PROPERTIES OF CERTAIN INTEGRAL OPERATOR

JIN-LIN LIU

Department of Mathematics,
Yangzhou University,
Yangzhou 225002, Jiangsu,
People's Republic of China

E-Mail: jlliucn@yahoo.com.cn

and

Shigeyoshi Owa
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan

E-Mail: owa@math.kindai.ac.jp

Abstract

Let A(p) denote the class of functions f(z) which are analytic and p-valent in the unit disk U. A new subclass $\Omega(\alpha, \beta; \gamma)$ of A(p) consisting of analytic and p-valent functions f(z) associated with the certain integral operator Q^{α}_{β} which is the generalization of the integral operator studied by I.B.Jung, Y.C.Kim and H.M.Srivastava (J. Math. Anal. Appl. 248(2000), 475 - 481) is introduced. Some interesting properties of the operator Q^{α}_{β} for functions f(z) belonging to A(p) are investigated.

Key Words and phrases: Integral operator, extreme point, multivalent.

2000 Mathematics Subject Classification: Primary 30C45.

1. Introduction.

Let A(p) denote the class of functions of the form

$$f(z) = z^{p} + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad (p \in N = \{1, 2, 3, \dots\})$$
 (1.1)

which are analytic and p-valent in the unit disk $U = \{z : z \in C \text{ and } |z| < 1\}$. Let $S_p^*(\gamma)$ denote the class of functions f(z) of the form (1.1) which satisfy the condition

$$Re\left\{rac{zf'(z)}{f(z)}
ight\} > p\gamma$$

for $0 \le \gamma < 1$ and $z \in U$. A function in $S_p^*(\gamma)$ is called p-valent starlike of order γ in U. Let f(z) and g(z) be analytic in U. Then we say that the function g(z) is subordinate to f(z) if there exists an analytic function w(z) in U such that $|w(z)| < 1(z \in U)$ and g(z) = f(w(z)). For this relation the symbol $g(z) \prec f(z)$ is used. In case f(z) is univalent in U we have that the subordination $g(z) \prec f(z)$ is equivalent to g(0) = f(0) and $g(U) \subset f(U)$.

Recently, Jung, Kim and Srivastava [3] introduced the following integral operator:

$$Q_{\beta}^{\alpha}f(z) = \begin{pmatrix} \alpha + \beta \\ \beta \end{pmatrix} \frac{\alpha}{z^{\beta}} \int_{0}^{z} (1 - \frac{t}{z})^{\alpha - 1} t^{\beta - 1} f(t) dt$$

$$(\alpha > 0, \beta > -1; f \in A(1)). \tag{1.2}$$

They also showed that

$$Q^{\alpha}_{\beta}f(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(\beta+n)\Gamma(\alpha+\beta+1)}{\Gamma(\beta+\alpha+n)\Gamma(\beta+1)} a_n z^n.$$

It follows from (1.3) that one can define the operator Q^{α}_{β} for $\alpha \geq 0$ and $\beta > -1$. Some interesting subclasses of analytic function, associated with the operator Q^{α}_{β} , have been considered recently by Jung et al.[3], Aouf et al.[1], Li[5], Liu[6] and others.

Motivated by Jung, Kim and Srivastava's work [3], we now consider a linear operator $Q_{\beta}^{\alpha}: A(p) \to A(p)$ as following:

$$Q_{\beta}^{\alpha}f(z) = \begin{pmatrix} p + \alpha + \beta - 1 \\ p + \beta - 1 \end{pmatrix} \frac{\alpha}{z^{\beta}} \int_{0}^{z} \left(1 - \frac{t}{z}\right)^{\alpha - 1} t^{\beta - 1} f(t) dt$$

$$(\alpha \geqslant 0, \beta > -1; f \in A(p)). \tag{1.3}$$

We note that

$$Q^{\alpha}_{\beta}f(z) = z^{p} + \sum_{n=1}^{\infty} \frac{\Gamma(p+n+\beta)\Gamma(p+\alpha+\beta)}{\Gamma(p+n+\alpha+\beta)\Gamma(p+\beta)} a_{p+n}z^{p+n}$$

$$(\alpha \ge 0, \beta > -1; f \in A(p)). \tag{1.4}$$

It is easily verified from the definition (1.4) that

$$z(Q_{\beta}^{\alpha}f(z))' = (\alpha + \beta + p - 1)Q_{\beta}^{\alpha - 1}f(z) - (\alpha + \beta - 1)Q_{\beta}^{\alpha}f(z). \tag{1.5}$$

When p = 1, the identity (1.5) is given in [3]. One can easily see that the operator Q^{α}_{β} has an inverse operator $Q^{-\alpha}_{\beta+\alpha}$ and Q^{0}_{β} is an unit operator.

A function $f(z) \in A(p)$ is said to be in the class $\Omega(\alpha, \beta; \gamma)$ if it satisfies the condition

$$\frac{z(Q_{\beta}^{\alpha}f(z))'}{Q_{\beta}^{\alpha}f(z)} + \frac{pz^{p}}{1-z^{p}} \prec \frac{p+p(1-2\gamma)z}{1-z}$$
 (1.6)

for all $z \in U$ and $0 \le \gamma < 1$.

In this paper, we shall show the extreme points of the closed convex hull of the class $\Omega(\alpha, \beta; \gamma)$. It is then used to determine the coefficient bounds.

In the sequel, we denote the closed convex hull of a class H by coH. Also, let E(coH) denote the set of all extreme points of H.

2. Main Results.

In order to derive our main results, we shall need the following lemmas.

Lemma 1 ([4]). $E(coS_p^*(\alpha))$ consists of the functions given by

$$\frac{z^p}{(1-xz)^{2p(1-\gamma)}} = z^p + \sum_{n=1}^{\infty} \frac{(2p-2p\gamma)_n}{n!} x^n z^{p+n} \quad (z \in U), \tag{2.1}$$

where $(a)_n = a(a+1)\cdots(a+n-1), x \in C$ and |x| = 1. **Lemma 2** ([9]). The function $(1-z)^\rho \equiv e^{\rho \log(1-z)}, \rho \neq 0$, is univalent in U if and only if ρ is either in the closed disk $|\rho-1| \leq 1$ or in the closed disk $|\rho+1| \leq 1$.

Lemma 3 ([7]). Let q(z) be univalent in U and let $\theta(w)$ and $\phi(w)$ be analytic in a domain D containing q(U) with $\phi(w) \neq 0$ when $w \in q(U)$. Set Q(z) = $zq'(z)\phi(q(z)), h(z) = \theta(q(z)) + Q(z)$ and suppose that

(1)Q(z) is starlike (univalent) in U;

(2)
$$Re\left\{\frac{zh'(z)}{Q(z)}\right\} = Re\left\{\frac{\theta'(q(z))}{\phi(q(z))} + \frac{zQ'(z)}{Q(z)}\right\} > 0 \quad (z \in U).$$
 If $p(z)$ is analytic in U , with $p(0) = q(0), p(U) \subset D$ and

$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)) = h(z), \tag{2.2}$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

Theorem 1. A function $f(z) \in A(p)$ is in $\Omega(\alpha, \beta; \gamma)$ if and only if f(z) can be expressed as

$$f(z) = Q_{\beta+\alpha}^{-\alpha} \left\{ z^p (1-z^p) exp[-2p(1-\gamma) \int_X \log(1-xz) d\mu(x)] \right\}, \tag{2.3}$$

where μ is a probability measure defined on the unit circle $X = \{x : |x| = 1\}$. Proof. Let $f(z) \in \Omega(\alpha, \beta; \gamma)$. Then by Herglotz formula [2], we have

$$\frac{z(Q_{\beta}^{\alpha}f(z))'}{Q_{\beta}^{\alpha}f(z)} + \frac{pz^{p}}{1-z^{p}} = p(1-\gamma) \int_{X} \frac{1+xz}{1-xz} d\mu(x) + p\gamma, \tag{2.4}$$

where μ is a probability measure defined on the unit circle $X = \{x : |x| = 1\}$. By means of the identity

$$\frac{d}{dz}\log\frac{Q_{\beta}^{\alpha}f(z)}{z^{p}(1-z^{p})} = \frac{1}{z}\left[\frac{z(Q_{\beta}^{\alpha}f(z))'}{Q_{\beta}^{\alpha}f(z)} + \frac{pz^{p}}{1-z^{p}} - p\right],\tag{2.5}$$

(2.4) yields

$$Q_{\beta}^{\alpha}f(z) = z^{p}(1-z^{p})\exp[-2p(1-\gamma)\int_{X}\log(1-xz)d\mu(x)]. \tag{2.6}$$

Thus

$$f(z) = Q_{\beta+\alpha}^{-\alpha} \{ z^p (1-z^p) \exp[-2p(1-\gamma) \int_X \log(1-xz) d\mu(x)] \}.$$

Now the proof is complete.

Theorem 2. Let $0 \le \gamma_1 < \gamma_2 < 1$, then $\Omega(\alpha, \beta; \gamma_2) \subset \Omega(\alpha, \beta; \gamma_1)$. Proof. We define a linear operator on $\Omega(\alpha, \beta; \gamma)$ as following:

$$T_{\gamma}(f) = \frac{Q_{\beta}^{\alpha} f(z)}{1 - z^{p}} \quad (z \in U). \tag{2.7}$$

Then T_{γ} is a linear homeomorphism from $\Omega(\alpha, \beta; \gamma)$ to $S_p^*(\gamma)$. It is well-known that $S_p^*(\gamma_2) \subset S_p^*(\gamma_1)$ for $0 \leq \gamma_1 < \gamma_2 < 1$. The result follows immediately.

Theorem 3. (i) The extreme points of $co\Omega(\alpha, \beta; \gamma)$ are given by the functions

$$f_x(z) = Q_{\beta+\alpha}^{-\alpha} \left\{ \frac{z^p (1-z^p)}{(1-xz)^{2p(1-\gamma)}} \right\}$$

$$(x \in C, |x| = 1; z \in U).$$
 (2.8)

(ii)
$$Co\ \Omega(\alpha, \beta; \gamma) = \{f : f(z) = \int_X f_x(z) d\mu(x)\},$$
 (2.9)

where μ varies over the probability measures defined on the unit circle X.

Proof. Since T_{γ} defined by (2.7) is a linear homeomorphism from $\Omega(\alpha, \beta; \gamma)$ to $S_p^*(\gamma)$, it preserves extreme points. By making use of Lemma 1, the results follow at once.

According to Theorem 3 and Lemma 1, we have the following corollaries.

Corollary 1. Let
$$f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \in \Omega(\alpha, \beta; \gamma)$$
. Then

$$|a_{p+n}| \leq \begin{cases} \frac{\frac{(2p-2p\gamma)_n}{n!} \cdot \frac{\Gamma(p+n+\alpha+\beta)\Gamma(p+\beta)}{\Gamma(p+n+\beta)\Gamma(p+\alpha+\beta)}, & 1 \leq n < p, \\ \frac{(2p-2p\gamma)_{n-p}|\prod\limits_{k=1}^{p} (2p-2p\gamma+n-k) - \prod\limits_{k=1}^{p} (n-p+k)|}{n!} \cdot \frac{\Gamma(p+n+\alpha+\beta)\Gamma(p+\beta)}{\Gamma(p+n+\beta)\Gamma(p+\alpha+\beta)}, & n \geq p. \end{cases}$$

The result is sharp.

Corollary 2. Let $f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \in \Omega(\alpha, \beta; \gamma)$. Then for |z| = r < 1.

$$|f(z)| \le r^p + \sum_{n=1}^{p-1} \frac{(2p - 2p\gamma)_n}{n!} \cdot \frac{\Gamma(p + n + \alpha + \beta)\Gamma(p + \beta)}{\Gamma(p + n + \beta)\Gamma(p + \alpha + \beta)} r^{p+n}$$

$$+\sum_{n=p}^{\infty}\frac{(2p-2p\gamma)_{n-p}|\prod\limits_{k=1}^{p}(2p-2p\gamma+n-k)-\prod\limits_{k=1}^{p}(n-p+k)|}{n!}\cdot\frac{\Gamma(p+n+\alpha+\beta)\Gamma(p+\beta)}{\Gamma(p+n+\beta)\Gamma(p+\alpha+\beta)}r^{p+n}$$

The result is sharp.

Theorem 4. Let $f(z) \in \Omega(\alpha, \beta; \gamma)$. Let ρ be a complex number with $\rho \neq 0$ and satisfy either $|2p\rho(1-\gamma)+1| \leq 1$ or $|2p\rho(1-\gamma)-1| \leq 1$. Then

$$\left(\frac{Q_{\beta}^{\alpha}f(z)}{z^{p}(1-z^{p})}\right)^{\rho} \prec \frac{1}{(1-z)^{2p\rho(1-\gamma)}} = q(z) \quad (z \in U), \tag{2.10}$$

where q(z) is the best dominant.

Proof. Let

$$p(z) = \left(\frac{Q_{\beta}^{\alpha} f(z)}{z^p (1 - z^p)}\right)^{\rho}, \qquad (2.11)$$

then p(z) in analytic is U with p(0) = 1. Differentiating (2.11) logarithmically we have

$$\frac{zp'(z)}{p(z)} = \rho \left(\frac{z(Q^{\alpha}_{\beta}f(z))'}{Q^{\alpha}_{\beta}f(z)} + \frac{pz^p}{1-z^p} - p \right). \tag{2.12}$$

Since $f(z) \in \Omega(\alpha, \beta; \gamma)$, (2.12) is equivalent to

$$p + \frac{zp'(z)}{\rho p(z)} \prec \frac{p + p(1 - 2\gamma)z}{1 - z} = h(z).$$
 (2.13)

If we take

$$q(z) = \frac{1}{(1-z)^{2p\rho(1-\gamma)}}, \theta(w) = p \text{ and } \phi(w) = \frac{1}{\rho w},$$
 (2.14)

then q(z) is univalent by the condition of the theorem and Lemma 2. It is easy to show that q(z), $\theta(w)$ and $\phi(w)$ satisfy the conditions of Lemma 3. Since

$$Q(z) = zq'(z)\phi(q(z)) = \frac{2p(1-\gamma)z}{1-z}$$
 (2.15)

is univalent starlike in U and

$$h(z) = \theta(q(z)) + Q(z) = \frac{p + p(1 - 2\gamma)z}{1 - z},$$
(2.16)

it may be readily checked that the conditions (1) and (2) of Lemma 3 are satisfied. Thus the result follows from (2.13) immediately.

Acknowledgement

The research is partly supported by Jiangsu Gaoxiao Natural Science Foundation (01KJB110009).

References

- [1] M.K.Aouf, H.M.Hossen and A.Y.Lashin, An application of certain integral operators, J. Math. Anal. Appl., 248(2000), 475-481.
- [2] P.L.Duren, Univalent Functions, Springer-Verlag, New York, 1983.
- [3] I.B.Jung, Y.C.Kim and H.M.Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J.Math. Anal. Appl., 176(1993), 138-147.
- [4] G.P.Kapoor and A.K.Mishra, Convex hull and extreme points of some classes of multivalent functions, J. Math. Anal. Appl., 87(1982),116-126.
- [5] J.L.Li, Some properties of two integral operators, Soochow J. Math., 25(1999), 91-96.

- [6] J.-L. Liu, Certain integral operator and strongly starlike functions, Inter. J. Math. Math. Sci., 30(2002), 569-574.
- [7] S. S. Miller and P. T. Mocanu, On some classes of first order differential subordination, Michigan Math. J., 32(1985), 185-195.
- [8] S. Owa, H. M. Srivastava, F.Y. Ren and W.-Q, Yang, The starlikeness of a certain class of integral operators, Complex Variables, 27(1995), 185–191.
- [9] M.S.Robertson, Certain classes of starlike functions, Michigan Math. J., 32(1985), 135-140.
- [10] H.M.Srivastava and S.Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math.J.106(1987), 1-28.
- [11] H.M.Srivastava and S.Owa(Editors), Current Topics in Analytic Fuction Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hongkong, 1992.