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Group configurations in simple theories (Part.1)
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1. Introduction

Group configuration theorem is one of the most important theorems of
geometric stability theory. This theorem is proved in full generality by
Hrushovski [1] following ideas of Zilber. It states that if some dependence
/‘independence situation exists, there is a non-trivial group behind it. Re-
cently, this theorem is generalized to the simple theory context by Wagner
et al [2] [3]. In this note, we introduce the results.

In stable case, the proof can be decomposed into two main steps ;
1. Obtain a generic group chunk whose elements are germs of generic func-
tions, and whose product is the composition.
2. Apply the Weil-Hrushovski generic group chunk theorem.
In simple theories, the theorem is also proved through the two steps. There
are two papers accordingly. In this note, we give a summary of the next
paper at first [2] ;
"Group configurations and germs in simple theories.” by Itay Ben-Yaacov.
This paper is concerned with the generalization of the first step in the sta-
ble case. But they could not obtain a generic group chunk this time. They
construct a generic polygroup chunk, that is a generic group chunk whose
product is defined up to a bounded number of possible values.

2. Germs of generic actions
.Alike in the stable case, generic functions and their compositions are treated
from now on. But in the simple context, compositions of complete types (as
generic functions) are not necessarily complete. It is due to the lack of
stationarity of types. Therefore generic functions (actions) are defined as
partial types. And their compositions are also partial types.

Definition 1 A partial type m(z) over A has definable independence if for
any partial type 7'(y) over 4, "m(z) A n'(y) Az L4 y" is type-definable.

Remark 2 Every complete type has definable independence. If w(zx) has
definable independence and E is a hyperdefinable equivalence relation, then
n(z)/E has definable independence.
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Definition 3 Let m(z,y,z) be a partial type in three hyperimaginary vari-
ables over a hyperimaginary parameter. We say that 7 is a generic action,
if :

1. n{;, #[, and n[, have definable independence.

2. n(x,y, z) implies that z, y, = are pairwise independent.

3. For any f, a there is at most boundedly many b such that =(f,a,b), that
is m(f,a, z) is a bounded (possibly inconsistent) type. We note f(a) the set
of all such b. '

We note Func(w) = n[,, Arg(r) = «[,, Val(r) = n[., namely the functions,
arguments and values of 7. If f is a function, we note Gr(f)(y, z) = =(f,y, 2).
Note that f € Func(r) <> Gr(f) # 0.

Definition 4 1. We say that = is trivial if m(2,y,z) implies that z, y, =
are an independent triplet.

2. We say that 7 is invertible if every function sends at most boundedly
many arguments to any given value.

3. We say that n is complete if for any f €Func(w), Gr(f) is a Lascar
strong type. (i.e. an amalgamation base) over f. .

4. We say that = is reduced if it is complete, and whenever Gr(f) and
Gr(g) have a common non-forking extension, then f = g.

Definition 5 Suppose that n(z,y, 2),7'(¢,z,w) are generic actions. Then
we define 7’ o m(at,y, w) to be the partial type such that 7’ o 7(fg,a,c) if
and only if:

1. f, g, a are independent.

2. ¢ € go f(a), that is, there is b such that b € f(a) and ¢ € g(b).

Proposition 6 7' o always ezists (provided that the sorts match) and it is
a generic action.

Proof. n'om is the partial type "z Linz: [y Lzt Ar(2,y,2) An(t,z,w)]"B

Proposition 7 1. Suppose 7 is a generic action, and note 77} (z,y,2) =
n(z,2,y). Then m is invertible if and only if #~! is a generic action.

2. Any composition of two invertible functions is invertible, and (1r' o

M l=alox
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Proposition 8 Let m, 7' be generic actions on sorts such that m o is
defined. Suppose furthermore that Arg(n') =Val(r) and these are Lascar
strong types. Then for any independent f € Func(m) and g € Func(r'), we
have g o f €Func(n’ o w). If furthermore n' is non-trivial, the so is the
composition.

Proof. Now f-l g and Arg(n’) =Val(r) is a Lascar strong type. By the
independence theorem, there is b such that b~ fg and b [=Arg(7’) =Val(n).
Thus there are a and ¢ such that b € f(a) and ¢ € g(b). We may assume
that a-lysg. By b-l fg, a-Ll fg. Then go f is defined on a. |

As we saw above, the composition of two complete actions need not be
complete. Thus graphs need not have the same type. However the passage
to germs requires the action to be complete. In case it is not, we construct its
”completion”. Every graph of a function is replaced by Lascar strong types
over the same parameter.

Fact 9 For any two variables z and y, let LS(z,y,2',y’) be the partial type
saying that y = y' and there are y-indiscernible sequence (z; : 1 < w) and
(2} : i <w) such that z = 29,2’ = 2 and z; = 2.

Then we have (taking LS on the right sorts) :

1. LS is a (type-definable) equivalence relation on the sort of z, y.

2. Istp(a/b) = Istp(a’/b) if and only if LS(a,b,d’,b).

Definition 10 Let 7(z,y,z) be a generic action. Consider the hyperdefin-
able equivalence relation LS(yz,z,y’z’,z') from Fact 9 on the sort of yz, =.
Note the quotient sort by z = (yz,z)/LS. An element of this sort can be
viewed as a pair that we shall note f,, where f is an element in the sort of
r, and p is a Lascar strong type over f in the variables yz. Now let n(z,y, z)
be defined as :

x((y'=',x)/LS,y,z) = m(z,y,2) A LS(yz,z,y", )
So k= (f,a,b) if and only if b € f(a) and Istp(ab/f) = p.
We call 7 the completion of w. For a function f, we write f = {(ab, f)Ls :
b€ f(a)} = {fistp(arys) : b € f(a)}, that is the set of consistent completions
of f, or the set of extensions of Gr(f) to a complete Lascar strong type over
f. Note that this is a bounded hyperdefinable set.

Remark 11 As z is a bounded extension of z, all the properties of indepen-
dence and definable independence are preserved.

After the ”completion”, we can pass to germs. This procedure, called
"reduction”, is essentially the same as in the stable case. We replace each
function with the canonical base for its graph.
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Definition 12 Let 7 be a complete generic action. We can construct its
"reduction” as follows : If f,g EEFunc(rw), define f ~ g if n(f,z,y) and
7(g,z,y) have a common non-forking extension. By the usual argument
of simple theory, the transitive closure of ~ is a type-definable equivalence
relation, noted E(z,y). Putting f = fg and #(3,y,z) = F2'[n(a’,y,2) A
E(z,z')], we obtain k= 7(f,a,b) if and only if |= m(f,a,b) and f =Cb(ab/f).
We call f the germ of a function f. If 7 is not complete, f is the set of germs
of all the completions of f. That is f = {f' : f' € f}. The set of germs of
7 is Germ(m) =Func(7).

Definition 13 1. We say that n(z,y,z) and =n'(2/,y, z) are isomorphic if
there is a (hyper)definable bijection ¢ : Func(r) — Func(n’) such that
Gr(f) =Gr(¢(f)) for every f €Func(r).

2. We say that two generic actions are equivalent if their reductions are
isomorphic. We note it 7 = 7'

3. Elimination in compositions

We pass to considering compositions. In order to get a suitable set of germs,
we need a generic action # such that a germ of the composition # o # is also
a germ of 7. In stable case this is done by defining # = 7! o . For this #, it
is proved that the two middle terms can be eliminated from the composition
(r=' o) o (! om). The stable proof fails in the simple case since a non-
forking extension of a Lascar strong type is not necessarily Lascar strong.
Therefore they defined the technical notion of a generic action being strong
on the left or on the right. And they realized the required ”elimination”
under some strong assumption.

Lemma 14 Let f €Func(r), g €Func(n’), flg, and h €Germ(r' o 7).
Suppose furthermore that abc =Gr(f)(z,y)UGr{(g)(y, z)UGr(h)(z,z). Then
the following are equivalent :

1. h € bdd(fg) and af Ly cg.

2. h € bdd(fg) and ac-L, fg.

3. al fgh.

Proof. 1 => 3, 3 = 2, and 2 = 1 are proved in turn by forking
calculation and property of canonical base. 1

Definition 15 When abc satisfy the conditions of Lemma 14 (that is, all of
the initial assumptions as well as any of the equivalent conditions 1 ~ 3), we

say that they witness that h € .;;7-
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Lemma 16 Under the hypothesis of Lemmal4, h € g/;J\f if and only if there
are witnesses to it.

Definition 17 1. We say that a generic action 7 is connected if n(z,y, z)
is a complete type. '

2. We say that a generic action « is strong on the left(resp.on the right)
if m(z,y,z) implies that tp(zz/y)(resp. tp(zy/z)) is a Lascar strong
type.

3. We say that a composition 7’ o 7 is generic if/f_ci every independent
f €Func(r), g €Func(n’), and for every h € go f, h is independent
both of f and g.

Lemma 18 Consider a composition ' o w, and f € Fune(w), g € Func(n'),
h €Germ(n' o 7).

1. If 0 is invertible, and f-L g, f-Lh, then: h € m < g€ h./o'Fl,
and abc witness the first if and only if bac witness the second.

2. If ' is invertible, and fL g, h-'l g, then : h € 5;\)‘ — fe€ g-/lo\h,
and abc witness the first if and only if acb witness the second.

Proof. 1. The first statement is equivalent to a L fgh, while the second to
b-L fgh. We can prove their equivalence easily.
2. Both statements are equivalent to a1 fgh. |

We now see when a generic action and its inverse can be eliminated from a
composition.

Definition 19 1. Let m, n/, #” be generic actions, 7’ invertible, on sorts
such that the compositions 7'~' o and 7" o ". exist and generic. Then
we say that they form an elimination context.

2. Let m, n/, 7" form an elimination context. Suppose f €Germ(n’), go €
Germ(r), g €Germ(n"), ho €Germ(n'~! o 1), h; €Germ(n"” o 7).
Suppose that adb witness hy € f:T;qo, and bdc witness h;, € m.
Suppose furthermore that agoho Lss cgihy. Then abedf gogihohy form
an elimination diagram.

3. Let m, ', " form an elimination context. For independent hy €Germ
(r""Yom), hy €Germ(n" ox'), Elim(ho, h;) is the set of all the germs of
hy o ho obtained by elimination diagrams, i.e. germs of Istp(ac/hoh,)
taken from an elimination diagram abedf gogyhohi-
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Lemma 20 Let 7, ', " form an elimination context, and abedf gog;hohy be
an elimination diagram for it. Then :
, ——— A ——
1. abd witness gy € f o hgy, and dbc witness g; € hy o f~1.
2. 9o \Lgla ho L hy, and a L fgog1hoh.
3. The germs of g, 0 go and of hy o hg given by ac are/thisame.
4. Note this common germ h. Then abc witness h € hy o hy, and adc witness
h € §1 0 go.
5. h is independent of each of go, 91, ho, h1-
6. Elim{(hg, h1) C hy 0 hoNGerm(n” o 7).

Sketch of the proof.
From Lemma 18 and the genericity of #/~' o 7 and 7" o #'. These are
proved by the argument about witness and forking calculation. i

Theorem 21 Let 7, ', n" form an elimination context and suppose further-
more that 7' is connected and strong on the left.

1. For independent ho € Germ(m'~' o m), hy €Germ(n" o ') :
Elim(llo, hl) = hl o] h-o

2. The composition (1" o 7') o (x'~! o 7) is generic, and :
Germ((7" o 7)o (7' ' o m)) CGerm(n" o )

3. If we further suppose that = Val(m)AArg(7") & Val(n'), we have equality,
that is :

(ﬂ.n o ﬂ./) o (ﬂ./—l

ow) =~ w'om

Sketch of the proof. 1. We show mo CElim(hg, hy). Let h € mo, ho €
f:To\go, hy € _E:)\f’ . We re-choose their witness by Lemma 18 and the inde-
pendence theorem. And we can get an elimination diagram for h €Elim(hy, k).
2. By Lemma 20. 5, 6 and 1. above.

3. By 2. above, we show Germ((7” o 7') o (n'~! 0 7)) DGerm(n" o 7). Let
h € g 0 go where go €Func(m), g, €Func(n”) and go-L g1. After some ar-
gument, we can get an elimination diagram containing ho and h; where
h € hyohg, hg GGerm(7r"l ox) and h; €Germ(n”o = n'). |

4. Generic multi-chunk

Definition 22 We say that a generic action 7 is a generic multi — chunk if
 is reduced, Arg(r) is Lascar strong, 7 is invertible satisfying # = 7~', and
the composition 7 o 7 is generic satisfying 72 ~ 7.

69



So Theorem 21 gives :

Corollary 23 Let m be an invertible generic action, and let n' be possibly
another invertible generic action which is connected and strong on the left,
such that Arg(n) and Val(m) are Lascar strong, and 7' on' = =l o7 ~
n~lom are all generic compositions (so Arg(n') =Arg(r)). Note # = n-lor.
Then w, 7', 7! form an elimination context, and 7 is a generic multi-chunk.
If ™ is non-trivial, so is .

Proof. By Theorem 21 and Proposition 7, we can see by letting {r, n’, 7~}
be {r, ', n”} of Theorem 21. i

Usually we would have 7’ = .

We will show that a generic multi-chunk almost satisfies the hypothesis
of the Weil-Hrushovski group chunk theorem, except that multiplication is
many-valued. They call such a structure (P, *) a generic polygroup chunk.

Theorem 24 Let 7 be a generic multi-chunk. Let P =Germ(w). Then the
composition 1 =~ 7 induces a hyperdefinable function x : P x P — P,
which is defined up to a bounded non-zero number of possible values. This
function satisfies the hypothesis of the generalized Hrushovski-Weil theorem
[4]. in the following sense :

1. Generic independence : If f-L g andh € fxg, then f, g, h are pairwise
independent.

2. Generic associativity : Suppose f, g, h are independent. Then f * (g *
h)=(f * g)* h (as sets). '

3. Generic surjectivity : For any independent f, g, there is h such that
g € f x h. Moreover, forany f,g,h : g€ f x h <> he fl xgq,

Sketch of the proof. Let f * g = ;)\f.

1. Clear by definition.

2. Both sides of inclusion are proved by Lemma 14 and the independence
theorem. It is too long to contain here.

3. Easily checked by Proposition 8 and Lemma 13. i

5. Quadrangle

Up to this time, we defined a generic function generally, and deduced a
generic polygroup chunk. In stable case, a generic group chunk is obtained
from group configuration, i.e. from some quadrangle structure. In simple
theory, we can also start the argument from a quadrangle structure.
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Definition 25 Let e be some hyperimaginary parameter, and (f, g, », a, b, c)
a tuple whose elements we put on a diagram as follows :

f a b

h

Then (f, g, h,a,b,c) is a algebraic quadrangle over e if it satisfies the fol-
lowing conditions : ‘
1. Every non-collinear triplet is e—independent.
2.bdd(fge) = bdd(fhe) = bdd(ghe) (i.e.any two of f, g, h are e—interbounded
over the third).
3. a,bare fe—interbounded, b, c are ge—interbounded, a, ¢ are he—interbounded.
4. f is e—interbounded with Cb(ab/ fe)(=Cb(lstp(ab/ fe)), g is e—interbounded
with Cb(be/ge), h is e—interbounded with Cb(ac/he).

Fact 26 If (f,g,h,a,b,c) is an algebraic quadrangle over e as above, and
(f',g',h,d' b, ) is such that each primed element is interbounded over e
with the corresponding unprimed element, then (f',¢',h',d',b',c') is also an
algebraic quadrangle over e. In such a case we say that these quadrangles are
algebraically equivalent over e.

We obtain more or less immediately :

Theorem 27 Let (f,g,h,a,b,c) be an algebraic quadrangle over e. Let a' =
dcl(fabe)Nbdd(ae) and b’ = dcl(fabe)Nbdd(be). Then (f,g,h,d',b,c) is al-
gebraically equivalent over e to the original quadrangle. Take m = Istp(fa't'/e).
Then, T is strong on both sides, and it satisfies the assumptions of Corollary23,
with m = 7', yielding a generic multi-chunk # = 7! o 7 (over bdd(e)).
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