{Z}^{3}, \mathrm{n}\neq 0)$ are the appropriate Fourier coefficients. This is the $H^{-1}$ norm squared on the
space of $L^{2}$ functions with zero average. Within this formulation, steps (4.7) and (4.8) require us to bound
below the sum

$\frac{1}{M(\epsilon,\sigma)}$ ( $\int_{\Omega}\epsilon|\nabla u|^{2}$ $+$ $\frac{1}{\epsilon}(1-u^{2})d\mathrm{x}$) $+$ $M^{2}( \epsilon, \sigma)\sum_{\mathrm{n}\in \mathrm{Z}^{S}}\frac{|u_{\mathrm{n}}|^{2}}{|\mathrm{n}|^{2}}$, (4.9)

where in the relevant parameter regime we have $M(\epsilon, \sigma)\geq C$ , for some constant $C>0$ . As is well-known
ffom the work of Modica and Mortola (cf. [18]), the sum in the parentheses is bounded below by a $BV$

norm of $u$ , and hence we seek an interpolation-like inequality between the spaces $BV$ and $H^{-1}$ . Lemma 2.1
in [5] (following work in [6]) bounds below the sum in (4.9) by the $L^{2}$ norm squared of $\mathrm{w}$ , and allows us to
conclude the desired lower bound (4.8). The upper bound is obtained by following (4.6). We arrive at:

Theorem 4.1 If $0<\epsilon_{\sim}<\sigma_{\sim}<1^{4}$,
$\epsilon^{\S}\sigma^{\S}\sim<\min_{u\in A}E_{\epsilon,\sigma}\leq\epsilon^{2}\mathrm{z}\sigma^{1}\mathrm{w}$ .

Here we have adopted the notation that for functions $f$ and $g$ of the parameters $\epsilon$ and $\sigma$ , $f_{\sim}<g$ means
for some constant $C>0$ independent of $\epsilon$ and awe have $f<Cg$ . In the present context, the constant may
in general depend on the structure of $W$ and $m$.

While the approach of matching upper and lower energy bounds may not appear to say anything about
the minimizer’s domain size in the way the ansatz driven calculation (4.6) did, it does yield ansatz-free
matching upper and lower bounds for the minimizer’s average length scale -more precisely for the total
interfacial perimeter per unit volume (see [5, 6, 7]). However, we emphasize that Theorem 4.1 does not
imply that (for small $\epsilon$ ) minimizers are periodic structures on the scale $(\epsilon/\sigma)^{1/3}$ . It is suggestive that they
possess an inherent scale of $(\epsilon/\sigma)^{1/3}$ but certainly one would like astronger result. In the next section, we
present such aresult.

5Uniform distribution of energy in asharp-interface limit
Here we report on some work in progress with Alberti and Otto ([1]). We are interested in obtaining further
rigorous support for the following conjecture: For $\epsilon$ small, minimizers of (2.1) are nearly periodic structures
on the scale $(\epsilon/\sigma)^{1/3}(i.e. N^{2/3})$ . Exactly what one means by nearly periodic has of course to be made clear.

One approach is via asharp interface limit whereby $\epsilon$ tends to zero. We pause to note that one can easily
obtain asharp interface limiting energy functional by considering (2.1) in terms of the original material
parameters (2.2); fixing $\chi$ ;taking $|\Omega|^{1/3}\sim N^{2/3}l$;and letting $N$ tend to infinity: Thus we keep the sample
size of the melt on the same (conjectured) length scale of the domains. One can easily show (cf. [8, 25]) that

$4\Pi[5]$ this notation was not used but instead Particular constants were chosen in the hyPothesis $0<\epsilon\leq \mathrm{a}$ $\sim<1$ for
convenience in Proving the uPPer and lower bounds. This is insignificant as it only effects the constants in the conclusion;
however, we remark that they were in fact incorrectly chosen for their purpose
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as $Narrow\infty$ , the functional (2.1) (suitably rescaled) $\Gamma$-converges(in the sense of De Giorgi (cf. [9, 18])) to a
nongenerate sharp-interface variational problem.

In this section, we follow the idea presented in [2] which will in the end result in studying (essentialy)
the same sharp-interface variational problem. Consider asequence $u_{\epsilon}(x)(\epsilonarrow 0)$ of minimizers of $E_{\epsilon,\sigma}$ and
fix aposition $s$ in the melt (we will take $s=0$ for simplicity). We blow up at $s=0$ , sending the scale
$(\epsilon/\sigma)^{1/3}$ to 1and removing all finer scales: That is, consider the functions of amicroscopic variable $\mathrm{t}$ :

$v_{\epsilon}( \mathrm{t}):=u_{\epsilon}((\frac{\epsilon}{\sigma})^{1}\mathrm{z}\mathrm{t})$ .

In terms of the blow-ups $v_{\epsilon}$ , the previous conjecture can be rephrased as follows: $v_{\epsilon}$ tends to periodic functions
with period $O(1)$ taking on only the teoo $values\pm 1$ (corresponding to the pure $A$ and $B$ phases).

We very briefly present apartial result in support of this conjecture. Our approach is via the asymptotics
of the energy written in terms of $v_{\epsilon}(\mathrm{t})$ ;thereby capturing the asymptotics of the minimizers themselves. The
energy functional on $v_{\epsilon}(\mathrm{t})$ is defined over domains whose size becomes infinite. Thus we are forced to deal
with several issues. The first being that we should naturally be concerned with an appropriate notion of
aspatially local rninirnizer (see below). The second pertains to the nonlocal term defined over domains of
increasing size (i.e. boundary conditions, the conservation constraint, notion of alocal minimizer, etc.).
These issues are dealt with by considering anatural relaxation of the nonlocal term. Here we will only be
concerned with the limiting sharp interface problem, and hence let us describe this relaxation in that context.
Let $A$ be abounded, open set. For $v\in BV(A, \pm 1)$ we introduce asecond dependent variable $\mathrm{b}$ coupled to
$v$ by the constraint $\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{b}=v$ (interpreted in the sense of distributions), and replace the $H^{-1}$ norm squared
of $v$ by

$\mathrm{b}L^{2}\min_{\in}$

$\int_{A}|\mathrm{b}|^{2}$ .
$\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{b}=v$

One can then reduce the original variational problem (at least $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{U}\mathrm{y}^{5}$ ) to the following sharp interface
problem:

$\min E(v, \mathrm{b}, A):=\int_{A}|\nabla v|+|\mathrm{b}|^{2}$ over $\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{b}=v$ , $v\in BV(A, \pm 1)$ .

Now we say $(\tilde{v},\tilde{\mathrm{b}})$ with $\mathrm{d}\mathrm{i}\mathrm{v}\tilde{\mathrm{b}}=\tilde{v}$ is alocal minimizer of $E$ on $\Omega$ if for all open $A\subset\subset\Omega$ and $(v, \mathrm{b})$ , $\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{b}=v$ ,
such that support(b-b) CC $A$ , we have $E(\tilde{v},\tilde{\mathrm{b}}, A)\leq \mathrm{E}(\mathrm{v}, \mathrm{b},A)$ . Within this framework one can prove an
uniform distribution of energy for local minimizers of $E$ . That is, if $(\tilde{v},\tilde{\mathrm{b}})$ is alocal minimizer of $E$ on $\Omega$ ,
then for every $r\geq 1$ and $B(r)\subset\Omega$ , we have

$E(\tilde{v},\tilde{\mathrm{b}},$ $\mathrm{B}(\mathrm{r})\sim|B(r)|$ ,

where $B(r)$ is aball of radius $r$ and $\sim \mathrm{i}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s}$ both $\leq \mathrm{a}\mathrm{n}\mathrm{d}$ $\sim>_{\mathrm{W}}\mathrm{i}\mathrm{t}\mathrm{h}$ the respective constants independent
of $\tilde{v},$

$\mathrm{b}\sim$ , and $r$ . The lower bound for this assertion follows from an interpolation-like argument similar to one
used in the previous section. The upper bound follows from direct construction of suitable comparison fields.
The details will be presented in [1].

6Remarks
We have discussed issues and results pertaining to scales and the distribution of energy for minimizers of the
Ohta Kawasaki energy in the SSR. Whereas these results seem encouraging in terms of building ansatz-fiae
tools for capturing properties of the microphases, one should be alerted to the fact that the derivation of
this functional was based upon the linearization about $\beta=0$ (i.e. about infinite temperature). Thus the

$5\mathrm{T}\mathrm{h}\mathrm{e}$ connection via $\Gamma$-convergence is still formal as we do not as yet have acompactness result at the $\epsilon$-level(cf. [9]) for
this tyPe of local minimizers
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physical validity of the density functional theory in regimes other than the WSR remains unclear. In the
SSR, it does seem to predict the basic scaling features of the domain size; however, one must be skeptical as
to whether or not it retains all the essential physics of the problem-as the pure SCMFT seems to $[4, 17]$ . On
the other hand, some recent simulations of the bicontinuous gyroid phase of Teramoto and Nishiura ([26])
indicate that this theory does predict rather nonstandard structures (i.e. other than lamellar, cylindrical
and spherical) which have been observed at temperatures placing one in the intermediate segregation regime,
and have been previously predicted by the SGMFT ([17]).

References
[1] Alberti, G., Choksi, R., and Otto, F.: Uniform Energy Distribution for Minimizers of aNonlocal

Functional Describing Microphase Separation of Diblock Copolymers, in preparation.

[2] Alberti, G. and Miiller, S.: ANew Approach to Variational Problems with Multiple Scales. Comm.
Pure Appl. Math., 54, 761-825 (2001).

[3] Bahiana, M. and Oono, Y.: Cell Dynamical System Approach to Block Copolymers, Phys. Rev. A41,
6763-6771(1990).

El Bates, F.S. and Fredrickson, G.H.: Block Copolymers-Designer Soft Materials. Physics Today, $52\sim 2$ ,
32-38 (Feb, 1999).

[5] Choksi, R.: Scaling Laws in Microphase Separation of Diblock Copolymers. J. Nonlinear Sci. 11, 223236
(2001).

[6] Choksi, R., Kohn, $\mathrm{R}.\mathrm{V}$. and Otto, F.: Domains Branching in Uniaxial Ferromagnets: aScaling Law for
the Minimum Energy. Comm. Math. Phys. 201, 61-79 (1999).

[7] Choksi, R., Kohn, $\mathrm{R}.\mathrm{V}$. and Otto, F.: Energy Minimization and Flux Domain Structure in the Inter-
mediate State of aType-I Superconductor, submitted to J. Nonlinear Sci. (2003).

[8] Choksi, R. and Ren, X.: On aDerivation of aDensity Functional Theory for Microphase Separation of
Diblock Copolymers. Journal of Statistical Physics, to appear (2003).

[9] Dal Maso, G.: Introduction to Gamma-Convergence, Progress in Nonlinear Differential Equations and
Their Applications, Vol. 8, Birkhauser, Boston (1993).

[10] Fife, P.: Models for Phase Separation and Their Mathematics. Elec. J. Diff. Eq., $\mathrm{V}\mathrm{o}\mathrm{l}$ 2000- 48, 1-26
(2000).

[11] Hamley, $\mathrm{I}.\mathrm{W}.$ :The Physics of Block Copolyrners, Oxford Science Publications (1998).

[12] Hashimoto, T., Shibayama, M., and Kawai, H.: Domain-Boundary Structure of Styrene Isoprene Block
Copolymer Films Cast From Solution 4. Molecular-Weight Dependence of Lamellar Microdomains.
Macromolecules 13, 1237-1247 (1980).

[13] Hashimoto, T., Shibayama, M., and Kawai, H.: Domain-Boundary Structure of Styrene Isoprene Block
Copolymer Films Cast From Solution 5: Molecular-Weight Dependence of Spherical Microdomains.
Macromolecules 13, 1660-1669(1980).

[14] Kohn, $\mathrm{R}.\mathrm{V}$. and Miiller, S.: Surface energy and microstructure in coherent phase transitions. Comm.
Pure Appl. Math. 47, 405-435 (1994)

[15] Landau, $\mathrm{L}.\mathrm{D}$ . and Lifehitz, E. M.: Electrodynamics of Continuous Media. Addison-Wesley (1960)

16



[16] Liu, F. and Goldenfeld, N.: Dynamics of Phase Separation in Block Copolymer Melts. Phys. Rev. A
39-9, 4805 (1989).

[17] Matsen, M. W. and Schick, M.: Stable and Unstable Phases of aDiblock Copolymer Melt. Phys. Rev.
Lett. 72, 2660-2663 (1994).

[18] Modica, L. and Mortola, $\mathrm{S}$ :Un Esempio $\mathrm{d}\mathrm{i}\Gamma$-Convergenza. Boll. Un. Mat. Ital. 514 $\mathrm{B}$ , 285299 (1977).

[19] M\"uUer, S.: Singular perturbations as aselection criterion for periodic minimizing sequences, Calc. Var.
1, 169-204 (1993).

[20] Muratov, $\mathrm{C}.\mathrm{B}.$ :Theory of Domain Patterns in Systems with Long-Range Interactions of Coulomb Type.
Phys. Rev. $\mathrm{E}$ 6&6, (2002).

[21] Nishiura, Y. and Ohnishi, I.: Some Mathematical Aspects of the Micro phase Separation in Diblock
Copolymers. Physica $\mathrm{D}84$,31-39 (1995).

[22] Ohta, T. and Kawasaki, K.: Equilibrium Morphology of Block Copolymer Melts, Macromolecules 19,
2621-2632 (1986).

[23] Ohnishi, I., Nishiura, Y., Imai, M., and Matsushita, Y.: Analytical Solutions Describing the Phase
Separation driven by aFree Energy Functional Containing aLong-range Interaction Term. CHAOS
9-2, 329-341 (1999).

[24] Ren, X. and Wei, J.: On Energy Minimizers of the Diblock Copolymer Problem, Interfaces and Free
Boundaries, to appear.

[25] Ren, X. and Wei, J.: On the multiplicity of two nonlocal variational problems, SIAM J. Math. Anal.
31-4, 909-924 (2000).

[26] Teramoto, T. and Nishiura, Y.: Double Gyroid Morphology in aGradient System with Nonlocal Effects.
Journal of the Physical Society of Japan. Vol. 71-7, 1611-1614 (2002).

17


