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I. INTRODUCTION

In this work aflow developing from the linear straining flow,

$(u_{0},v_{0},w_{0})=-(y+z, z+x,x+y)$ ,

and aflow whose initial condition is locally similar to it, namely,

$u=-(\sin y+\sin z, \sin z+\sin x, \sin x+\sin y)$

is examined. The linear straining flow is not in $L^{2}(\mathbb{R}^{3})$ (energy is not bounded), it is
boundary-free (no conditions are imposed at infinity) and it has non-unique solutions, some
of which blow up in finite time, e.g.

$u(x,y, z, t)=( \frac{y+z}{t-1},$ $\frac{z+x}{t-1}$ , $\frac{x+y}{t-1})$ ,

$p(x,y, z, t)=- \frac{x^{2}+y^{2}+z^{2}}{(t-1)^{2}}$ .

The latter flows match the linear flow to first order at the origin, but are in $L^{2}(\mathrm{T}^{3})$ and have
outer boundary conditions. It is found in this work through numerical simulations of these
flows, that the latter flow solutions remain smooth at least for atime well beyond the critical
time of the linear flow. The overall goal is to explore whether or not afinite-energy solution
to the Euler equations of hydrodynamics can blow up in finite time. The immediate goal

is to understand the difference in these two types of flows, how outer boundary conditions
affect the solution near the origin, and in particular what the role of pressure is. An answer
to the latter question may shed some light on the first.

If the diagonal transformation, defined as $x$ $=Ax’$ , $u’(x’)=A^{T}u(Aox’)$ with

$A=(\begin{array}{lll}1/\sqrt{2} 1/\sqrt{6} 1/\sqrt{3}-1/\sqrt{2}0 -2/\sqrt{6}1/\sqrt{6}1/\sqrt{3}\mathrm{l}/\sqrt{3} \end{array})$ ,
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is used, the straining flow is written

$(u_{0}’, v_{0}’, w_{0}’)=(x’, y’, -2z’)$

and the strain rate matrix, $S_{\dot{\iota},j}=1/2(\partial u_{i}/\partial x_{j}+\partial u_{j}/\partial x_{i})$ , is $S_{0}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(1,1, -2)$ initially,

that is,

$S_{0}=(\begin{array}{l}0-1-1-1\mathrm{O}-1-1-10\end{array})$ $arrow A^{T}S_{0}A=(\begin{array}{ll}10 001 0 00-2\end{array})$

Anumber of such boundary-free fields have exact solutions to the Euler and Navier-Stokes

equations and have been examined by [1-9]. They are especially interesting because of their

blowup behavior.

Since the linear straining flow is not in $L_{2}(\mathbb{R}^{3})$ , it should be considered as aflow local to

the origin. Realizing this, Bhattacharjee et al. examined anumber of flows, and found under

certain conditions the local flow solution possessed afinite-time singularity $[7, 8]$ . There was

not away, however, to consistently account for outer boundary conditions. In the present

work, the opposite approach is taken, that is, anumber of specific flows with local behavior

being the linear flow but with bona fide outer conditions are examined.

$\mathrm{I}\mathrm{I}$ . LINEAR STRAIN FLOW

To describe the behavior of the sine flow around the origin, we fix notations (by Bhat-

tachrjee et al.) as follows. We consider the Taylor expansions around the origin;

$u(x,y,z)=b(t)(y+z)+O(|ox|^{3})$ ,

$p(x, y,z)=-d(t)(x^{2}+y^{2}+z^{2})-e(t)(xy+yz+zx)+O(|x|^{4})$ ,

where three functions of $t$ for the local description have been introduced

$b(t)= \frac{\partial u}{\partial y}|_{x=0}$ , $d(t)=- \frac{1}{2}\frac{\partial^{2}p}{\partial x^{2}}|_{ae=0}$ , $e(t)=- \frac{\partial^{2}p}{\partial x\partial y}|_{ae=0}$

Other components of velocity are obaitned by cyclic permutations.

The linear straining flow solution can be examined as aspecial exact solution of the

strain-rate equation, e.g. by Majda’s construction [9]
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Below $\omega(t)$ , $S(t)$ , $P(t)$ are spatially uniform vorticity, strain rate and pressure hessian,

respectively.

For an arbitrarily given $S(t)$ , let us solve

$\frac{d\omega}{dt}=S(t)\omega(t)$ .

and define
$P(t) \equiv-\frac{dS}{dt}-S^{2}-\frac{\omega\otimes\omega-|\omega|^{2}I}{4}$ .

If we form
$u(x, t)= \frac{1}{2}\omega(t)\mathrm{x}ox$ $+S(t)x$ ,

$p(x, t)= \frac{1}{2}P_{\dot{|}j}x_{i}x_{j}$

then the pair $(u, p)$ solves the Euler equations.

For the case under consideration we have $\omega$ $=0$ and

$S=(\begin{array}{l}b(t)0b(t)b(t)0b(t)b(t)b(t)0\end{array})$ ,

so the pressure hessian becomes

$P=-$ $(\begin{array}{lll}2b(t)^{2} b’(t)+b(t)^{2} \mathrm{y}(t)+b(t)^{2}b’(t)+b(t)^{2} 2b(t)^{2} b’(t)+b(t)^{2}b’(t)+b(t)^{2} b’(t)+b(t)^{2} 2b(t)^{2}\end{array})=-$ $(\begin{array}{lll}2d(t) e(t) e\langle t)e(t) 2d(t) e(t)e(t) e(t) 2d(t)\end{array})$

where the definitions of $d(t)$ , $e(t)$ have been used in the final equality. Thus $\mathrm{w}$. $\mathrm{e}$ find for our
case

$\frac{d}{dt}b(t)+b(t)^{2}=e(t)$ ,

$d(t)\equiv b(t)^{2}$

The problem can be viewed as follows; for agiven $e(t)$ , the solution $b(t)$ can be found by

solving the Ricatti equation $b’(t)=-b(t)^{2}+e(t)$ . Note that the pressure Hessian can be

written as

$P= \frac{\triangle p}{3}I-$ $(\begin{array}{l}e(t)0e(t)e(t)0e(t)e(t)e(t)0\end{array})$
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where I denotes the identity matrix. The eigenvalues of the second (non-local) term of $P$

are $(-e(t), -e(t)$ , $2e(t))$ .

Asolution can be found in which the Hessian is isotropic. Setting $e(t)\equiv 0$ , the RAcatti

equation $b’(t)=-b(t)^{2}$ has the solution

$b(t)= \frac{b(0)}{1+b(0)t}$ , $(b(0)=-1)$

This solution is the one that is selected as an example of blowup. It has isotropic pressure

Hessian in the sense that $P= \frac{t}{3}\triangle p$ . This model is known as the Restricted Euler Equations

and they have blowup solutions [11-16].

Anonzero $e(t)$ does not necessarily mean the solution does not blow up. If $e(t)$ has the

form $\alpha b(t)^{2}$ . where $0<\alpha<1$ . The solution is

$b(t)= \frac{1}{1+b_{0}(1-\alpha)t}$ ,

which simply delays blowup to atime $1/[|b_{0}|(1-\alpha)]$ .
In order to desingularize the solution, the growth in $e(t)$ must be stronger than $b(t)^{2}$ . If

$e(t)$ has the form
$e(t)=\beta(|b(0)|t)^{\alpha}b(t)^{2}$ , $\alpha>0$

for $\alpha>0$ , then the solution is

$b(t)= \frac{b(0)}{1+b(0)t(1-\frac{\beta(|b(0)\lfloor t)^{\alpha}}{\alpha+1})}$
.

For example, it is readily seen that with $\alpha=1$ this is regular for $\beta>1/2$ .
Clearly, the arbitrariness of $e(t)$ is the origin of the non-uniqueness of solutions. In this

formulation, however, the physical nature of $e(t)$ is missing.

III. THE SERIES SOLUTION

Some understanding of the solution with isotropic Hessian is gained by examining the

time power series solution. If apower series in time is assume

$u= \sum_{k=0}^{\infty}u_{k}fl$

233



then each term can be found in the following three steps

$\tilde{u}=-\sum_{k=0}^{n-1}u_{k}\cdot\nabla u_{n-k-1}$ , $\triangle p=\nabla\cdot\tilde{u}$, $u_{n}=(\tilde{u}-\nabla p)/n$ .

Let $u_{0}=(x’, y’, -2z’)$ be the linear straining flow. In the first stage of computing $u_{1},\tilde{u}$

$\mathrm{i}\mathrm{s}-(x’,y’,4z’)$ (the diagonal frame is assumed). The pressure equation is then $\Delta’p=-6$ .

If the particular solution is taken, $p=-(x^{O}+y^{\rho}+z^{\prime 2})$ , the result is

$u_{1}=u_{0}$ .

In fact, using the same particular solution, each subsequent term is $u_{0}$ and so

$u=u_{0}(1+t+t^{2}+ \ldots)=\frac{u_{0}}{1-t}$ .

The particular blowup solution with isotropic pressure Hessian given in the previous section,

is the same as the series solution where only the particular solution to the pressure Poisson

problem is selected.

The homogeneous solution, which allows the general solution to satisfy boundary condi-

tions, cannot be constructed in this boundary-free flow.

In addition, the constant right-hand-side of the pressure Poisson equation is asolution

to Laplaces equation. While valid only for solutions in $L_{2}$ , the Predholm Alternative for

$L\phi=f$ states that if the differential operator, $L$ is singular, $f$ must be orthogonal to the

space of homogeneous solution in order for $L_{2}$ solutions to exist. If the right-hand-side is

not orthogonal, secular behavior is expected.

When such aresonance behavior develops in regular perturbation problems, the secular

term limits the convergence of the perturbation series solution. When proper homogeneous

solutions are included and the series is summed, or amethod of multiple scales is used, the

correct behavior is recovered. Both methods rely, however, on specific boundary conditions

given.

$\mathrm{I}V$. NUMERICAL RESULTS

Agroup of incompressible flows that have the $D_{3d}$ symmetry in aunit cell and are

embedded in acubic lattice can be defined [10]. These flows are then in the domain $\mathrm{T}^{3}$ , have

periodic boundary conditions and can be represented by Fourier series in space. The sine flow
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is one such example and was investigated by Childress and Spiegel (private communication,

see also [17] $)$ .
To first order around the origin, the sine flow is equivalent to the linear straining flow.

As with all the flows considered, the Riccati equation $b’(t)=-b(t)^{2}+e(t)$ , where $b(t)$ is

$\partial u/\partial y$ holds at the origin. In this case, $e(t)$ is generated consistently with the evolution of

the complete flow. The sine flow, hence, provides an example of alocal linear-straining flow

with outer boundary conditions.

The initial value problem-Euler equations for incompressible flow with periodic bound-

ary conditions and sine initial condition –was solved by two methods: aFourier pseud0-

spectral method and apower series in time.

Astandard Fourier spectral method was employed to solve the Euler equations. Aliasing

errors were removed by the 2/3 rule, so the maximum wavenumber is $N/3$ for calculations

with $N^{3}$ grid points. Typically, we use $N=256$ . Asymmetry has been used for reducing

memory size and calculation amount. Time marching was performed by 4th order Runge-

Kutta scheme with atypical time increment $\Delta t=2.5\mathrm{x}10^{-3}$ .

The recursion for the $n$-th term in the power series can be written

$u_{n}=- \frac{1}{n}(I-\nabla\triangle^{-1}\nabla\cdot)\sum_{k=0}^{n-1}(u_{k}\cdot\nabla)u_{n-k-1}$

Maple was used to find the first 20 terms of the series with the Fourier coefficients as rational

numbers (exact precision).

Figure Fig.l shows the evolution of $b(t)$ , where we compare the pseud0-spectral solution

and the series solution. It is clear that the sine flow departs quickly from the singular

behavior of the linear strain flow. Moreover after $t=1$ where the the linear strain flow blows

up, the strain $b(t)$ starts decreasing in magnitude. The numerical accuracy was checked at

$t=2$ by examining the exponential fall-0ff the energy spectrum. The series solution and

its Pade’ approximation agree well with the spectral result up to times $t=0.9$ and 1.5,

respectively. Therefore this numerical result shows that the sine flow remains regular at

least for atime well beyond the critical time of the linear flow.

This indicates that off-diagonal element of the pressure hessian $e(t)$ plays an important

role. In Fig.2 we show the time evolution of $e(t)$ . As expected, $e(t)$ grows in time to quench

the growth of $b(t)$ . This behavior of $e(t)$ shows that the assumption of isotropic pressure

hessian does not persist in time under the Eulerian dynamics with appropriate boundary
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conditions. Apparently $e(t)$ grows so fast that the singularity of $b(t)$ corresponding to the

linear strain flow is desingularized, or at least delayed. In order to quantify how fast $e(t)$

increases in comparison with $b(t)$ we show the nondimensional ratio $e(t)/b(t)^{2}$ in Fig.3. It

is remarkable that the ratio shows aclear straight line up to $t=1$ with the slope close to

1. As noted above $e(t)=k(|b(0)|t)^{\alpha}b(t)^{2}$ with $\alpha=1$ , $k>1/2$ is regular all time, consistent

with the numerical result. At present there is no explanation why the ratio behaves linearly

in time.
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V. HIGHER-ORDER ’RAMP’ APPROXIMATION

Next we seek abetter way of approximating the linear strain flow under periodic boundary

conditions. The sine flow behaves like the linear strain flow to leading order with an error of

$O(x^{3})$ near the origin. We can make the error smaller by choosing alinear combination of

sine’s appropriately as follows. Consider afunction, which will be called a’ramp’ function,

$r_{n}(x)= \sum_{p\Leftrightarrow 1}^{n}a_{\mathrm{p}}\sin(px)$

$=( \sum_{\mathrm{p}=1}^{n}pa_{p})x-(\frac{1}{3!}\sum_{\iota\subset 1}^{n}p^{3}a_{p})x^{3}+.$ .

Requiring that
$r_{n}(x)=x+O(x^{2n+1})$

we find
$\sum_{p=1}^{n}pa_{\mathrm{p}}=1$ , $\sum_{\mathrm{p}=1}^{n}p^{k}a_{\mathrm{p}}=0$ for $k=2$ , .., $n$ .

In terms of determinants aformula for general coefficients is obtained as

$a_{\mathrm{p}}= \frac{|\begin{array}{llllll}0 0 \cdots 1 \cdots 01 2^{3} \cdots \mathrm{p}^{3} \cdots n^{3}\cdots \cdots \cdots \cdots \cdots \cdots 12^{2-1}|| \cdots \cdots p^{2n-1} \cdots n^{2\mathfrak{n}-1}\end{array}|}{|\begin{array}{llllll}1 2 \cdots p \cdots n1 2^{3} \cdots p^{3} \cdots n^{3}\cdots \cdots \cdots \cdots \cdots \cdots 1 2^{2n-1} \cdots p^{2n-1} \cdots n^{2n-1}\end{array}|}$, $(p=1,2, \ldots, n)$ .

The first few approximations are
$r_{1}(x)=\sin x$ ,

T2 (x) $= \frac{4}{3}\sin x-\frac{1}{6}$ si$\cdot$ $2x$ ,

$r_{3}(x)= \frac{3}{2}\mathrm{s}.\mathrm{n}x-\frac{3}{10}\mathrm{s}.\mathrm{n}2x+\frac{1}{30}\mathrm{s}.\mathrm{n}3x$ ,

$r_{4}(x)= \frac{8}{5}$ si$\cdot$ $x- \frac{2}{5}\mathrm{s}.\mathrm{n}2x+\frac{8}{105}$ si$\cdot$ $3x- \frac{1}{140}$ si$\cdot$ $4x$ .
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We have performed pseud0-spectral computations using $r_{n}(x)$ as initial condition $(n=$

$2,3$ , $\ldots$ , 10). We show the time evolution of $b(t)$ for them in Fig.4. As the order of approxi-

mation $n$ is increased, $|b(t)|$ increases more rapidly than the sine flow $(n=1)$ . With $n=3$

it behaves quite similar to the linear strain flow tp to $t=0.6$ . However, with $n\geq 4$ , $|b(t)|$

overshoots the linear strain flow without no hint of convergence toward it.
The strain rate $b(0)=-1$ at the origin sets alocal time scale. The higher the order of

approximation is, the wider the region extends where agood agreement is reached between
the linear strain flow and the approximations. The departure observed above not only

the local time scale but some global time scale is important for long time evolution. It is
not surprising that we need aglobal time scale to compare the behavior of higher-0rder
approximations with that of the linear strain flow.

As atrial we choose here atime scale defined by aglobal strain rate

$\tau=t||S||_{L^{2}}$ .

(Remember that the linear strain flow is irrotational.) For the linear strain flow, we have
$||S||_{L^{2}}=\sqrt{6}$ . For the higher-0rder approximations we have

$||S||_{L^{2}}=( \frac{1}{(2\pi)^{3}}\int S_{\dot{l}j}S_{\dot{l}j}dx)^{1/2}=(\frac{1}{(2\pi)^{3}}\int\frac{|\omega|^{2}}{2}dx)^{1/2}$

So we can compare them directly. Such acomparison of $b(t)$ is made in Fig.5.

$\hat{\tilde{\mathrm{e}}-}$

$\hat{\tilde{\mathrm{e}}.}$

FIG. 5: Time evolution of $b(\tau)$ scaled by the globalFIG. 4: Time evolution of $b(t)$ for the approxi-
strain rate, for the aPProximations of order $n=$mations of order $n=1,2,3,4,5,6,10$ (long-dashed,
1, 2, 3, 4, 5, 6, 10 (long-dashed, dashed, dotted, dot-dashed, dotted, dot-dashed, dot-short-dashed, 2-
dashed, dot-short-dashed, 2-dashed and 3dashed).dashed and 3-dashed). The solid line $\mathrm{i}\epsilon$ for l/(t-l).
The solid line $\mathrm{i}_{\mathrm{S}}$ for $1/(\tau/\sqrt{6}-1)$ .
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The time evolution when scaled by the global strain rate, appears alittle bit more singular

than the linear strain flow but the approximations have atrend of approaching to it. To

check the time dependence of $b(\tau)$ we $\mathrm{p}1\mathrm{o}\mathrm{t}-1/b(\tau)$ in Fig.6.

It is of interest to see how $e(\tau)$ behaves we plot it in Fig.7. It should be noted that for

$n\geq 3$ and notably for $n\geq 4$ in particular, $e(\tau)$ becomes negative for some time intervals

and are positive again later. This means that it enhances the growth of $|b(t)|$ for those time

intervals.
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FIG. 6: Time evolution $\mathrm{o}\mathrm{f}-1/b(\tau)$ , plotted as in
Fig.5. The solid One is for $1-\tau/\sqrt{6}$. FIG- 7: Time evolution of $e(\tau)$ , plotted as in Fig.6.

$\mathrm{V}\mathrm{I}$. SUMMARY AND OUTLOOK

We have performed numerical simulations of the sine flow which is similar to the linear

strain flow at the origin. It is shown that the off-diagonal elements of the pressure hessian

grows so fast in the sense that $(b(0)=-1)$

$e(t)=\beta tb(t)^{2}$ , $(\beta>1)$ .

As aresult, the blowup seen in the latter flow is removed, or at least delayed. Numerical

simulations of higher-0rder ramp approximations have also been performed to mimic the

linear strain flow more faithfully than the sine flow. Atrend was seen for them to approach

the latter.

On the basis of the Taylor series expansion, we see that the non-uniqueness of the lin-

ear strain flow stems from arbitrariness of the the homogeneous solutions to the Poisson

equation. In an analogy with singular perturbation problems, it may be useful to take into
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account the outer boundary conditions implicitly by introducing the ahomogeneous term
of the same order. It may be useful to study how the complex singularities in $t$ move away
from the real time axis. Details on these issues will be reported elsewhere.
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