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Summary of
The Fokker-Planck Equation Approach
to Asset*Price Fluctuations

Hisatoshi Tanaka. t
School of Political Science and Economics, Waseda University}

Abstract

This paper investigates the possibility that adaptive expectation behavior
causes large-scale fluctuations in asset prices. Although traditional financial
theories assume the rationality of traders, empirical studies show that traders
in the real market form expectations by using an adaptive scheme. The adaptive
behavior of traders introduces path dependency into the asset price dynamics,
which causes fluctuations in the asset market.

This paper employs the Fokker-Planck equation approach to investigate dy-
namical behavior of the model. The model is proved to have (at least) two stable
situations, and transition from one situation to the other induced by stochastic
shocks generates large-scale fluctuations in asset prices.

1 The Model

This section formulates the model of asset price dynamics as simultaneous SDEs
of the asset price and expectations. Suppose a market consists of one asset and n
homogeneous traders. Let S; be the asset price at period ¢t € T, where time set T
is assumed to be continuous and infinite both in the future and past. At the initial
period ¢ = 0 the traders are given infinite past data of the asset price, {S;}+<o-

At period t(> 0) trader j € {1,2,---,n} is assumed to hold an expectation
8% ¢+t Which denotes an asset price at period t + At expected by trader j. Trader
Jj's expectation price 57, o, is decomposed into two parts: a common element shared

by all the traders, A, and a specific element peculiar only to trader j, €;j¢. The

*In this paper the word “asset” denotes anything traded in order to receive capital gain, and
includes i.e. stocks, foreign currencies and rare metals. Dividends from assets are ignored in this
paper.
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common expectation A; is linearly dependent on all past data of the price up to
period ¢, and takes the following form:

Ay = [ . K(t,7)S,dr , (1)

where K (t,7) is a function satisfying / K(t,7)dr = 1 for any t. In this paper in

particular, K is specified as K(¢,7) = ﬁe"ﬁ(t") for simplicity of calculation, so that
we have

t
At = / ﬂe_ﬁ(t_r) S'r dr . ) (2)
—00

Since the history of the price path {S,}r<o is given at ¢ = 0, eq.(2) becomes

t
Ar=ePAg+ / Be-PE-7g, dr | 3)
0

where Ag is a constant given by Ag = /0 BePT S, dr. By differentiating (3), we get
—00

dA, = B(S; — Ay)dt (4)

which is exactly the adaptive adjustment process of the expectation.

On the other hand, the term e, specific to trader j is assumed to be a random
variable, independently and identically distributed for each trader and period, ac-
cording to a smooth, symmetric probability density function ¢ for which mean is 0
and the variance 42 is finite. The random term €+ can be interpreted as private in-
formation, an exogenous shock or a prediction error made by trader j. Hereinafter we
call ¢;; the prediction error and ¢ the error density. Consequently, the expectation
held by trader j at period ¢ is given by

e —_ .
Sierar = Attep

t
= e Pta, +/ Be P18 dr + €j €5~ t.i.d.¢. (5)

Since the mean of ¢ is assumed to be 0, E[S§;,a:] = A: holds for any j. Here-
inafter we call A, the average expectation at penod t, and A = (A¢)teT the average
expectation process.

Suppose that trader j demands one unit of the asset when S5,.A; > S, and
supplies when S5, A, < Si. The probability of S5, A; = St is zero because of the
continuity of ¢. Therefore the probability that trader 7 will demand the asset is

o0
P(S%, > 8i) = Plevj > 5: — Ar) = /S L He)ds=1-8(S:-4),  (©
where ® denotes the cumulative distribution function of the prediction error (see
Fig.1). On the other hand, the probability ef supply is ®(S; — A¢).
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Figure 1: The error density ¢ and the probability of demand

Let n be the number of traders who demand the asset at period ¢, and n;’
the number of traders supplying the asset. Because the prediction error €; is i.3.d.
for each j € {1,---,n}, nf obeys a binominal distribution B(n,1 — &(S: — At)).
Since the binominal distribution B(m, p) is approximated by the normal distribution
N(mp, mp(1 — p)) when m is large enough (Laplace’s Theorem),

nf ~ N(n(l-2(S—A), n(l— B(S: — A)2(S: — Ar) ) )

if the number of the traders n is large enough.
For the sake of simplicity, we set the price change AS:(:= St+at —S¢) proportional
to the excess demand, that is, )

AS; = g (nf —n7) At (8)

where p denotes price sensitivity to the excess demand per unit of time'. By sub-

stituting n;” = n —ny into eq.(8) we get AS; = pn (nt‘*' /n—1 /2) At. Because nj is
normally distributed, AS; also is normally distributed: that is,
85~ N (pm(1/2- (5 - Apa, (rp L= 2O LG Aa) . ®

Accordingly, the discrete-time asset price process is given by

AS; = p(1/2 - 8(S; — A))At +04/(1 — 2(S; — A1))B(S: — A)(Werae —Wi), (10)

where p = pn, 0 = pVnAt, and W = (Wy)ier is the standard Brownian motion.
When At is small enough, the discrete process (10) is approximated by a continuous-
time process,

dS; = p(1/2 = B(S; = A)dt +01/(1 - 8(S: — A))(S; — A)dWs.  (11)

1 Although the assumption of lineality in price changes is essential to make our model solvable, it
makes the model somewhat unrealistic because the price can be negative with positive probability.
By taking So sufficiently large, however, the probability of negative S: becomes neglible for each

178



By combining eq.(4) and eq.(11), we get the simultaneous SDEs of the average ex-
pectation and the asset price

{ dA; = B(S: — Ap)dt

dS; = pu(1/2 — &(S; — Ay))dt + o/{1 — B(S; — A7) B(St — Ar)dW; .

This is the model we are interested in.

(12)

2 Results

Proposition 2.1 Define the unezpected shock process € = (&t)i>0 by
€= 51— A . (13)
Then the dynamics of £ and S are given by

dee = {u(1/2 - 8(&)) - Bes}at + o\ (1~ 2(6)) (6 )W

(14)
¢
St=Ao+§t+ﬂ/0§sd8-

(Proof) By the definition of £ and eq.(12),
d§s = dS;—-dA

= {ut1/2- 8(60)) - pecJdt+ oy (1 - 2(@) o)W . (19)

By integrating both sides of dA; = B£;dt, we have A; = Ag+ 8 fg §,ds, and conse-
quently S; = A¢ + & = Ao + ﬂfg Esds + &;. O

Theorem 2.2 (the Fokker-Planck equation) Suppose an SDE with an initial
condition is given as follows:

dX; = ot, X¢)dt + v(¢, X¢)dW; , Xo=1z0. (16)
Let f(t,z) be the density of X = (Xi)i>0: that is, f is supposed to satisfy
Prob{X, € B|Xo = z0} = /B f(t,7) dz (17)

for any Borel set B. If the functions o, 8,0, 7, 8z, 02y, 8:f, O=f, and 82f are
continuous fort > 0 and z € R, and if a, v, and their first derivatives are bounded,
then f(t,z) satisfies

&1(t,0) = - &[alt.2)1(t,2)] + } & 1t 2)%F (2, 2)] )
lim¢ .40 f(¢,2) = 6(z — 20) ,

where 6( - ) is the Dirac’s delta.
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The first equation in (18) is called the Fokker-Planck equation (or Kolmorgorov
forward equation). For a proof of this theorem, see e.g. Lasota and Mackey (1994),
p.360.

Example 2.3 Consider an SDE with an initial condition,
dX;=adt+gdW; , Xo=0, (19)

where a and g are constant. The solution of eq.(19) and its density are given by
X: = at + gW; and

2
f(t,z) = —‘/%_Ftexp [_(EW?)'] ,

The density f satisfies the Fokker-Planck equation corresponding to eq. (19), that is,

2 52
%f(t’ a;) = —a-aa—wf(t,x) + %‘a2_mf(t1 :B) ’

and the initial condition lim¢ 40 f(t,z) = 6(z). O

Example 2.4 (This ezample will be used in the proof of Theorem 2.7.)
Consider an SDE and its initial condition,

dX; = —BX¢dt + de P*dW; , Xo = 20 , (20)
where B and )\ are constant. The solution is
Xy = zoe Pt + X PW, (21)

therefore the density of X is given by

_ 1 (z — zoe~P*)?
I62) = Vot ["W | )

It can be readily checked that eq.(22) satisfies both of the Fokker-Planck equation,

2 f(t,0) =~ 5o (PS03 )]+§6—§[<A ePf(t,3)] (23)

and the initial condition, lim; ,+¢ f(t,z) = §(z — xp). C
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The Fokker-Planck equation corresponding to the unexpected shock process (15)
is given by

5168 = —g|{na/z-2) - e} s.9)

2
oo - 2@)2©Of60] . ()

Obtaining the explicit solution of the Fokker-Planck equation is generally difficult,
however we can study average behavior of £ by utilizing eq.(24) without solving it.

Theorem 2.5 Let f(t,£) be the solution of eq.(24). If f(t,£) satisfies
[ertode<oo, lm €516 =0

for any t > 0, the approzimate dynamics of the mean and variance of £ can be given
by the following differential equations:

2 Bl = ~{u6(0) + 8} Bled

(25)
LVi6) = Z - AROBIEP - {26(0) + 2(u6(0) + B} V&
a =g t g » s

where E[¢;] and V[£;] denote, respectively, the mean and variance of &:.

(Proof) Note that the assumption [ ¢2f(t,£) dé < oo implies
£Effw f(t,€) = £thﬂ°° §f(t,6) = eginmﬁzf(t,ﬁ) =0
and o 8
— T 2 7 —_
f_&oo 6§f( €)= szf(t,f) *ekglwf 6§‘f(t’§) 0

The mean of §; is given by E[§t] = [€f(t, &) d¢. Differentiating it with respect to
time, we have

[ext.0)dt

[ -5 [{war2 - vien - e} sc.0)
+y gl - @)

= [eg[{narz- 2 - e} se.0) a¢

2 gggf[am — 22186 e

d
EE [&:]



Integrating by part results in

[ €2 [{uar2—vten - pe}se.o)] a

= [elsaz- 00 - pe}rie0) - [{uas2- 20 - se}steoras

_ —E[p(1/2 — o) - ﬂet]

since

hm

In the same way,
[ agz[ (1~ B(E)ROS(,6)| dt
le&la-e@e@reo]] +o [ la-eeroneo]a

[5-55 [ - @21, 6)]] _Z +o [(1 — B(E)2(6) (¢, g)] -~
~0

since

ez [ - sene@seo)

< |e(1-22(9))9(6)£(2,6)| + |¢(1 - @(s))@(«s)ggf(t, a‘

< (max e 6] + e S 6)
NANCED

and

(- 2@)2@s0)| < FUwOI >0 (e
Therefore we get
& Ble) = E[u(1/2 - 0(6) - pte] =~ {us(0) + 8}l

by taking the Taylor expansion around £ = 0 up to first order.
The differential equation of the squared mean, ,

4 pieh = 28[6{u (/2 26 - e + B [1- 26 2660

e{wa/z - 2(e) - pe} s 0] < & lim Jere. o]+ 8 Jim Je50.0] =0
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is derived in the same way as the mean equation. By taking the Taylor expansion
around &; = 0 up to second order, we obtain

Ble{u (12~ 8(60) - Bec} | = ~{uo(0) + £} EIE]

and

E [(1 - (&) <I>(£t)] = -‘1-1- — ¢*(0)E¢?]
From the definition of variance, we can derive the variance equation,
Vel = Z[peh- pler)
= 3 gl - 2ml6) 2 Bl
= 2|~{us(0) + B}BIEA) +* [ - #0) {Vled + Blel"}]
+2{u(0) + B} El&?
2
= 2 - 2{us(0) + B}VI&d - 60 {Vied + Ble?} -
U

Corollary 2.6 In the steady state the mean and variance of £ are respectively given
by

-E 0, V= % [¢>(0)2 + (%%‘) $(0) + %] o (26)

(Proof) Obvious from eq.(25). O
Theorem 2.7 As 8 — oo, the asset price process S = (St)i>0 converges to
ds, = %th . (27)

Consequently, the price change AS:(= Siyat — St) obeys a normal distribution of
mean 0 and standard deviation ﬂéé—i.

(Proof) By dividing Fokker-Planck equation (24) by 8, we get

12500 - -2 [{EU2-20) )i

13 a1 - 2(£€)2(€) .
+§6£2 [ 3 f(taf)] .

183



184

We can assume here p,0% < 3, thus

n(1/2-9@)| _ » _ 2(1-8(€)2(6)| _ o
l B I52ﬂ_0 and 3 <1

hold for any £. Therefore, if 3 is large enough, we can regard f(¢,€) as the solution
of the following problem:

~0

{ 3185t,6) = Zef(t,0)]
(28)

lim¢ 10 f(2,€) = 6(€ — &o) »

where & is any given initial value of &;.
In order to solve the problem (28), we introduce a perturbation parameter A and
consider a perturbed problem

{ 35 4,0 = & [6£2(6.0)] + 338 [ (.6)]
limgy40 f2(¢,€) = 6(€ — éo)

As we have shown in Example 2.4, the solution f(t,£) is given by

L e [ (3= Eoe'ﬂt)z] _

(29)

f'\(t,f) = Trmmm——anr - 2,20t
Vont)2e-2Pt 2tA2e
By taking limit A — 0, we get the solution of the original problem (28): that is,
— Vi fA — A ¢ =Bt
60 = lm P66 =8~

Moreover, since f(t,£) — 6(£) as B goes to infinity, & = S; — A; = 0 holds for any
t > 0 when 8 is infinitely large. By substituting S; — A; = 0 into the first equation
in eq.(12), we have

dS: = p(1/2 ~ (0))dt + o4/(1 — ©(0))@(0)dW;: = %th
since $(0) = 1/2. O

The stationary distribution of unexpected shocks, f(£), is defined as
F(€) = Jim f(t,£)

when it exists. Because f(¢) no longer depends on t, 8;f(£) = 0 holds and the Fokker-
Planck equation (24) is reduced to the following ordinary differential equation:

— (s /- 2e) - 86}7(0)] + 5 0 - n2©T O] =0 (0



Proposition 2.8 If | / EF(€) d¢ I < oo holds, then f(£) satisfies the following equa-

tion:

70={(&-90) (s~ 1=5) ~ 7 (a1 * o) 7O &

(Proof) Since f satisfies eq.(30), we have

2 [-{ps2-2@) - se}T0 + 5 5 (1 - 2@)#(T@) | =o0.

Consequently, there is a constant C s.t.

2
~{u/2- o) - E}F©) + G (1 - 22T ©O) =C . (2

Assuming that C is not 0, we have

o = |[Jo4
- \ / : [_{u (1/2- ®(6)) - BE}T(E) + 5’-:-%((1 - <I>(€))<I>(€)7(€))] dé‘
< & Foa+a|[" Fou|+ F|[a-2eweTo]”,)
= Ll [ o -

This contradicts the uppér boundness of , therefore C must be 0. By

JGGL
substituting C = 0 into eq.(32), we get eq.(31) after some manipulations. O

Corollary 2.9 The stationary distribution f(£) is symmetric around 0, and given

by
f§) = Noexp [/:{ (;“5 - ¢(C)) (Q:C) 1 —;(C))

(st =) }‘“} : (83)

where Ny is a normalizing constant.

(Proof) Eq.(33) can be readily derived from differential equation (31). Because the
error density ¢ is assumed to be symmetric, we have é(—n) = ¢(n), ®(—n) = 1-&(n),
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7-6) = Noew [ [H(4-40) (55-7=5)
UQC (q»(c) ¥ tI>(':)) }dc]
— Woso| [{(&-9) (s~ =)
-2 (5t5+ =om) ) ("d”)}
~ Noexp [/:{ (&) (-=5 *+ 57)

(e * ‘P(ln)) }"’"] =5©.

Corollary 2.10 The stationary distribution f becomes unimodal if
8(6) < 5 (34)
holds for any .

(Proof) Since ¢ is assumed to be symmetric, ®(£) is smaller than 1 /2 when § < 0,
and larger when ¢ > 0. If condition (34) is satisfied, we have

. >0 (¢<0)
F(€) 4 =0 (£=0)
<0 (¢£€>0)

by eq.(14). This indicates that F is a unimodal function which reaches its maximum
value at £ = 0. O

Theorem 2.11 Suppose that $(0) > p/o?. If B is small enough to satisfy
8<% {s0) -5} . (35)
then f has at least two relative mazimums.

Lemma 2.12 If both $(0) > p/o? and B < o2¢(0) {¢(O) - —} hold, then 7 has a

relative minimum at 0.



(Proof) By eq.(31), we have f (0) = 0 and

d (L) (= ?”7—(7)2)
E\T 7
=-¢ (__1_1{))+(;u§_ )(“7%’(1—%)2)
Brte) W (dahy) - @

(1-9)?
By substituting £ = 0 into eq.(36),

ff (<0°)) -s{s07- (4)s0- (5)) (37

since 7 (0) = 0 and ®(0) = 1/2. A necessary and sufficient condition for f to have
a relative minimum at 0 is 7 (0) = 0 and 7"(0) > 0. Since 7(0) and ¢(0) are both
positive,

FO>0 = 902-(5)0-(5) >0

<= ¢(0)>-—{1+1/1+4ﬁ02} .

Therefore, after algebraic manipulation, we get inequality (35). » |

(Proof of Theorem 2.11) Because hmf_):l:oo #(€) = 0, thereis £ > 0 s.t. p/o? >
#(€) and ¢'(€) < 0. By eq. (31), we get T (€) < 0. On the other hand by Lemma
2.12, there is £ € (0,£) s.t. T (§) > 0. Because of the continuity of T, there exists
£ e (& €) at which f has a relative maximum by the Mean Value theorem (see

Fig.2). Since we have shown the symmetry of f in Corollary 2.9, f has a relative
maximum also at § = —¢*. L]

Figure 2 shows a typical case of Theorem 2.11. The bimodality (or multimodality
in some cases) of f indicates that discrepancy between the asset price and the average
expectation frequently occurs, and that the price move rapidly at &(= S — A) = 0
to keep the likelihood of £ = 0 relatively minimum. In other words, two (or more)
peaks of f are interpreted as locally stable points of the dynamics. Stochastic shocks,
however, prevent the system from remaining at either point, and transition from one
peak to the other causes large-scale fluctuations. The bimodality of the unexpected-
shock distribution therefore implies variability of the asset price.
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Figure 2: The error density ¢ and the stationary distribution of unexpected shocks ¥
in a typical case of Theorem 2.11.

References

ALBA, J. D. (1997): “Are Exchange Rate Expectations Adaptive? Evidence from
a Structural Open Economy Macro Model,” Journal of Macroeconomics, 19, 555—
569.

ALVAREZ-RAMIREZ, J., AND C. IBARRA-VALDEZ (2001): “Modeling Stock Market
Dynamics based on Conservation Principles,” Physica A, 301, 493-511.

Bak, P., K. CHEN, J. SCHEINKMAN, AND M. WOODFORD (1993): “Aggregate
Fluctuations: from Independent Sectoral Shocks: Self Organized Criticality in a
Model of Production and Inventory Dynamics,” Ricerche Economiche, 47, 3—30.

BRrock, W. A., anp C. H. HoMMEs (1998): “Heterogeneous Beliefs and Routes
to Chaos in a Simple Asset Pricing Model,” Journal of Economic Dynamics and
Control, 22, 1235-1274.

FaMma, E. F. (1965): “The Behavior of Stock Market Prices,” Journal of Business,
38, 34-105.

HELBING, D. (1995): Quantitative Sociodynamics: Stochastic Models and Models
of Social Interaction Processes. Kluwer Academic Publishers, Dordrecht, Nether-

188



Ka1zos1, T. (2000): “Speculative Bubbles and Crashes in Stock Markets: An
Interacting-Agent Model of Speculative Activity,” Physica A, 287, 493-506.

LASOTA, A., AND M. C. MACKEY (1994): Chaos, Fractals, and Noise — Stochastic
Aspects of Dynamics, 2nd ed. Springer Verlag, New York.

LEBARON, B., W. B. ARTHUR, AND R. PALMER (1999): “The Time Series Prop-
erties of an Artificial Stock Market,” Journal of Economic Dynamics and Control,
23, 1487-1516.

Livy, M., H. LEvy, anp S. SOLOMON (1995): “Microscopic Simulation of the
Stock Market — The Effect of Microscopic Diversity,” Journal of Physics I, 5,
1087-1107.

Lux, T. (1998): “The Socio-Economic Dynamics of Speculative Markets: Interacting
Agents, Chaos and the Fat Tails of Return Distributions,” Journal of Economic
Behavior and Organization, 33, 143-165.

Lux, T., AND M. MARCHESI (1999): “Scaling and Criticality in a Stochastic Multi-
Agent Model of a Financial Markets,” Nature, 397, 498-500.

MANDELBROT, B. B. (1963): “The Variation of Certain Speculative Prices,” Journal
of Business, 36, 394-419.

MANTEGNA, R. N., AN H. E. STANLEY (2000): An Introduction to Econophysics
— Correlations and Complezity in Finance. Cambridge University Press, New
York.

PauL, W., AND J. BASCHNAGEL (1999): Stochastic Processes from Physics to Fi-
nance. Springer Verlag, Berlin, Heidelberg.

RISKEN, H. (1989): The Fokker-Planck Equation: Methods of Solution and Applica-
tions, 2nd ed. Springer Verlag, Berlin, Heidelberg.

SATO, A., AND H. TAKAYASU (1998): “Dynamic Numerical Models of Stock Market
Price: from Microscopic Determinism to Macroscopic Randomness,” Physica A,
250, 231-252.

STANLEY, H. E., L. A. N. AMARAL, D. CANNING, P. GOPIKRISHNAN, Y. LEE,
AND Y. LIu (1999): “Econophysics: Can Physicists Contribute to the Science of
Economics?,” Physica A, 269, 156-169.

STAUFFER, D., AND T. J. P. PENNA (1998): “Crossover in the Cont-Bouchaud
Percolation Model for Market Fluctuations,” Physica A, 256, 284-290.

TAYLOR, M. P., aNp H. ALLEN (1992): “The Use of Technical Analysis in the
Foreign Exchange Market,” Journal of International Money and Finance, 11, 304~

189



190

WEIDLICH, W., aND G. HAAG (1983): Concepts and Models of a Quantitative
Sociology — The Dynamics of Interacting Populations, 2nd ed. Springer Verlag,
Berlin, Heidelberg,.

YOUSSEFMIR, M., AND B. HUHBERMAN (1997): “Clustered Volatility in Multiagent
Dynamics,” Journal of Economic Behavior and Organization, 32, 101-118.



