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1. Introduction

Fung et $a/$. (1992) conjectured that turbulent pair diffusion is controlled by hyperbolc points
in the turbulence and that, as aresult, pairs travel togethir for along time and separate
suddenly when they meet such points in the flow. The laboratory experiment of Jullien et
$d$. (1999) confirmed this view on the history of pair trajectories. However, Jullen et al.
(1999) did not attempt to determine whether and to what extent hyperbolic points are $\mathrm{r}\triangleright$

sponsible for the sudden separation of fluid element pairs. Fung&Vaw\dot licoe (1998) proposed
aschematic topological picture for the instantaneous multiple-scale streamline structure of
aplanar turbulence with energy spectrum $E(k)\sim k^{-\mathrm{p}}$ where $1<p<3$ . Their streamlne
picture is one of cat’s eyes within cat’s eyes and is suggestive of the way that hyperbolic points
are spatially distributed on aplanar fractal set. Davila&Vassilcos (2003) quantified this
multiple- cale structure by determining, both in planar and three dimensional homogeneous
isotropic turbulence, that the number density $n_{f}$ of straining stagnation points (i.e. hyperbolic
points in planar turbulence but any stagnation points with non-zero local straining action in
$\mathrm{t}\mathrm{h}\mathrm{r}\infty$ imensional turbulence) has apower law dependence on the ratio of the inner (q) to
the outer (L) length-scales of the turbulence (these length-scales characterise the range over
which the energy spectrum is apower law $k^{-\mathrm{p}}$ , and in Kolmogorov turbulence the ratio $L/\eta$

scales as the 3/4 power of the Reynolds number). Specifically, $n_{s}(L/\eta)=C.(L/\eta)^{D}$. where, in
two dimensions, $D$. $+p=3$ and $C_{\iota}$ is anumber density per integral-scale area and, in three
dimensions, $p+ \frac{2}{3}D_{*}=3$ and $C_{\iota}$ is anumber density per integral-scale volume.

To test the dependence of pair diffusion on straining stagnation points, Davla&Vassilicos
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(2003) added aconstant velocity $\mathrm{V}$ to aturbulent velocity field $\mathrm{u}(\mathrm{x}, t)$ obtained by Kinematic
Simulation and integrated particle trajectories $\mathrm{x}(t)$ by solving $\frac{d}{dt}\mathrm{x}=\mathrm{u}+\mathrm{V}$ . Note that this
is not aGalilean transformation as the particles are advected past the turbulence $\mathrm{u}(\mathrm{x}, t)$

which is itself not advected by V. The closest analogue would be the addition of aterminal
fall velocity to the particles’ motions. Davila &Vassilicos (2003) found that $C_{\epsilon}$ decreases
as $V=|\mathrm{V}|$ increases, which means that the number density of straining stagnation points
decreases as $V$ increases; they also found that, in parallel, pairs separate more slowly as $V$

increases, thus establishing aconnection, or at least acorrelation, between pair separation and
number density of straining stagnation points. Another correlation between pair separation and
number density of straining stagnation regions was established by Fung&Vassilicos (1998) by
varying the power $p$ of the energy spectrum in Kinematic Simulations. Nicolleau&Vassilicos
(2003) gave an argument based on the divergence of the acceleration field which suggests that
it is persistent regions of high strain rate and low vorticity which separate pairs initially very
close together.

In the present paper we firstly propose asimple explanation for why $C_{\epsilon}$ is adecreasing
function of $V$ and for why pairs separate more slowly as $V$ increases in Kinematic Simulations.
Secondly, we discuss the Galilean transformation properties of turbulent pair diffusion.

2. $C_{l}$ is adecreasing function of $V$

In the Kinematic Simulations used by Davila&Vassilicos (2003) the homogeneous and isotropic
turbulent velocity field is simulated as asum of random incompressible Fourier modes of
wavenumber $k$ with prescribed energy spectrum $E(k)\sim k^{-\mathrm{p}}$ where $1<p$, and an unsteadiness
frequency $\omega(k)$ characterising the oscillatory time dependence of each mode $k$ . The velocity
field is therefore asum over wavevectors $\mathrm{k}(k=|\mathrm{k}|)$ of cosine and sine functions of $\mathrm{k}\cdot \mathrm{x}-\omega(k)t$ .

When the uniform velocity $\mathrm{V}$ is superposed in the way described above, acritical wavenum-
ber $k_{V}$ is defined by $Vk_{V}=\sqrt{k_{V}^{3}E(k\mathrm{v})}$ where $\sqrt{k^{3}E(k)}$ is the eddy turnover time related to
wavenumber $k$ . It might be expected that the superposed uniform velocity $\mathrm{V}$ erases from the
velocity field all stagnation points related to wavenumbers $k$ such that $Vk>\sqrt{\# E(k)}$ and sim-
ply displaces the other stagnation points related to wavenumbers $k$ such that $Vk<\sqrt{k^{3}E(k)}$ .
Note here that we are tagging alength-scale to every stagnation point, so that some stagna-
tion points correspond to large-scale features and others to small-scale features. The schematic
fractal picture of streamlnes within streamlines given by Fung&Vassilicos (1998) makes this
tagging clear to the eye.

Quantitatively, we might conclude that the number density of straining stagnation points
of $\mathrm{u}+\mathrm{V}$ is equal to $C_{\iota}(L/\eta_{V})^{D}$. where $\eta v=2\pi/k_{V}$ and is therefore smaller than $C_{l}(L/\eta)^{D}$.
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when $\eta_{V}>\eta(\sqrt{k^{3}E(k)}\sim k^{\frac{3-\mathrm{p}}{2}}$ and $1<p$ guarantee that the straining stagnation points
displaced but not erased correspond to wavenumbers $k<k_{V}$ ). If $V$ is so small that $ray\leq\eta$,

that is when $V\leq u(\eta)$ where $u(\eta)$ is defined by $u( \eta)\frac{2\pi}{\eta}=\sqrt{(\frac{2\pi}{\eta})^{3}E(\frac{2\pi}{\eta})}$, then the number
density of straining stagnation points is unaffected. If $V$ is so large that $rW$ $>L$ , that is
when $V>u(L)$ where $u(L)$ is defined by $u(L) \frac{2\pi}{L}=\sqrt{(\frac{2\pi}{L})^{3}E(\frac{2\pi}{L})}$, then the number density of
straining stagnation points is zero.

Davila&Vassilicos (2003) measured $C_{\iota}$ as afunction of $V$ from $n_{\iota}=C_{s}(V)(L/\eta)^{D}\cdot$ . It

foUows that $C_{*}(V)=\mathrm{C},(0)$ when $V\leq u(\eta)$ and that $C_{l}(V)(L/\eta)^{D}\cdot=C_{\partial}(0)(L/\eta v)^{D}$. when
$u(L)\geq V>\mathrm{u}(\mathrm{L})$ . Hence, $Ca(V)$ is adecreasing function of $V$ as observed in the Kinematic
Simulations of Davila&Vassilicos (2003) because $\eta_{V}$ is an increasing function of $V$ (as long

as $p>1$ ) and $C_{\iota}(V)=C_{l}(0)(\eta v/\eta)^{-D_{*}}$ for $u(\eta)<V<u(L)$ .

To establish the dependence of $rW$ on $V$ in the Kinematic Simulations of Davila Vassilicos
(2003) note that $\eta_{V}\sim\eta[V/u(\eta)]p\star-$ for $u(\eta)\leq V\leq u(L)$ . Hence, $C_{l}(V)\sim C*(0)[V/u(\eta)]^{-_{\mathrm{p}-}^{BD}}\neg$

for $\mathrm{u}(\mathrm{L})<V<\mathrm{u}(\mathrm{L})$ . For completeness, note that $C_{\epsilon}(V)=C_{\epsilon}(0)$ when $V\leq u(\eta)$ and
$C_{\epsilon}(V)=0$ when $V>u(L)$ . Considering the relation between $p$ and $D_{\epsilon}$ given above, and that
in two dimensions $0<D_{l}<2$ whereas in three dimensions $0<D_{l}<3$ , the power $\vec{p-1}2D$ which
determines the dependence of $C_{s}(V)$ on $V$ is anonotonicdly increasing function of $D_{\epsilon}$ and
equivalently amonotonicaUy decreasing function of $p$. This means that, when the irregularity

of the velocity field is increased, the number density of straining stagnation points decreases
faster with increasing $V$ .

3. Pair separation and Galilean transformations

The frequency $\omega(k)$ characterises the degree of unsteadiness or (inversely) persistence of spatial
velocity fluctuations related to $k$ and it is natural to expect it to be an increasing function
of $k$ in amodel of turbulence such as Kinematic Simulation. In fact, $\omega(k)$ is taken to be
proportional to the eddy-turnover frequency $\sqrt{k^{3}E(k)}$ in the Kinematic Simulations of Davila
&Vassilicos (2003) and in some of the Kinematic Simulations of Fung et $al$ (1992) and Fung

&Vassilicos (1998) too. The eddy-turnover frequency $\sqrt{k^{3}E(k)}$ is an increasing function of $k$

for $E(k)\sim k^{-\mathrm{p}}$ and $p<3$ .

When auniform velocity $\mathrm{V}$ is superposed on the turbulence as was done by Davila&V\mbox{\boldmath $\varpi$}

silicos (2003), then it might be expected that wavenumbers $k$ such that $Vk>\omega(k)$ , $\sqrt{k^{l}E(k)}$

do not affect pair diffusion because particle pairs simply fly over such small-scale flow features
without allowing them to affect their flights. Hence, straining stagnation points related to such
high wavenumbers do not affect pair diffusion and it might be expected that, as aconsequence,
pairs separate more slowly as $V$ increases which is what Davila&Vassilcos (2003) observed.
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If the transformation $\mathrm{u}’=\mathrm{u}+\mathrm{V}$ used by Davila&Vasilicos (2003) is supplemented by
$\mathrm{x}’=x- l\mathrm{V}t$ it then becomes aGalilean transformation. The Kinematic Simulation’s velocity
field in the Galilean transformed frame is asum over wavevectors $\mathrm{k}(k=|\mathrm{k}|)$ of cosine and sine
functions of $\mathrm{k}\cdot d-\mathrm{V}\cdot \mathrm{k}t-\omega(k)t$ and of V. The cosine and sine modes are therefore translated
in space with the same velocity and in the same direction as fluid element trajectories. As
aconsequence, pair separation is unaffected as fluid element pairs cannot fly over small-scale
flow features and erase their effects on their separation rates and statistics. However, straining
stagnation points are not invariant to Galilean transformations and neither is their number
density as the argument given in section 2based on comparing the magnitudes of $Vk$ and
of $\sqrt{k^{\theta}E(k)}$ can be applied to the Galilean transformation and lead to the same conclusions.
This is because the number of stagnation points in instantaneous velocity fields is affected by
$\mathrm{u}’=\mathrm{u}+\mathrm{V}$ but is not affected by $\mathrm{x}’=\mathrm{x}+\mathrm{V}\mathrm{t}$ How can the statistics of straining stagnation
points, which are not Gallean invariant, determine the Galilean invaiant statistics of pair
separations?

One way to resolve this question is to consider that the relevant straining stagnation points
are not those of $\mathrm{u}$ but those of $\mathrm{u}-<\mathrm{u}>$ , where the brackets signify an average over realsations
or time or space. The statistics of stagnation points of $\mathrm{u}-<\mathrm{u}>\mathrm{a}\mathrm{r}\mathrm{e}$ clearly Galilean invariant.
However the transformation of Davila&Vassilcos (2003) should be generalsed to mean a
superposition of auniform velocity $\mathrm{V}$ on $\mathrm{u}-<\mathrm{u}>\mathrm{b}\mathrm{u}\mathrm{t}$ not on $\mathrm{u}$ and $<\mathrm{u}>\mathrm{s}\mathrm{e}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{y}$.
Defining the fluctuation trajectory $\mathrm{x}’\equiv \mathrm{x}-<\mathrm{x}$ $>$ , where $\frac{d}{d\mathrm{t}}\mathrm{x}=\mathrm{u}$ and $\frac{d}{\ }<\mathrm{x}$ $>=<\mathrm{u}>$ ,
the transformation of Davila&Vassilicos (2003) amounts to $\frac{d}{a}d$ $=\mathrm{u}-<\mathrm{u}>+\mathrm{V}$. This
transformation is of course meaningless ffom the physical point of view but can serve as a
numerical experiment implementable in the computer to test the effects of flow structure on
diffusion (as Davila&Vassilicos (2003) did).

We consider the issue of the Gallean invariance of flow structural mechanisms responsible
for pair separation in turbulent flows to remain open at this stage and are currently mrking on
it. An important concern is the nature of the average defining $<\mathrm{u}>\mathrm{a}\mathrm{s}$ well as the potential
time and space dependencies of $<\mathrm{u}>\mathrm{a}\mathrm{n}\mathrm{d}$ their own effects on turbulent pair diffusion. In
umavelling these effects, another variant of the Davila&Vassilcos (2003) transformation
might prove useful: namely, $\frac{d}{a}\mathrm{x}$ $=\mathrm{u}+\mathrm{V}$ , $\mathrm{A}\mathrm{a}$ $<\mathrm{x}$ $>=<\mathrm{u}>+\mathrm{V}$ , $\frac{d}{\ }d$ $=\mathrm{u}-<\mathrm{u}>$ .

4. Final comments

The effects of persistent straining stagnation points on turbulent diffusion manifest themselves
in more than one way. GotO&Kida (2003) $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\underline{\mathrm{j}\mathrm{f}\mathrm{i}}\mathrm{d}$ persistent hyperbolic points created
by antiparallel vortex pairs as being responsible for enhanced stretching of material lines in
turbulence and as the cause for the breakdown of Batchelor’s (1952) relation between loca
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and global stretching rates. Furthermore, Nicolleau&Vassilicos (2003) pointed out that the
dependence of pair diffusion statistics on the pairs’ initial separation $\Delta_{0}\leq\eta$ that is observed
in Kinematic Simulations (Nicolleau &Vassilicos 2003) and Direct Numerical Simulations
(Boffetta&Sokolov 2002) over times comparable to the integral time-scale is consistent with

adiffusion mechanism dominated by persistent straining stagnation points, in which case it is
not afinite size effect and should be expected to persist at arbitrarily high Reynolds number.
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