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A generalization of the sectional genus
and the A-genus of polarized varieties

EERKFHEE fRBH B (Yoshiaki FUKUMA)
Faculty of Science, Kochi University

1 Introduction.

Let X be a projective variety of dim X = n over the complex number field, and let
L be an ample line bundle on X. Then the pair (X, L) is called a polarized variety.
Moreover if X is smooth, then (X, L) is called a polarized manifold.

When we study polarized varieties, it is useful to use their invariants. The
following invarjants are well-known.

(1) The degree L™.
(2) The sectional geuns g(L).
(3) The A-genus A(L).

Many authors studied polarized varieties by using these invariants. In particular,
P. Ionescu classified polarized manifolds (X, L) for the case where L is very ample
and L™ < 8, and T. Fujita classified polarized manifolds with low sectional genera
and low A-genera.

In order to study polarized varieties more deeply, in [7] and [10] the author
introduced the notion of the i-th sectional geometric genus ¢i(X, L) and the i-th
A-genus A;(X, L) of (X, L) for every integer ¢ with 0 < ¢ < n. The i-th sectional
geometric genus is a generalization of the degree and the sectional genus of (X, L),
and the i-th A-genus is a generalization of the A-genus of (X, L). Namely go(X, L) =
L*, gi(X,L) = g(L), and Ay(X,L) = A(L). (See Remark 2.1 and Remark 2.2
below.) In Section 3, we give fundamental results of these invariants. In particular,
if Bs|L| = 0, then g;(X, L) is the geometric genus of the i-dimensional manifold
which is obtained by a general (n — i) members of |L| (see Theorem 3.1). Moreover
there are some relations between g;(X, L) and A;(X, L) (see Theorem 3.2 or [10]).
So we find that the i-th sectional geometric genus and the i-th A-genus are expected
to satisfy results which are analogous to results of “i-dimensional geometry”. (It has
already been known that the first sectional geometric genus and the first A-genus,

that is, the sectional genus and the A-genus reflect some properties of geometry of
curves. )
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Since the sectional genus and the A-genus have been studied deeply (see e.g.
[5]), the next step we should consider is the case where i = 2, and our main goal
at present is to construct the theory of the second sectional geometric genus and
the second A-genus of polarized varieties. Under these consideration, in Section
4, we classify (X, L) by the second sectional geometric genus and the second A-
genus for the case where L is spanned or very ample. By the above philosophy, the
second sectional geometric genus and the second A-genus are expected to satisfy
results which are analogous to theorems in the theory of projective surfaces. In
order to propose some problems, first we define the i-th sectional H-arithmetic genus
xf(X,L) of (X,L). We note that when ¢ = 2, this invariant corresponds to the
Euler-Poincaré characteristic of the structure sheaf of surfaces and x¥(X,L) =
1—-h'(Ox)+g2(X, L) (see Remark 5.1). Hence we can propose some problems which
are analogous to results about the Euler-Poincaré characteristic of the structure
sheaf of surfaces. So in Section 5, we will propose some conjectures about the
second sectional H-arithmetic genus and the second sectional geometric genus, and
we get partial results about these conjectures. Here we note that Conjecture 4 is
analogous to the Bogomolov-Miyaoka-Yau theorem.

On account of limited space, we cannot state all facts which are known at present.
For the reader who wants to know these topics, see [7), [8], [9], [10], and [11].

This is a survey of my talk of the symposium “Local invariants of families of
algebraic curves” at the RIMS (Kyoto). The author would like to thank Professor
Kazuhiro Konno for giving the opportunity to talk about this topic.

2 Definition of the i-th sectional geometric genus and the
i-th A-genus of polarized varieties.

Notation 2.1 Let X be a projective scheme of dim X = n and let L be a line
bundle on X. Then we put

n tJ
X(tL) =) " x;(X, LS
—~ !

where
g [ Dt =), 15> 0,
1, if =0.

Definition 2.1 (See Definition 2.1 in [7].) Let (X, L) be a polarized variety of
dim X = n. Then for any integer i with 0 < i < n the i-th sectional geometric genus
of (X, L) is defined by the following:

0:X, L) = (~1)(tami(X, L) = X(Ox)) + 3 (~1)" R 3(0%).

J=0

(Here we use Notation 2.1.)
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Remark 2.1 (1) If i = 0 (resp. i = 1), then g;(X, L) is equal to the degree (resp.
the sectional genus) of (X, L).

(2) If i = n, then g,(X, L) = h*(Ox) and g,(X, L) is independent of L.

(3) If i =2 and X is smooth, then by the Hirzebruch-Riemann-Roch theorem, we
get that

9(X,L) = —1+hY(Ox)+ %(Kx +(n—1)L)(Kx + (n—2)L)L"2

1 _2 n— 3 _1
— 2y B9 —92)L)L L,
+1202(X)L + 51 (2Kx + (n—2)L)L
Definition 2.2 (See [10].) Let (X, L) be a polarized variety of dim X = n. For

every integer ¢ with 0 <14 < n, the i-th A-genus of (X, L) is defined by the following
formula:

0, ifi=0,
Ai(X, L) = gz'“l(X; L) -_ A.,'__.l(X, L) .
+n—i+ DA (Ox) — KY(L), if1<i<n

Remark 2.2 (1) If i = 1, then A;(X, L) is equal to the A-genus of (X, L). (See
[5].)

(2) If i = n, then A, (X; L) = h*(Ox) — h*(L) (see [10]).

Here we define the notion of k-ladder, which is used later.

Definition 2.3 Let (X, L) be a polarized variety of dim X = n. Then L has a
k-ladder if there exists an irreducible and reduced subvariety X; of X, ; such that
X, € lLi—li for1<i K k, where X := X, Ly := L,and L; := Li-rl'X,- for1<i<k.

Notation 2.2 Let (X, L) be a polarized variety of dim X = n. Assume that L
has a k-ladder. We put X := X and Lo := L. Let X; € |L;_1| be an irreducible
and reduced member, and L; := L;_;|x, for every integer i with 1 < ¢ < k. Let
Tpq @ HP(Xgy Lg) — HP(Xgi1, Lyy1) be the natural map. If A%(L;) > 0, then we
take an element Xi;1 € |Li| and we put Lyt = Li|x,,,.

Finally we define the notion of a reduction of polarized manifolds.

Definition 2.4 (1) Let X (resp. Y) be an n-dimensional projective manifold,
and let L (resp. A) be an ample line bundle on X (resp. Y). Then (X, L)
is called a simple blowing up of (Y, A) if there exists a birational morphism
7 : X — Y such that 7 is a blowing up at a point of Y and L = n*(A) — E,
where E is the w-exceptional effective reduced divisor.
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(2) Let X (resp. Y) be an n-dimensional projective manifold, and let L (resp.
A) be an ample line bundle on X (resp. Y), Then we say that (Y, A4) is a
reduction of (X, L) if there exists a birational morphism p: X — Y such that
p is a composite of simple blowing ups and (Y, A) is not obtained by a simple
blowing up of any polarized manifold. The morphism p is called the reduction
map.

Remark 2.3 Let (X, L) be a polarized manifold and let (M, A) be a reduction of
(X,L). Let p: X — M be the reduction map.

(1) We obtain that g;(X,L) = g;(M, A) for any integer i with 1 < i < n (see
Proposition 2.6 in [7]).

(2) Assume that Bs|L| = . Then for a general member D of |L|, D and u(D) e
|A| are smooth.

(3) Au(X, L) < Ay(M,A) and Ay(X,L) = Ay(M,A) for every integer i with
2 < i < n(see [10]).

(4) If (X, L) is not obtained by a simple blowing up of another polarized manifold,
then (X, L) is a reduction of itself.

(5) A reduction of (X, L) always exists (see Chapter II, (11.11) in [5]).

3 Fundamental properties of g;(X, L) and A;(X, L) of polar-
ized manifolds.

Theorem 3.1 Let X be a projective variety of dimX = n > 2 and let L be an

ample Cartier divisor on X. Assume that h'(—sL) = 0 for every integers t and s
with0<t<n-1and1<s.

(A) If |L| has an (n — i)-ladder for an integer i with 1 < i < n, then g(X,L) =

gi(Xl? Ll) == gi(Xn—iv Ln’—i) = hi(oxn—i) 2 h’i(OXna-i—l) == ht(ox)
(B) If|L| has an (n — i)-ladder and h%(L,_;) > O for an integer i with 1 <4 < n,
then i
Ai(X,L) =Y dim Coker(r;_y ;).
=0

In particular, Ai(X, L) > Ai( X1, Ly) > -+ > Af(Xp—iy Ln_i) > 0.
(Here we use Notation 2.2. )

A sketch of the proof. (A) (See also [9].) We note that for every integer k with
0<k<n—-i-1

Xn—k~i(Xky Lk) = Xn—k-1-i(Xt+1, Lk11)- (1)
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By the assumption we obtain that

t—1

Y (LR Ox) = = Z( ~1)"h*(Ox,-.), (2)
k=0
h’z(ox) == hi(oxn—i—l) S hz(OXn-—i)' (3)

By the definition of the i-th sectional geometric genus of (X, L), and by (1), (2),
and (3), we obtain the assertion.

(B) (See also [10].) If ¢ = n, then A,(X, L) = h*(Ox) — h"(L) by Remark 2.2 (2).
By the exact sequence

H (L) = HY(L,) —» HYOx) — H™(L) — 0,

we get that A, (X, L) = dim Coker(r,_; 0)-
If 1 <i<n-—1, then by [10], we obtain that

Ai(X,L) = (—1)i—lixn_,-(x,L)+(n~i+1 )H(Z 1)*h*(Ox))

k=0
H( (DMLY,
k=0

Here we note that

i—1
(_l)i—l Z Xn-—j(X1 L) = l_l Z Xi— _1 —'u )
3=0

= (1" 1(X( Xn—is Ln—i) = x(Ox,_.))-
By (2) and the following exact sequence
0 — H%Ox;)— H(L;) — H(Lj)
- IJ1 (OX].) hand
hand Hi_l(OXj) — Hi—‘l(LJ’) —_ Hi—l(Lj_i_l).

we get that
i—1 i—1
(n— i+ (=1 (S (~DFRHOx)) + (~1)(S(~1)HR(L))
k=0 k=0
= (DD (O, ) + (=S (1ML )
k=0 k=0

n—i—1

+ Y dim Coker(r;_y ;).

=0
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Since

t—1

(=D (X(Xnis La—s) = x(Ox,,.)) + (=17 O _(-1)*h¥(Ox,.,)

(Z khk

= hz((/)xn_i) ht(Ln—i)
= dim Coker(7;_1n—i),

we obtain the assertion. O

If X is smooth and L is ample and spanned, then L has an (n — 1)-ladder,
h%(Ln-1) > 0, and h*{—sL) = 0 for every integers t and s with 0 < ¢t < n — 1 and
1 < s. Hence by using Theorem 3.1, we get the following.

Corollary 3.1 Let (X,L) be a polarized manifold of dim X = n. Assume that
dim Bs|L| = 0. Then g;(X, L) > h*(Ox) and Ad(X, L) > 0 for every integer i with
1<i:<n.

By the above observation, we propose the following problem.

Problem 3.1 Let (X, L) be a polarized manifold of dim X = n.

(1) Does an inequality gi(X, L) > h*(Ox) hold for every integer i with 0 <i < n
?

(2) Does an inequality A;(X, L) > 0 hold for every integer i with 0 <i<n ?
Here we note the following.
(a) If ¢ = 0, then (1) is true.

(b) There exists an example of (X, L) with A;(X, L) < 0 in general. In detail, see
[10].

Theorem 3.2 Let (X, L) be a polarized manifold of dim X = n, and let i be an
integer. Assume that Bs|L| =

(1) If 1 £i < n, then Ai(X, L) = 0 if and only if g;(X, L) = 0.
(2) If Ai(X, L) = 0 for an integer i with 1 <i <n—1, then Aj;1(X,L) =0.
(3) If Au(X, L) =1 for an integer i with 2 <i < n, then g;(X,L) = 1.
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A sketch of the proof. (In detail, see [10].) (1) Assume that g;(X, L) = 0. Then by
Theorem 3.1 (A) we have hi(Oxj) = 0 for every integer 7 with 0 < j < n—14. Hence
dim Coker(r;_1,;) = 0 for every j with 0 < j < n — i. Therefore A;(X, L) = 0.
Assume that A;(X,L) = 0. Then A;(X;,L;) = O for every integer j with
1 <j £ n—iby Theorem 3.1 (B). In particular, H*"}(L,,_;) — H* Y(Lp_iy1) is
surjective. Hence h*(Ox,_,) = h*(Ln—;). Then we can show that h*(Ox,_,) = 0.
Therefore g;(X, L) = 0.
(2) Assume that A;(X,L) = 0. Then A;(X,—;, Ly—;) = 0 by Theorem 3.1 (B). In
particular h%(Kx, ,)—h%(Kx,_,—Ln_;) = 0 by Remark 2.2 (2) and the Serre duality.
Since Bs|Ln_i| = 0, we get that h%(Kx, ) = h®(Kx, , — Ln_;) = 0. Therefore
h°(Kx,_,_, + Ln—i—1) = 0. Since Bs|L,—;_;| = 0, we get that h°(Kx__, ,) = 0.
Hence Ay1(Xn-i—1, Ln—i—1) = 0 and A" (Ox, _,_,) = 0. Here we note that

0= hH—i (Oxn—i-l) 2 h‘i+1(oxﬂ~—i—2) == hi+1(ox)'

Hence by Theorem 3.1 (B)

Ai+1(X1 L) == Ai+1 (Xn—i—l, Ln—i—l) =0.

(3) If1 = Ay(X, L) > gi(X, L), then g;(X, L) = 0 and by (1) we get that A;(X, L) =
0. But this is impossible, Therefore we find that g;(X, L) > Ay(X, L). If f%(Kx,_,—
Ln_;) # 0, then we can prove that A;(X,L) > ¢ > 2 and this is a contradiction.
Hence h®(Kx, , — L,_;) = 0. By Theorem 3.1 (B), we get that

A(X, L) > Af(Xn-i,Ln)
h(Ox,_,) — h*(Ln-)
= h(Ox,_,)
= gi(X’ L)

Therefore g;(X, L) = Ay(X, L) = 1.
These complete the proof of Theorem 3.2. O
Before we study behavior of the i-th sectional geometric genus and the i-th A-

genus of polarized manifolds under deformation, we define the notion of deformation
family.

Definition 3.1 If f : X — T is a proper surjective smooth morphism onto a con-
nected but possibly non-compact manifold T" together with an f-ample line bundle
L on X such that f~1(0) = X and £L|;-1() = L, then we say that (f : X — T, L) is
a deformation family of (X, L).

Proposition 3.1 Let (X, L) be a polarized manifold of dimX = n. For every
integer 1 with 0 < i < n, g;(X, L) is a deformation invariant.
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Proof. Let s be an indeterminate. Then x(sL) is a deformation invariant (see
Chapter I1I, §7 in [4] or Chapter III 12.9 in [12]). Hence xn.—i(X, L) is a deformation
invariant. On the other hand h*(Ox) is also a deformation invariant for any integer
k (see Part I, 10.5 in [3]). Therefore by definition we obtain that for every integer ¢
with 0 € i < n, g;(X, L) is a deformation invariant. O

Proposition 3.2 Let (f : X — T, L) be a deformation family of (X, L). For every
integer i with 0 £ ¢ < n, Ay( Xy, L) 1s a lower semicontinuous function ont € T.

Proof. As in the proof of Theorem 3.1 (B), we obtain that

i—1 i-1

A(Xe L) = (=171 xni(Xe L) + (n— i + 1)(=1)1 (3 (- 1)Fr5(Ox,))

a

i—1
(1)) (—1)FR*(Ly)).

k=0

We note that xx(X:, L) and h*(Ox,) are deformation invariants. On the other

hand (—1)?3%_((~1)’h?(L;) is an upper semi-continuous function on ¢t € T'. (For

a proof, see, e.g., Part I, 10.4 in [3].) Hence (—1)(3 Lo (=1)*h*(L,)) is a lower

semi-continuous function on t € T. Therefore we get the assertion. O

4 Classification of polarized manifolds by the second sec-
tional geometric genus and the second A-genus.

Theorem 4.1 Let (X, L) be a polarized manifold of dim X = n > 3. Assume that
Bs|L| = 0. Then go(X,L) = h*(Ox) if and only if (X, L) is one of the following
types.

(1) (P, Opa(1)).

(2) (@, Ogn(1)).

(3) A scroll over a smooth curve.

(4) Kx ~ —(n— 1)L, that is, (X, L) is a Del Pezzo manifold.
(5) A quadric fibration over a smooth curve.

(6) A scroll over a smooth surface S.

(7) Let (M, A) be a reduction of (X, L).
(7-2) n =3, (M, A) = (@3, Og:(2)).
(7-4) n = 3, M 1is a P%-bundle over a smooth curve C with (F,Alr) =
(P2, Op2(2)) for any fiber F of it.

1
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A sketch of the proof. (In detail, see Theorem 3.3, Corollary 3.4, and Remark 3.4.1
in {7].) Here we note that

92(X1 L) = 92(),(11—31 Ln—B)
= hO(KXn—S + Lﬂ—3) - hO(KXn-S) + h2(OXn—3)
= ho(Kxn_3 + Ln_3) — h°(Kx,_,) + h*(Ox).

So if g2(X,L) = h*(Ox), then h°(Kx, , + Ln,-3) = 0 by Bs|L,_3] = 0. Hence
h°(Kx + (n—2)L) = 0. Therefore by a Sommese’s result (Proposition 13.2.4 in [1])
and the adjunction theory, we get the assertion. O

Theorem 4.2 Let (X, L) be a polarized manifold of dim X = n > 3. Assume that
L is very ample and go(X, L) = h*(Ox) + 1. Let (M, A) be a reduction of (X, L).
Then (M, A) is one of the following.

(1) (M, A) is a Mukai manifold.

(2) (M, A) is a Del Pezzo fibration over a smooth curve C. Let f : M — C
be its morphism. Then there exists an ample line bundle H on C such that
Ky +(n—2)A= f*(H). In this case (¢g(C),deg H) = (1,1).

(3) (M, A) is a quadric fibration over a smooth surface S. Let f : M — S be its
morphism. Then there exists an ample line bundle H on S such that Ky +
(n—2)A= f*(Ks+ H). In this case (S, H) is one of the following types:
(8.1) S is a Pl-bundle, p : S — B, over a smooth elliptic curve B, and
H = 3C, — F, where Cy (resp. F) denotes the minimal section of S with
C% =1 (resp. a fiber of p).

(3.2) S is an abelian surface, H? = 2, and h°(H) = 1.
(3.3) S is a hyperelliptic surface, H? = 2, and h%(H) = 1.

(4) M,A) = (X,L), n = dimX > 4, and (X,L) is a scroll over a normal
projective variety Y of dimY = 3. Ifdim X > 5, then Y is smooth and there
erists an ample vector bundle £ of rank n — 2 on Y such that X = Py(£)
and L = H(E), where H(E) is the tautological line bundle on X . In this case
(Y, c1(€)) 1is one of the following.

(4.1) (Y,c1(E)) is a Mukai manifold. In this case, (Y, E) is ane of the following:

(4.1.1) (V,€) = (P?, Ope(1)®).

(4.1.2) (¥, &) = (P?, Ops(2) © Ops(1)®?).

(4.1.3) (Y, &) = (P2, Tps), where Tps is the tangent bundle of P°.
(4.1.4) (V,€) = (Q°, Oge(1)®?).

(4.2) (Y,c1(E)) is a Del Pezzo fibration over a smooth curve such that (Y, ¢,(€))
is the type (2) above. In this case dim X = 5.
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A sketch of the proof. (In detail, see Theorem 3.6 in [7].) By the same argument as
the proof of Theorem 4.1, we get that h°(Kx, ,) = 0 and h%(Kx,_, + Ln_3) = 1.
By using a Beltrametti-Sommese’s result (Remark 3.4 in [2]), we find that the nef
value of (M, A) is greater than or equal to n — 2. By the adjunction theory, we can
pick up possible types of (X, L). By calculating g»(X, L) in each case, we get the
assertion. O

Theorem 4.3 Let (X, L) be a polarized manifold of dim X = n > 3. Assume that
Bs|L| = 0. Then Ag(X, L) =0 if and only if go(X, L) = 0.

Proof. By Theorem 3.2 (1) we get the assertion. O

Theorem 4.4 Let (X, L) be a polarized manifold of dim X =n > 3 and let (M, A)
be a reduction of (X,L). Assume that L is very ample. If Ay(X,L) = 1, then
(X, L) is one of the types (1), (2), (3.1), (3.3), and (4) in Theorem 4.2. Furthermore

if (X, L) is one of the types (1), (2), (3. ) (3.3), (4.1.1), (4.1.2), (4.1.3), (4.1.4), and
(4.2) in Theorem 4.2, then Ao(X, L) =

A sketch of the proof. (In detail, see [10].) By Theorem 3.2 (3), we get that
Ay(X, L) = 1 implies go(X, L) = 1. Hence h*(Ox) < go(X, L) < h3(Ox) + 1.

If g2(X,L) = h*(Ox), then (X, L) is a scroll over a smooth surface S with
h?(Os) = 1. But by calculating Aq(X, L), we find that this case is impossible.

If g2(X, L) = h?(Ox) + 1, then we can pick up possible types of (X, L) by using
Theorem 4.2. By calculating Ay(X, L) in each case, we get the assertion. O

9 Problems of polarized manifolds which are analogous to
theorems of projective surfaces.

First we define the following.

Definition 5.1 (See [11].) Let (X, L) be a polarized variety of dim X = n, and let
i be an integer with 0 < ¢ < n. Then the i-th sectional H-arithmetic genus x!(X, L)
of (X, L) is defined by the following.

X{{(Xa L) = Xn~i(X1 L)

Remark 5.1 (1) x(X,L) = 1-h(Ox)+-- -+ (=1)""1WHOx) +(-1)'g:( X, L)
for every integer i with 1 < i < n.

(2) If X is smooth and leLI = @, then xF(X,L) = x(Ox,_,). (Here we use
Notation 2.2.) Namely x(X, L) is the arithmetic genus of X,_; in the sense
of Hirzebruch ([13}).

(3) Let (M, A) be a reduction of (X, L). By Remark 2.3 (1) and Remark 5.1 (1),
we obtain that x(X, L) = x¥(M, A) for every integer i with 1 < i < n.
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(4) 1 called this invariant the i-th sectional Todd genus Td;(X, L) before. But
from now on, I call this invariant like the above.

By Theorem 3.1 and Remark 5.1 (2), we can expect that the second sectional
geometric genus go(X, L) and the second sectional H-arithmetic genus x&' (X, L)
reflect the “2-dimensional geometry”. So it is natural to consider the following.
“Can we get results which are analogous to theorems related to the geometric genus
and the Euler-Poincaré characteristic of the structure sheaf of projective surfaces 7”

In this section, we consider this.

First we consider the case where Bs|L| = ) and we use Notation 2.2.

(A) In this case by Theorem 3.1 (resp. the Lefschetz theorem, Remark 5.1 (2),
and the adjunction formula) we get that go(X, L) = h?(Ox,_,) (resp. h}(Ox) =
h(Ox,._,), x§(X,L) = x(Ox,_,), and (Kx + (n—2)L)2L""? = K% ).

(B) Moreover if (X, L) is not a scroll over a smooth surface, then there is the
following correspondence between &(X,_s) and k(Kx + (n — 2)L) (see [11]).

Value of k(X,_2) < Value of k(Kx + (n—2)L)

—00 =3 —00
0 o 0
1 & 1
2 =3 > 2

(We note that the direction < in (x) and the direction => in (**) need the
assumption that (X, L) is not a scroll over a smooth surface.)
(C) Let (X, L) be a polarized manifold which is not a scroll over a smooth surface,
let (M, A) be a reduction of (X,L), and we put M,_o := u(X,_2), where p :
X — M is the reduction map. Then M,_; is smooth and Ky, , = (Ky + (n —
2)A)|M,_,. Assume that k(X,_2) > 0. (We note that this condition is equivalent to
the condition that x(Kx + (n — 2)L) > 0 by above.) Then k(K + (n — 2)A) > 0.
Hence by the adjunction theory Kp + (n — 2)A is nef. In particular, Ky, _, is nef.
Hence plx,_, : Xn—2 — M, _5 is the minimalization of X,,_s.

From (A), (B), and (C), we infer that there are the following correspondence
between invariants of smooth projective surfaces S and invariants of (X, L).

Invariants of S & Invariants of (X, L)
hz(OS) A 92(X7 L)
hY{Os) & ht(Ox)
x0) XE(X, D)

K2 & (Kx+(n—2)L)2L™?
K% &' (Ky+(n—2)A)2A™2
k(S) =k & K(Kx+(n—-2)L)=k
Kk(S) = & k(Kx+(n—-2)L)>2

(In (), we assume that k(Kx + (n — 2)L) > 0 and let S (resp. (M, A)) be the
minimalization of S (resp. a reduction of (X,L)). In (%) k is an integer with
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k = —00,0, or 1, and we assume that (X, L) is not a scroll over a smooth surface.
In (* x *) we assume that (X, L) is not a scroll over a smooth surface. )

By considering these correspondences, we can propose some problems which are
analogous to the case of smooth projective surfaces. For example there are the
following five theorems of projective surfaces.

Theorem 1 (Castelnuovo’s theorem) Let S be a smooth projective surface. As-
sume that k(S) > 0 (resp. k(S) =2). Then x(Og) > 0 (resp. x(Og) > 0).

Theorem 2 (Noether’s inequality) Let S be a smooth projective surface of gen-
eral type and let S be the minimal model of S. Then K2 > 2pg(S) 4.

Theorem 3 (Debarre’s mequality) Let S be a smooth projective surface of gen-
eral type with q(S) > 0, and let S be the minimal model of S. Then K2 > 2pg(S)

Theorem 4 (Bogomolov-Miyaoka-Yau’s inequality) Let S be a smooth pro-
Jective surface of general type. Then 9x(Os) > K?2.

Theorem 5 (Inequality of Castelnuovo-Beauville) Let S be a smooth projec-
twe surface of general type. Then py(S) > 2¢(S) — 4 (that is, x(Og) > ¢(S) — 3

)-

By using the above correspondences, we can give the following conjedctures. We
note that for ¥ =1,...,5, Conjecture k corresponds Theorem & above.

Conjecture 1 Let (X, L) be a polarized manifold of dim X = n > 3. Assume that
K(Kx +(n—2)L) > 0 (resp. > 2). Then x¥(X,L) >0 (resp. > 0).

Conjecture 2 Let (X, L) be a polarized manifold of dim X = n > 3. Assume that
K(Kx + (n—2)L) > 2. Let (M, A) be a reduction of (X,L). Then (Ku + (n —
2)A)2A"% > 2g,(M, A) -

Conjecture 3 Let (X, L) be a polarized manifold of dim X = n > 3. Assume that

K(Kx +(n—2)L) > 2 and ¢(X) > 0. Let (M, A) be a reduction of (X,L). Then
(Ky + (n— 2)A)2A"‘2 > 2g.(M, A).

Conjecture 4 Let (X, L) be a polarized manifold of dim X = n > 3. Assume that
K(Kx +(n—~2)L) > 2. Then 9xJ (X, L) > (Kx + (n — 2)L)2L*2.

Conjecture 5 Let (X, L) be a polarized manifold of dim X = n > 3. Assume that
K(Kx+(n—2)L) > 2. Then go(X, L) > 2q(X) — 4 (that is, x5 (X, L) > ¢(X) - 3).

For Conjecture 1 we get the following result.

Theorem 5.1 Let (X, L) be a polarized manifold of dim X = n > 4. Assume that
k(X) > 0. Then x¥(X,L) > 0.
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For the proof, see Corollary 3.5.2 in [8] O.

Here we note that in my preprint [11], we study Conjecture 1 and Conjecture
4. Furthermore we propose more stronger conjecture than Conjecture 4. See my
preprint [11] in detail.

Next we consider the following situation. Let (X, L) be a polarized manifold and
let f: X — C be a fiber space over a smooth projective curve C. Then we consider
a polarized version of the following theorems.

Theorem 6 (Beauville’s inequality) Let S be a smooth projective surface and
let f:S — C be a fiber space over a smooth projective curve C. Then x(Os) >
(9(F) — 1)(g(C) — 1), where F is a general fiber of f.

Theorem 7 (Arakelov’s inequality) Let S be a smooth projective surface and let
J 18— C be a fiber space over a smooth projective curve C. Let S' be a relatively
minimal model of S. Assume that g(F) > 2, where F is a generul fiber of f. Then
K% > 8(g(F) - 1)(9(C) - 1).

First we prove a polarized version of Theorem 7.

Theorem 5.2 Let (X,L) be a polarized manifold of dimX = n > 3 and let f :
X — C be a fiber space over a smooth projective curve C. Let (M, A) be a reduction
of (X, L). (Then there exists a fiber space h : M — C such that f = hox, where
m: X — M is the reduction map.) Assume that g(Ar,) > 2 and (Fy, Ap,) is not a
scroll over a smooth curve, where Fj, is a general fiber of h. Then

(Kum + (n—2)A)?A™? > 8(g(Ar,) — 1)(9(C) — 1).
Proof. First we calculate (Kj + (n — 2)A4)24"2,

(Kp + (n—2)A)2A™2
= (Kmyc + (n — 2)A) (K + (n — 2)A)A™2
+(29(C) = 2)(Kr, + (n— 2)Ap, ) A
= (Kumjc + (n = 2)A)’ A" +2(29(C) - 2)(KF, + (n — 2)Ap,) A%
= (Kmjc + (n—2)A)? A" + 2(29(C) — 2)(29(AR,) — 2), (4)

where Fj, is a general fiber of A.

Since g(Ap,) > 2 and (Fj, Ag, ) is not a scroll over a smooth curve, by Theorem
1.1.1, Theorem 1.1.2, and Theorem 1.1.3 in [6], we get that K¢+ (n— 2)A is nef.
Therefore (Kp/c + (n — 2)A)?A™2 > 0. So we get the assertion by (4). O

The following example shows that the assumption that (F}, Ar,) is not a scroll
over a smooth curve is necessary.

Example 5.1 Let F and C are smooth projective curves with g(F) > 2 and we
put S:= F x C. Let 7 : § — C be the second projection. Let £ be an ample vector
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bundle on S of rank n — 1. We put X :=Pg(€), L := H(E), and f := 7 o p, where
H(E) is the tautological line bundle on X and p : X — S be the projection. Let
F be a general fiber of f. Then (F, Lg,) is a scroll over F, 9(Lr;) > 2, (X, L) is
a reduction of itself, K2 = 8(g(F) — 1)(g(C’) —1) = 8(g (Lpf) - 1)(g(C) —~ 1), and
(Kx +(n—2)L )2Ln—2 =K% — o(€) < K.

Next we give a conjecture which is a polarized version of Theorem 6.
Conjecture 6 Let (X, L) be a polarized manifold of dim X = n > 3 and let f :

X — C be a fiber space over a smooth projective curve C. Then x¥(X,L) >
(9(L|r) — 1)(g(C) — 1), where F 1is a general fiber of f.

For Conjecture 6, we get the following result.

Theorem 5.3 Let (X, L) be a polarized manifold of dim X = n > 4. Assume that

k(X) > 0 and there ezists a fiber space f : X — C over a smooth curve C. Let F
be a general fiber of f. Then

(X L) 2 3(o(Llr) — 1)(6(0) — 1)+ TR

Proof. Let (M, A) be a reduction of (X, L). Then there exists a fiber space h : M —

C such that f = hom, where 7 : X — M is the reduction map. Here we note the
following.

Proposition 5.1 Let X be a smooth projective variety of dim X = n > 3 such that
X is not uniruled. Let L be an ample line bundle on X. Then

(X)L 2> — (Z) L™ —(n - 1) KxL .

For the proof, see Proposition 3.4 in [8]. O
By Remark 2.1 (3), Remark 5.1 (3), and Proposition 5.1, we get that

X3 (X, L) = x¥(M,A)
1

= l(KM + (n— 1)A)(Kpm + (n —2)A)A™ 2% 4+ 1—2-c2(M)A"‘2
-3

422 - (Ku + (n—2)4) 4™

Tz-KM(KM = DMA? 4 S0 - 1)(F - 2)A”

v

1 1 _
= 12KM/C(KM + (77, - 2)A)An_2 Eh*(KC)(KM + (n — 2)A)An 2
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Since x(X) > 0, we obtain that Ky A™! > 0, Ky + (n — 2)A is nef by the
adjunction theory, and h*(Kf;’/nC) # 0 for sufficiently large m. Therefore h,(K ?}'/"C)
is semipositive by a Kawamata’s theorem [14]. Hence Kf}'}‘c is pseudo-effective by
Remark 1.3.2 in [6]. Therefore Kpr/q(Ku + (n— 2)A)A™2 > 0. So we get that

(X,L) = xE(M,4)

‘1‘1‘2"KM/C(KM + (TL - 2)A)An—2 + %ih*(KC)(KM + (Tl - 2)A)An—2

rsn-1)(G - 2)A"+ " 2K+ (-2 A A

55(20(C) — (K, + (0~ 2) Al (Aln)"* + 5(n — (5 ~ 2)4"
-3

12
+ 222K+ (n - 2) ) A

2 _
> 1(6(C) - 1)(g(Alg) — 1) + TS

3
where Fj, is a general fiber of h.

On the other hand, since A™ > L™ and g(L|r) = g(Alr,), we get the assertion.
O

2

Vv

A",
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