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Abstract

In this paper we introduce concepts of “flower type” and ”branch type” for fractal
sets, at first and the concept of the central extension of Cuntz algebras secondly and we
give the following results:

(1) $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ exists aduality theorem between fractal sets of flower type and branch
type, which is called ”flower-branch duality” (Theorem $\mathrm{I}$).
(2) $\mathrm{W}\mathrm{e}$ introduce aconcept of central extensions of Cuntz algebras(which will be called
Zunk algebra) and make aFock representation on afractal set of branch type(Proposition
$\mathrm{B})$ .
(3) $\mathrm{T}\mathrm{h}\mathrm{e}$ flower-branch duality induces the duality theorem between the representations
of Cuntz algebras and Zunk algebras(Theorem $\mathrm{I}\mathrm{I}$ ).

It is suggested how the duality theorem can be applied to several topics both in
mathematics and physics. The details will be given in the forthcoming papers.([1],[6]
and [7]

1Introduction

In papers([8],[9]) we have treated fractal sets by use of representations of Cuntz algebras
and give the criterion whether they are equivalent or not. In this paper we introduce two
kinds of fractal sets, the one is called of flower type which describes the condensating objects
and clusters. The other one is called of branch type which describes the growing objects,
developing cities, tree leaves, baccterias. At first we show that there exists aone to one corre-
spondence between these two classes, $\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\dot{\mathrm{h}}$ will be called ”flower-branch duality” (Theorem
$\mathrm{I})$ . Next we will be concerned with the representations. We have constructed representations
on fractal sets of flower type. Here we will make the Fock representations on fractal sets
of branch type. For this purpose we have to make acentral extension of Cuntz algebras,
which is called Zunk algebras. Here we have to make its central extension, when we want
to make the Fock representation of the Cuntz algebra. Because we have to prepare central
elements for the vaccum state. Hence we are led to an introduction of central extensions of
Cuntz algebras at first and then we will make representations of Zunk algebras on fractal
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sets of branch type(Proposition B). Then we can apply the duality theorem between these
representa,tions and ca.n discuss their equivalences(Theorem II).

2Aduality theorem for ffactal sets of flower type and branch
type

In this section we prepare two kinds of fractal sets which are called ”of flower type” and ”of
branch type” and prove Theorem I. At first we recall some basic facts on fractal sets([9]).
For the simplicity sake we restrict ourselves only to asystem of piecewise a$f$fine mappings
$\{\sigma j : j=1,2, .., N\}$ between acompact set $I\mathrm{f}_{0}$ . Then we see that there exist non-negative
numbers $\{\lambda;\}$ and positive numbers $\{\Lambda;\}$ $(0\leq \mathrm{A}_{\mathrm{j}} \leq\Lambda_{i})$ satisfying the condition:

$\lambda_{i}d(x, y)\leq d(\sigma_{j}(x), \sigma.\cdot(y))\leq\Lambda_{\mathrm{i}}d(x, y)(i=1,2, .., N)$ .

Here we assume that these conditions are extremal, namely they attain the equalities in
the both sides exactly. Here we will be concerned with mappings $\sigma_{\dot{l}}$ with $\Lambda_{1}$. $\leq 1$ , which we
call contractible mapping simply. Acontractible mapping $\sigma_{i}$ with $\Lambda_{1}$. $<1(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}. \Lambda_{i}=1)$

is called essentially proper(resp. partially isometric). Moreover, an essentially proper
mapping $\sigma i$ is called proper, if $\lambda_{i}=\Lambda_{\mathrm{i}}$ holds. We call the mapping $\sigma j$ in the case where
$\lambda_{\mathrm{i}}=0$ degenerate and in the other case non-degenerate respectively. Next we define aself
similar fractal set. Here we make acomment on the construction of fractal sets. Although
the construction of the fractal sets defined by essentially proper mappings is unique, we still
have not definite construction principles of fractal sets for general contractible mappings.
For asystem of $\sigma j$ : $I\mathrm{f}_{0}\vdasharrow I\mathrm{f}_{0}(j=1,2,3,4)$ , where we need not necesarry assume that they
are contractible, we put

$K= \bigcup_{i=0}^{\infty}(\bigcap_{n=*}^{\infty}.I\mathrm{f}_{n})$ , where $I\{_{n}’=\cup\sigma_{\mathrm{j}}(I\{_{n-1}.)(n=1,2, \ldots)$ . (2.1)

We notice the following invariant condition([4]):

$\bigcup_{j=1}^{N}\sigma_{j}(K)=I\{^{-}$ . (2.2)

In the case of essentially proper mappings $\sigma \mathrm{j}$ , the definition is equivalent to the given in
$(2,3)$ ([3]).
In this paper we assume that the following separation condition is satisfied:

$\sigma_{j}(I\mathrm{f}^{\mathrm{o}})\cap\sigma_{\mathrm{j}}(I\mathrm{t}^{\acute{\mathrm{o}}})=\phi$ , (2.3)

where $B^{\mathrm{o}}$ implies the open kernel of $B$ .
Next we proceed to the fractal sets of flower type and branch type.

(i) Afractal set of flower type
For asystem of contractible mappings $\sigma j$ : $I\dot{\mathrm{t}}_{0}\vdash*I\mathrm{f}_{0}(j=1,2, .., N)$ with the separation
condition $(2,3)$ , we put

$I \mathrm{f}=\bigcap_{n=1}^{\infty}I\mathrm{f}_{n}$ , where $I \dot{\mathrm{t}}_{\mathrm{i}}=\bigcup_{\mathrm{j}=1}^{N}\sigma_{j}(I\mathrm{f}_{j-1})$ , (2.4)
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(\"u)A fractal set of branch type
For asystem of contractible mappings $\sigma_{j}$ : $I\acute{\backslash }.0\vdasharrow K_{0}(j=1,2,$.., N), we choose areference
point $p_{0}$ in $I\mathrm{f}_{0}$ and define fundamental branches by

$L_{0}= \bigcup_{j=1}^{N}L_{0|j}$ , $L_{0|j}=\overline{p_{0\prime}\sigma_{\mathrm{j}}(p_{0})},$ (j $=1,$ 2, ..N) (2.5)

and we make alattice $L$ on $I\mathrm{f}_{0}$ in the following manner:

(1) $L$ is connected,
(2) $L= \bigcup_{n=0}^{\infty}L_{n}$ , where $L_{n}=L_{n-1}\cup L_{n’},$ $L_{n’}= \bigcup_{j}\sigma_{j}(L_{n-1})$ , (2.6)

(3) $L$ satisfies the separation conditions:
$\mu(\sigma_{j}(L_{n-1})\cap\sigma_{k}(L_{n-1}))=0(k\neq j)$ , $\mu(L_{n-1}\cap L_{n’})=0(n\neq n’)$ ,

where $\mu$ is the Lebesgue measure on $L$ , which is called afractal set of branch type.

Then we see that they are connected through the following duality theorem:

Theorem $\mathrm{I}$ ( $\mathrm{F}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}$ -Branch duality for self similar fractal sets)
The set of fractal sets of flower type(resp. branch type) in $I\mathrm{f}_{0}$ is denoted by $\mathcal{K}(K_{0})(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}$ .
$\mathcal{L}(I\mathrm{f}_{0})$ . Then there exists aone to one mapping $\phi$ : A $(I\mathrm{s}\mathrm{i}_{0})-*\mathcal{L}(I\dot{\iota}_{0})$ between fractal sets of
lattice sets $L$ and fractal sets of branch type $L$

Proof of Theorem I
Suppose that afractal set of branch type is given. Then we can make the corresponding
dual fractal set of flower type in the following $\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}:\mathrm{P}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$

$I\dot{\mathrm{C}}_{n}=\mathrm{t}\mathrm{h}\mathrm{e}$ closure of $\{L-\bigcup_{k=1}^{n}(L_{n})\}$ . (2.7)

By the construction of $L_{n}$ , we see that

$R_{n+1}^{\cdot}=\cup\sigma_{j}I\mathrm{f}_{n}$ (2.8)
$I\mathrm{f}_{n+1}\subset I\mathrm{f}_{n}$ . (2.9)

Then we have the desired fractal set

$K= \bigcap_{n=1}^{\infty}I\mathrm{f}_{n}$ , (2.10)

which satisfies the invariant condition $(2,2)$ . The construction in the converse direction is
given in $(2,6)$ . Hence we have proved the assertion.

In the case where the fractal set of flower type is aproper fractal set, we can find more
direct correspondence. Taking the fact into account that each point $x$ can be expressed as
follows

$x= \lim_{narrow\infty}\sigma_{i_{1}}\sigma_{\dot{\mathrm{t}}_{2}}\ldots\sigma_{1}.(nx_{0})$ , (2.11)
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where $x_{0}$ is an arbitrary point of I\prime i, we can make a one to one correspondence $\Phi$ : $K\cross \mathrm{R}_{+}\vdasharrow$L which is defined by

$\Phi(x)(t)=\bigcup_{n=1}^{\infty}\sigma_{i_{2}}\sigma_{i_{3}}\ldots\sigma_{i_{n}}(Lj_{1})(t)$ where $t\in[n, n+1]$ , (2.12)
where we notice the $\dot{\mathrm{R}}_{+}$ is the union of intervals $[nn+\}1]$ which describe the parameters ofpieces of lines. We give an example of califlower:

3 Central extensions of Cuntz algebras and their representa-
tions on fractal sets of branch type

In this section we recall some basic facts on the Cuntz algebras and their central extensionsat first and discuss representations on self similar fractal sets.
The Cuntz algebra $O(N)$ is a $C^{*}$ -algebra with generators $\{S_{J}\}(j=1,2, .., N)$ with thefollowing commutation relations ([2]):

(1) $S_{j}^{*}S_{j}=1(j=1,2, .., N)$ , (2) $\sum S_{j}S_{j}^{*}=1$ . (3.13)

These commutation relations give an algebraic description of the division of the total spaceinto N-parts. Next we proceed to central extensions of the Cuntz algebras. A $C^{*}$-algebra$Z(N)$ is called the Zunk algebra with generators $\{Sj\}(j=1,2, .., N)$ with the followingcommutation relations:

(1) $S_{j}^{*}S_{j}=1(j=1,2, .., N),$ (2) $\sum SjS^{*}j+Q=1$ , where $Q^{*}=Q,$ $Q^{2}=Q$ . (3.14)
We see that the Zunk algebra is not simple and we see that it is obtained from the Cuntzalgebra by the central extension. We can make representations of Cuntz algebras on fractalsets of flower type in awell known manner:

Proposition $\mathrm{A}$ ( $\mathrm{H}\mathrm{a}\mathrm{u}\mathrm{s}\mathrm{d}\mathrm{o}\mathrm{r}\mathrm{f}\mathrm{f}$ representations on ffactal sets offlower type) $([8],[9])$Let $I\dot{\{}$ be afractal set of flower type which defined by $\{\sigma_{j}\}(j=1,2, ..N)$ . Then we have thefollowing representation $\pi$ : $O(N)arrow B(L_{D}^{2}(I\dot{\mathrm{t}}))$ :

$\pi(S_{j})f(x)=\{$
$\Phi_{j^{1/2}}(\sigma_{j}^{-1}(x))f(\sigma_{j}^{-1}(x))$

$x\in\tau_{j}(I\dot{\mathrm{t}})$

0 $x\not\in\tau_{j}(K)(j=1,2, .., N)$
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$\pi(S_{j}^{*})f(x)=\Phi_{j}^{-1/2}(x)f(\sigma_{j}(x))(j=1,2, ..N)$

The representation defined in above is called aregular representation. We can prove thefollowing proposition:

Proposition(The Kakutani’ $\mathrm{s}$ dichotomy $\mathrm{t}$ heorem ([5]))
Let $I\dot{\mathrm{t}}$ and $I\mathrm{i}’$ be two self similar fractal sets of flower type with the same number of
generators $N$ which are defined on compact sets $K_{0}$ and $K_{0}’$ respectively. Then we see
that the Hausdorff representations are equivalent, if and only if they satisfy the following
conditions:

$\lambda_{i,j}^{D}=\lambda_{\iota,j}^{\prime D’}(i,\dot{g}=1,2)$ . (3.15)

Then, for two Hausdorff $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}:\pi_{i}$ : $O(N)-B(L_{D}^{2}(I\mathrm{f}_{i}))(i=1,2)$ , we can find
aunitary operator $U$ : $L_{D}^{2}(I\mathrm{f}_{1})\mapsto L_{D}^{2}(I\mathrm{t}_{2})$ such that $\pi_{1}(S)U=U\pi_{2}(S)$ holds for any
$S\in O(N)$

Remark The equivalence does not imply that $D=D’$ holds.

Next we proceed to the construction of the representations of Zunk algebras on fractai
sets of branch type. For this we prepare the so called Haar basis $e_{i_{1},i_{2},..,i_{n}:}$

$e_{i_{1},i_{2},..,i_{n}}=\{$
1 $x\in\sigma_{i_{2}}\sigma_{i_{3}}\ldots\sigma_{i_{n}}(L_{i_{1}})$

0 $x\not\in\sigma_{2}.\cdot\sigma_{j_{3}}\ldots\sigma_{*_{n}}.(L_{i_{1}})$
(3.16)

After the normalization with respect to the Borel measure $L^{2}(L, d\mu)$ , we have asystem of
orthnormal basis and have the Hilbert space H. Then we can prove the following theorem:

Proposition $\mathrm{B}$ (The Fock representation on afractal set of branch type)
Let $L$ be afractal set of branch type. Then we have the following Fock representation
$\rho_{b}$ : $Z(4)\vdasharrow B(\mathrm{H}):\mathrm{C}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}$ the vaccum $|0>\mathrm{w}\mathrm{e}$ define

$Q|0>$ $=$ $0>$ (3.17)
$T_{j}|0>$ $=$

$e_{\mathrm{j}}$ (3.18)
$T_{j}(e_{i_{1,}:_{2,\prime}..;_{\hslash}})$ $=$

$e_{j,:_{1^{1}2\prime\cdot\cdot\prime}\mathrm{i}_{n}\prime}.$ , (3.19)
$Q^{*}|0>$ $=$ $0>$ (3.20)

$T_{j}^{*}(e_{i_{1\prime}i_{2\prime\cdot\cdot\prime}:_{n}})$ $=$ $\{$

$e_{2,..\prime}.\cdot i_{n}$ $j=i_{1}$

0 $j\neq i_{1}$

The proof is easy and maly be omitted. Next we proceed to the duality theorem to repre-
sentations which arise from the Theorem I.

Then we can prove the following theorem

Theorem $\mathrm{I}\mathrm{I}(\mathrm{F}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}$-Branch duality theorem for representations of Hausdorff
type)
Let $L$ be afractal set of branch type and let $K$ be the corresponding dual fractal set.
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Then the $\mathrm{f}\mathrm{o}11\mathrm{o}\mathrm{w}\mathrm{i}_{1\mathrm{l}}\mathrm{g}$ duality is induced between the representations:For arepresentation ofHausdorff type, $\pi_{fl\mathrm{o}we\mathrm{r}}$ : $O(N)\succ\not\simeq L^{2}(K, d\mu_{I\backslash }^{D}.),$ there exists an central extellSion $Z(N)$ ofthe Cuntz algebra $O(N)$ so that there is a representation $\pi_{b\mathrm{r}anch}$ : $Z(N)\succ’ L^{2}(L, d\mu_{L})$ .The converse is also true.

Proof of Theorem II
We give a proof of Theorem $\mathrm{I}\mathrm{I}.$ At first we assume that the Fock representation is given ona fractal set of branch type. We make the fractal set of flower type. Then we can extendthe representation to the representation of Hausdorff type in the following $\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}:\mathrm{C}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}$

the Hilbert space $\mathrm{H}(L)$ spanned by the basis

$\{e_{\alpha} : \alpha=(\alpha_{1}, \alpha_{2}, \ldots)\in\prod_{n=1}^{\infty}\{1,2, \ldots, N\}\}$

of infinite paths. Then we see that the representation above defined can be written asfollows:

$\pi(S_{\mathrm{j}})e_{\alpha}=e_{(j,\alpha_{1},\alpha_{2},\ldots)}$ , $\pi(S_{j}^{*})e_{\alpha}=\{$
$e_{(\alpha_{2\prime}\alpha_{3\prime}\ldots)}$ $j=\alpha_{1}$

0 $j\neq\alpha_{1}$

The converse direction can be given in the similar manner and may be omitted.

4 Applications

In this section we demonstrate how we can apply the duality theorem to several topics inmathematics and physics. We treat the following three topics:(l)Infinite dimensional Cliffordalgebras, (2) $\mathrm{L}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}$ models on fractal sets and (3) $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{x}$ anaysis. The applications canbe performed as $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{s}:\mathrm{W}\mathrm{e}$ realize the complex systems as infinite dimensional objects andrepresent them by use of those of Cuntz algebras on fractal sets. We approach the systemsfrom finite dimensional systems by approximation. This can be done by the representationsof Zunk algebras. By use of the duality theorems, we can discuss the original complexsystems.

$(\alpha)\mathrm{I}\mathrm{n}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}$ dimensional Clifford algebras ([6])
We define the infinite dimensional Clifford algebras by use of the inductive limit of finitedimensional Clifford algebras. For example, we can choose the exahusions in the following
$\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}:\mathrm{A}\mathrm{t}$ first we notice that the Clifford algebra $Cl_{2N+1}(\mathrm{C})$ can be realized on the matricespace $M$ ($2^{N}$ : C) in the inductive manner. The $Cl_{3}(\mathrm{C})$ can be given by the Pauli matrices:

$\sigma_{1}=(\begin{array}{ll}0 \mathrm{l}1 0\end{array})\sigma_{2}=(\begin{array}{ll}0 i-i 0\end{array})\sigma_{3}=(\begin{array}{ll}1 00 -1\end{array})$ (4.21)

For the generators $A\mathrm{j}(j=1,2, .., 2p-1)$ of $\mathrm{C}_{2p-1}(\mathrm{C})$ , putting

$(\begin{array}{ll}A_{j} 00 -A_{j}\end{array})(\begin{array}{ll}0 I_{2}I_{2} 0\end{array})(\begin{array}{ll}0 iI_{2}-iI_{2} 0\end{array})(j=1,2, .., p)$ , (4.22)
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we have the generators of $C_{2p+1}(\mathrm{C})$ . We notice that

$Cl_{2N+1}(\mathrm{C})\underline{\simeq}M(2^{N}, \mathrm{C})$ (4.23)

We can introduce the infinite dimensional Clifford algebra by use of the inductive limit:

$Cl(\infty : \mathrm{C})=li\ovalbox{\tt\small REJECT} Cl_{2N+1}(\mathrm{C})$. (4.24)

By this construction we are temptated to introduce afractal method to the infinite dimen-
sional Clifford algebras. In fact we can realize the algebras in terms of fractal sets of Peano
floer type which are defined by the four contra tible mappings $\{\sigma_{i,j}|i,j=1,2\}$ between the
unit rectangle $I\mathrm{f}_{0}(=\{(x, y)|0\leq x\leq 1,0\leq y\leq 1\}$ with the separate condition. Considering
the dual fractal set of branch type, we can realize the representations of asequence of finite
dimensional Clifford algebras by use of the Zunk representations.

. –

$M_{1}(\mathrm{C})$
$NI_{2}(\mathrm{C})$ $M_{4}(\mathrm{C})$

In fact we can construct the representation in the following manner. At first we notice
the following fact:

$Cl(\infty : \mathrm{C})\subset Z(4)$ . (4.25)

Then restricting the representation given in Proposition, we have the following

Theorem III(Duality theorem for infinite dimensional Clifford algebras)
(1) $\mathrm{E}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}):\mathrm{W}\mathrm{e}$ have arepresentation $\pi_{b}$ : $Cl$ ( $\infty$ : C) $|arrow B(L^{2}(L))$ .
(2) $(\mathrm{E}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}):\mathrm{T}\mathrm{w}\mathrm{o}$ representations of (1) are unitary equivalent, if and only if the dual
representations $\pi_{f}$ : $O(4)\mathrm{I}arrow B(L_{D}^{2}(I\dot{\mathrm{t}}))$ satisfy the Kakutani’s condition on $K$ in the case
where $I\dot{\mathrm{t}}$ is aproper fractal set.

By this theorem we may discuss the Clifford analysis for $Cl(\infty : \mathrm{C})$ . The detail will be
given in ([6]).

$(\beta)$ Lattice models on fractal sets([l])
We can treat the interacting lattice models of fermionic $N$-spin particles in terms of fractal
geometry and discuss their phase transitions by use of $\mathrm{t}1_{1}\mathrm{e}$ duality theorem. We consider
the following standard (i.e. free) lattice rnodel on the lattice of positive integers $\mathrm{N}$ :

$\mathcal{H}_{0}=\beta\sum a_{n}^{(i)}a_{n}^{(i)\dagger}$, (4.26)
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(j)where $a_{n}$ are the annihilation operators of frmionic type at the site $n(n=1,2, ..)$ for thespin $j(j=1,2, .., N)$ and $a_{m}^{(i)\dagger}$ are the corresponing creation operator. The algebra is calledthe fermionic algebra with spin $N$ and is denoted by $AF(N).$ We will treat interacting latticemodels in terms of fractal geometry. This can be performed by use of the representation ofthe Zunk algebra.

Theorem $\mathrm{I}\mathrm{V}$ ( $\mathrm{D}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ theorem for lattice models on ffactal sets)Let $L$ be afractal set of branch type and let $\pi$ : $Z(N)-\rangle B(L^{2}(L))$ be arepresentation.Then we $\mathrm{h}$ ave
(1) $(\mathrm{E}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}):\mathrm{W}\mathrm{h}\mathrm{e}\mathrm{n}M=2^{N},$ we have asubalgebra $AF(N)$ of $\mathcal{Z}(M)$ with generators
{ $a_{n}^{(i)},$ $a_{n}^{(i)\mathrm{t}_{|n,m=1,2,3,..,i,j=1,2,..N\}}}.$ Hence we have the Hamiltonian

$\mathcal{H}_{L}=\beta\sum\pi(a_{n}^{(i)})\pi(a_{n}^{(j)\uparrow})$ , (4.27)
which is called the standatd Hamiltonian on $L$ .
(2) (Equivalence):Let $\pi’$ : $Z(N)\vdasharrow B(L^{2}(L’))$ be another representation. Then the dynam-ical systems define by the Hamiltonian are unitary equivalent if and only if the Kakutani,sconditions are satisfied on the corresponding fractal sets of flower type.

Here the dynamical system is defined by

$\dot{\iota}\frac{dx}{dt}=[x, H_{L}]$ . (4.28)

On the base of this theorem, we can treat the phase transitions by considering deformationsof the corresponding fractal sets of flower type.

$(\gamma)$ Complex anaysis ([7])
Finally we shall show apossibility of treating complex analysis by use of the fractal geom-etry. In this paragraph, we will be concerned with the following two topics.(1) $\mathrm{T}\mathrm{h}\mathrm{e}$ boundary behavior of aholomorphic function
The one of the $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}\dot{\mathrm{a}}\mathrm{n}\mathrm{t}$ subjects in complex anaysis is to consider the behavior of holomorphic functions on the natural boundaries. This can be done in the following manner.At first we take aholomorphic function and consider its ,,

$\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{k}$ Komplex”. This is definedin the following $\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}:\mathrm{L}\mathrm{e}\mathrm{t}f$ be aholomorphic(or meromorphic) function on $D$ with the$\partial D$ as anatural boundary of $f.$ We choose areference point $z_{0}$ in $D$ and we put $f(z_{0})=c$ .We consider the points set

$\{z_{n}\}$ , where $f(z_{n})=c$ . (4.29)
Following the analytic continuation of $f$ from $z_{0},$ we $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ the point $z_{1}$ and continuatingit further, we have the sequence. Here we give an example for the holomorphic function$exp$ $z^{2}|$ :
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$arrow$

Then following the construction rule of the fractal set of branch type, we can define thefractal set $L(f : c)$ . We consider the dual fractal set $K(f : \mathrm{c})$ . Then we may identify this
set as the cluster set of the value $c$ . Herrce, considering the dual fractal set, we may treatthe behavior of holomorphic functions on the boundary. We may expect to give aproof of
the Picard theorem or Nevannlinna theory in terms of the fractal geometry. For examplewe can formulate the following problem:

Problem
$,,\mathrm{I}\mathrm{f}$ the Hausdorff dimension of $I\dot{\mathrm{t}}(f : c)$ is positive for some $c$ , does the Picard theorem nothold ?”

(2) $\mathrm{T}\mathrm{h}\mathrm{e}$ moduli of Riemann surfaces
The second application is to the moduli structure of Riemann surfaces. Here we assume that
the universal covering of the Riemann surface $R_{g}(g>1)$ is the unit disck $D$ . Hence we can
represent it by the Decktransformationen group $\Gamma(R_{\mathit{9}})$ as $R_{g}=D/\Gamma(R_{g})$ . We denote the
generators of $\Gamma(R_{g})$ by $\{g_{j}|j=1,2, .., 2g)\}$ . Taking areference point $p_{0}$ of afundamental
region and making the fundamental branch $L_{j}=\overline{p_{0)}g_{j}(p_{0})}(j=1,2, .., 2g)$ , we can make a
fractal set $L(R_{g})$ of branch type by the construction method.

$(\infty)$ (0)
$(0\mathrm{Y})\mathrm{t}1)\gamma_{(\infty)}$

$\mathrm{t}11\gamma_{\infty}^{\mathrm{X}\mathrm{X}}()\mathrm{Y}_{(0\mathrm{I}}^{\mathrm{Y}}11]$

$(*_{0)}^{\mathrm{X}}(1)\mathrm{b}_{(\infty)}^{-}$

Then We can introduce arepresentation:

$\pi_{b}$ : $Z(2g)|arrow B(L^{2}(L(R_{g}))$ . (4.30)

By use of the duality theorem we may discuss the moduli spaces through the anaysis on the
fractal set of flower type. For example, we can formulate the following problem:

Problem
(1) $\mathrm{L}\mathrm{e}\mathrm{t}R_{g}$ and $R_{g}’$ be two Riemann surfaces. Then we can we show the biholomorphic
equivalence thorough the unitary equivalence of the dual representation

$\pi_{f}$ : $O(2g)\succ+B(L^{2}(K(R_{g}))?$ (4.31)
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