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D.C. Optimization Methods for Solving
Minimum Maximal Network Flow Problem

Le Dung Muu’
(Hanoi Institute of Mathematics, Vietnam)

室蘭工業大学・情報工学科 施 建明\dagger (Jianming SHI)
(Muroran Institute of Technology, Japan)

Abstract

We consider the minimum maximal flow problem, i.e., minimizing the flow value
among maximal flow, which is an $N\mathcal{P}$-hard problem. After formulating the problem,
we introduce some formulations of the problem and one of them is a minimization
of a concave function over a convex set. The problem can also be cast into a $\mathrm{d}.\mathrm{c}$ .
programming. We propose a DCA algorithm for solving the problem.
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1 Introduction
The field of network flows has a rich and long history, tracing its roots back to the
work of Gustav Kirchof who first systematically analyzed electrical circuits and other
early pioneers of electrical engineering and mechanics. Such early work established the
foundation of the key ideas of network flow theory. The key task of this field is to answer
such questions as: which way to use a network is most cost-effective? Maximum $\mathrm{I}\mathrm{I}1$ flow
problem and minimum cost flow problem are two typical problems of them. However,
from the point of view of practical cases, we have another kind of problems which are
inherently different from the typical ones. For instance, Figure 1 portrays a network with
edge-flow-capacity 1 (unit) on all edges, where node $s$ is the source and node $t$ is the sink.
The case (a) of the figure illustrates the maximum flow of the network, that is, the flow
on all edges is 1 except the edge $x_{3}$ , whose flow is 0. On the other hand, if the flow on
$x_{3}$ is fixed at 1 and we cannot reduce it by some reason $\mathrm{s}$ such as emergency, then the
network cannot be exploited at the most economical situation. In the case (a), we can
send 2 (unit) of flow between nodes $s$ and $t$ . But in the case (b) where the flow on $x_{3}$

is fixed at 1, the possible flow value we can send between $s$ and $t$ is 1 (unit). The flow
value we can send between $s$ and $t$ reduces from 2 (case (a)) to 1 (case (b)) due to the
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Figure 1: Minimum maximal flow problem.

fact that the flow value of $x_{3}$ is not controllable. It means that the maximum flow value
is not attainable if the users on the network are disobedient.

From the point of view of modeling, the two cases are essentially different though they
bear some resemblance. Assuming that the flow is controllable, the case (a) aims at an
optimal value of flow. The case (b) also searches for an optimal value of flow, without
the controllability of a network flow. The standard network-flow with the controllability
has been well studied for several decades. Without the controllablitily, many problems in
network-flow, e.g., the maximum flow problem, become more difficulty. Compared to the
standard network-flow theory, uncontrollable network-flow theory is a new field, hence is
still in its infancy.

The natural question in this new field is: given a network $\mathrm{V}$ , how to calculate the
attainable maximum-value of flow of $N$ when the flow is not controllable. To answer
the question, in this paper we consider minimum maximal flow (MMF) problem which
finds out the minimum-value among the maximal flows of the network $N$ . Iri [2] gave
the definition of uncontrollable flow ( $u$-fiow) and presented fundamental problems related
to $\mathrm{u}$ -flow. Although the concept of $\mathrm{u}$ -flow is quite different from maximal flow and their
relationship is not known yet so much, the optimal value of minimum maximal $\mathrm{u}$ flow of

$\Lambda^{r}$ is equal to the optimal value of $\mathrm{M}\mathrm{M}\mathrm{F}$ under some assumption. In Iri’s profound essay,
several fundamental theorems and new research topics are described, but no algorithms
for the corresponding problems are proposed. To the authors’ knowledge, no algorithms
for $\mathrm{M}\mathrm{M}\mathrm{F}$ were known until Shi-Yamamoto [6]. As pointed out in [8], Shi-Yamamoto’s
algorithm is not efficient enough. After that, some algorithms for solving the problem
were proposed in such as ShigenO-Takahashi-Yamamoto [7] and others. Since the theory
dealing with the network-flow problems without assuming the amenability of flows is still
in its infancy, in this paper we focus on the development of algorithm for $\mathrm{M}\mathrm{M}\mathrm{F}$ in virtue
of $\mathrm{d}.\mathrm{c}$ . optimization.

In next section 2, we give the problem mathematically and its equivalent formulations.
In section 3, we discuss some related properties of $\mathrm{d}.\mathrm{c}$ . programming and $\mathrm{d}.\mathrm{c}$ . algorithm.
Section 4 gives solution methods and a branch-and-bound algorithm that is based on local
search technique for $\mathrm{d}.\mathrm{c}$ . algorithm. Finally, a brief concluding remark is give in section 5.
Unfortunately, at this stage no any numerical experiment can be reported in this paper.

2 Equivalent Formulations

Consider a directed network $N(V, E, s,t, c)$ , where $V$ is the set of $m+2$ nodes, $E$ is the
set of $n$ arcs, $s$ is the single source node, $t$ is the single sink node, and $c$ is the vector of
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arc capacities. Let $X$ denote the set of feasible flows, i.e.,

$X:=\{x|x\in R^{n}, Ax=0,0\leq x\leq c\}$ ,

where the matrix $A$ stands for a node arc incident relationship in the network. Obviously,
$X$ is a compact convex set. A vector $z\in X$ is said to be maximal flow if there does not
exists $x\in X$ such that $x\geq z$ and $x\neq z.$ Let denote by $f$ the flow value function. Usually
$f$ is assumed to be linear on $X$ . For instance, it usually defined by

$f(x)= \sum_{+i\in\triangle(s)}x_{i}-$
$\sum$ $x_{i}$ ,

z@b$-(s)$

where $\Delta^{+}(s)$ and $\Delta^{-}(s)$ are the sets of arcs which leaves and enters the source node $s$ ,
respectively. Then, $f$ is a linear function. Let $d\in R^{n}$ with

$d_{i}=\{$

1if $i\in\triangle^{+}(s)$ ,
-1 if $i\in\Delta^{-}(s))$

0otherwise.
(2.1)

We see that $f(x)=dx.$
Throughout this paper $R^{k}$ denotes the set of $k$-dimensional real column vectors, $R_{+}^{k}=$

$\{x|x\in R^{k}; x\geq 0\}$ and $R_{++}^{k}=\{x|x\in R^{k}, x>0\}$ . $R_{k}$ denotes the set of k-dimensional
real row vectors, and $R_{k}^{+}$ and $R_{k}^{++}$ are defined in the similar way. We use $e$ to denote
both a row vector and a column vector of ones, and $e_{i}$ to denote the ith unit row vector
of an appropriate dimension. For a set $S$ , $V(S)$ is the set of extreme points of $S$ .

Let denote by $X_{M}$ be the set of all maximal flows, i.e.,

$X_{M}:=$ { $z\in X|$ there does not exist $x\in X$ such that $x\geq z$ and $x\neq z$ }.

The problem to be considered is given as

(P) $\min\{dx|x\in X_{M}\}$ . (2.2)

Denote $X_{E}$ the efficient set of the vector optimization problem
vmax $x$ subject to $x\in X.$

Then (P) is equivalent to the problem

$\min\{dx|x\in X_{E}\}$ . (2.3)

2.1 Primal Formulation

We define a function $r$ as

$r(x):= \max\{e(y-x)|y\geq x, y \in X\}$ . (2.1)

Clearly, $r(x)\geq 0$ for all $x\in X.$ It is easy to see that $r$ is a concave function on $X\mathrm{t}$ In
fact, $\forall\beta\in(0,1)$ and $x’$ , $x’\in X$ we have

$\beta r(x’)+(1-\beta)r(x’)$

$=$ $\beta\max\{ e(y-x’) |y\geq x’, y\in X\}+(1-\beta)\max\{e(y-x’)|y\geq x’, y\in X\}$

$=$ $\beta e(y_{r(x’)}-x’)+(1-,)e(y_{r(x’)}-x")$

$=$ $e(\beta y’+(1-\beta)y’-(\beta x’+(1-\beta)x’))$

$\leq$ $\max$ $\{ e(y-(\beta x’+(1-\beta)x’’))|y\geq\beta x’+(1- \mathrm{p})\mathrm{x}", y\in X\}$

$=$ $r(\beta x’+(1-\beta)x’)$ ,
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where $y_{r(x)} \in\arg\max\{ e(y-x) |y\geq x, y\in X\}$ . Moreover, $r(x)$ is piecewise-linear on $X$ .
In fact, adding a slack $z$ such that

$(\begin{array}{lll}A 0 0I I 0I 0 -I\end{array})(\begin{array}{l}yz\end{array})=(\begin{array}{l}0cx\end{array})$ , $z\in R_{+}^{2n},$ $\Leftrightarrow Ay=0$ , $x\leq y\leq c.$

Then for a given $x\in R_{+}^{n}$ , $r(x)$ is a solution of the following linear programming:

$| \max_{s.t}$. $ey-exy\geq 0,z\geq(\begin{array}{lll}A 0 0E E 0E 0 -E\end{array})0,$
$(\begin{array}{l}yz\end{array})=(\begin{array}{l}0cx\end{array})$ . (2.5)

where $E$ is an $(n\cross n)$ unit matrix. As $r(x)$ is a solution of a linear maximization, we
assume that

$\mathrm{r}(\mathrm{x})=c_{B}B^{-1}$ $(\begin{array}{l}0cx\end{array})-\mathrm{C}X_{)}$ (2.6)

where $cB$ is a corresponding coefficient vector of objective, and $B$ is a basic matrix of
problem (2.5).

Lemma 1 If the capacity $c$ is integral, then so is $r$ (x) for any integer $x$ .

Proof: This is trivial from (2.6). $\square$

Because of concavecity, we assume that

$r(x)= \min\{l_{i}(x)|i\in I\}$ , (2.7)

where $\mathrm{r}(\mathrm{x}):=\langle l_{i}, x\rangle+\alpha i$ are linear functions on $R^{n}$ . It is easy to see that $x\in X$ , $r(x)=0$
if and only if $x\in X_{E}$ . Hence Problem (2.2) can be rewritten equivalently as

$\min\{dx|x\in X, \mathrm{r}(\mathrm{x})\leq 0\}$ . (2.8)

Consider the following penalized problem for a fixed number $t$ .

$P(t)$ $\min\{dx+t\cdot \mathrm{r}(\mathrm{x})|x\in X\}$ . (2.5)

Let $t_{*}:= \max\{dx|x\in X\}-\min\{dx|x\in X\}$ . Then

Lemma 2 There exists a finite number $t_{*}\geq 0,$ such that for every $t>t_{*}$ , problem (2.8)
is equivalent to (2.9).

Proof: Therefore for any $t>t_{*}$ and $r(x)\neq 0$ we must have $r(x)\geq 1$ and

$\min\{dx+t\cdot r(x)|x\in X\}$

$\geq$ lnin $\{dx\mathit{1} t_{*}\cdot r(x)|x (: X\}$

$\geq$ $\min\{dx|x\in X\}$ $+ \max\{dx|x\in X\}-\min\{dx|x\in X\}$

$\geq$ $\min\{dx|x\in X, \mathrm{r}(\mathrm{x})=0\}$ .
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And when $\mathrm{r}(\mathrm{x}\mathrm{o})=0$ then we see $dx_{0} \geq\min\{dx|x\in X, r(x)=0\}$ . Hence,

$\min\{dx+t\cdot r(x)|x\in X\}\geq\min\{dx|x\in X, r(x)=0\}$ .

On the other hand, a feasible solution of $\min\{dx, |x\in X, r(x)=0\}$ is also a feasible
solution of (2.9). We have

$\min\{dx+t\cdot r(x)| x\in X\}\leq\min\{dx| x\in X, r(x)=0\}$ .

It implies that

$\min\{dx+t\cdot r(x)|x\in X\}=\min\{dx|x\in X, r(x)=0\}$ .

Notice that $r(\cdot)\geq 0.$ Then, any $t>t_{*}\geq 0$ we have

$\min\{dx+t\cdot r(x)|x\in X\}=\min\{dx|x\in X, r(x)=0\}=\min\{dx|x\in X, r(x)\leq 0\}$ .

It is the assertion. Cl

Let denote by $\delta x$ the indicator of $X$ and $g(x):=dx+\delta_{X}(x)$

$h(x):=\{$
$-t_{*}$ . $\mathrm{r}(\mathrm{x})$ if $x\in X$

$+(\mathrm{X})$ if $x\not\in X.$

Then $g(x)$ and $h(x)$ are $\mathrm{s}$ convex and problem (P) is rewritten as

(P) $\min$ {$dx+$ Sx $\{\mathrm{x})-h(x)\}=$ $\mathrm{g}(\mathrm{x})-h(x)$ }. (2.10)

This is a $\mathrm{d}.\mathrm{c}$ . programming. Hereafter, we use the formation for local search in DCA.

2.2 Dual formulation

From a result of Philip [5] it follows that there exists a simplex $\Lambda\subseteq R_{n}$ such that a vector
$x$ is maximal flow if and only if there exists A6 $\Lambda$ such that

$\lambda x$ $\geq\lambda y$ , $\forall y\in X$ . (2.11)

Thus the minimum-maximal flow problem to be considered can also be fo rmulated as

$| \min_{s.t}$

.
$x\in X\lambda\in\Lambda dx-\lambda(y’-, x)\geq 0$

, $\forall y\in X.$

(2.12)

This is a special case of mathematical programming with variational inequality con-
straints.

Denote

$g(x, \lambda)=\frac{1}{2}||x||^{2}+\frac{1}{2}||\lambda||^{2}+\max_{v\in X}\{vx+v\lambda-\frac{1}{2}||v||^{2}\}$ (2.10)

and

$h(x, \lambda)=\frac{1}{2}||x+$ A $||^{2}+ \frac{1}{2}||x$ $||^{2}$ . (2.11)

Then
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Lemma 3 The constraints in (2.12) can be cast into the form

A $\in\Lambda$ , $x\in X$ , $g$ (x, $\lambda$ ) $-$ h{ $\mathrm{x},$ $\lambda)=0.$ (2.15)

Proof: It is easy to see that

$\mathrm{g}\{\mathrm{x},$
$\lambda$ ) $-$ h $\{\mathrm{x},$ $\lambda)=\max_{v\in X}\{\lambda(v-x)-\frac{1}{2}||v-x||^{2}\}$ .

Note that $X$ is a convex set. Suppose that (2.11) holds for some $x\in X$ and some $\lambda\in\Lambda$ .
We have that

$0 \leq\max_{v\in X}\{$ $\lambda;v$ $・\lambda x-\frac{1}{2}||v$ – $x||^{2}$ } $\leq\max$ $\{\lambda v - \lambda x | v\in X\}$ $=0$

which yields $g(x, \lambda)-h$ (x, $\lambda$ ) $=0.$

Suppose that $g(x, \lambda)-$ h{x, $\lambda$ ) $=0$ for some $x\in X$ and A6 A. Then we have that

$\max_{v\in X}\{\lambda(v-x)-\frac{1}{2}||v-x||^{2}\}=0$ (2.16)

which implies that A $(v-x)\leq 0$ for all $v\in X$ . In fact, if we have some $v_{0}\in X$

such that A $(v_{0}-x)>0$ then we can take a point $\overline{v}$ on line segment $[v_{0}, x]$ satisfying
$|\mathrm{D}$ $-x||<||$A $||\cos\theta$ , where $\theta$ is the acute angel between A and $()0-J.$ Note that $X$ is
convex then $\overline{v}\in X$ but A $( \overline{v}-x)-\frac{1}{2}||\overline{v}-x||^{2}>0.$ It contradicts (2.16). $\square$

Note that the both functions !7 and $h$ are convex and differentiate.
From this lemma, it follows that the problem can be formulated by the following $\mathrm{d}.\mathrm{c}$ .

differentiate programming:

(DP)

$\min$ $f(x)$

$s.t$ . A $\in\Lambda$ , (2.17)
$x\in X,$

$g(x, \lambda)-h(x, \lambda)=0.$

From ShigenO-Takahashi-Yamamoto [7], we see that the A in (2.17) could be replaced by

{A $|$ A $\in R_{n}^{++}$ , A $\geq e$ , $\lambda e=n^{2}$ }.

Then we take the above set as A to design algorithms.

3 Properties of d.c programming and DCA

DCA (D.C algorithm) [4] is a prime-dual approach for finding local optimum in $\mathrm{d}.\mathrm{c}$ .
programming. More detailed results on DCA can be found in scuh as [3]. Some numerical
experiments are reported that it finds a global minimizer often if one chose a ’good’ start
point.

Consider the following general problem:

$(\Gamma)(_{p}^{\gamma})$
$\uparrow_{p}’:=$

$\mathrm{f}(\mathrm{x})-\mathrm{h}(\mathrm{x})|x\in R^{n}\}$ (3.18)

where $g(\cdot)$ , $\mathrm{h}(\mathrm{x})$ : $R^{n}arrow R\cup$ $\{-\infty, +(\mathrm{K})\}$ are low semicontinuous (lsc) convex functions on
$R^{n}$ . It is easy to see that problem (P) is a special case of (DCP) as shown in (2.10) under
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the convention $+\mathrm{o}\mathrm{o}$ $=+\mathrm{c}\mathrm{x}$) $-(+\infty)$ . We also suppose that $g(x)-h(x)$ is bounded below
on $R^{n}$ . The $\in$-subgradient of $g$ at point $x0$ are defined by

$\partial_{\epsilon}g(x_{0}):=$ { $y\in R^{n}|$ $g(x)\geq$ g $\{\mathrm{x}\mathrm{O})+\langle x-x_{0}, y\rangle-\epsilon, 1x \in X\}$

and $.\partial g(x\mathrm{o}):=\partial_{0}’ g(xo)$ . The conjugate function of $g$ is given by

$g^{*}(y):= \sup\{\langle x, y\rangle-g(x)|x\in R^{n}\}$ .

From lsc of and $g$ and $h$ , we see that $!/=g^{**}$ and $h=h^{**}$ hold. Consider a dual problem
of $(DC_{p},)$ :

$(DC_{d})$ $v_{d}:= \inf\{h^{*}(y)-g^{*}(y)|y\in R^{n}\}$ . (3.19)

We have that

$v_{\mathrm{p}}$ $=$ $\inf$ { $g$ (x) –h(x) $|x\in R^{n}$ }
$=$ $\inf\{g(x)-\sup\{\langle x, y\rangle-h^{*}(y)|y\in R^{n}\}|x\in R^{n}\}$

$=$ $\inf\{g(x)+ \inf\{h’(y) -\langle x, y\rangle| y\in R^{n}\} |x\in R^{n}\}$

$=$ $\inf\{h^{*}(y)+ \mathrm{g}(\mathrm{x})-\langle x, y\rangle|x\in X\}|y\in R^{n}\}$ (3.20)
$=$ $\inf$ { $h^{*}(y)- \sup\{\langle x,$ $y\rangle-$ g $(\mathrm{x})|x\in X\}|y\in R^{n}$ }
$=$ $\inf\{h^{*}(y)-g^{*}(y)|y\in R^{n}\}$

$=$ $v_{d}$ .

For a pair $(x, /)$ , Fenchel’s inequality $g(x)+g^{*}(y)\geq\langle x, y\rangle$ holds for any proper convex
function $g$ and its conjugate $g^{*}$ . If $y\in\partial$g(x) then $\mathrm{g}(\mathrm{x})+$ $g”(\mathrm{y})$ $=\langle x, y\rangle$ .

Theorem 4 (Hiriart-Urruty ’88) A point $x^{*}$ is a globally optimal solution of $DC_{p}$ if and
only if $\partial_{\epsilon}h(x^{*})\subseteq.\partial_{\epsilon}g(x’)$ holds for every $\epsilon>0.$

Proof: Suppose $x^{*}$ is a globally optimal solution of (DCP) and $y_{0}\in\partial_{\epsilon}h(x^{*})$ . Then
$x^{*}\in$ dom(/i) and by (3.20) $h^{*}(y)-g^{*}(y)\geq v_{d}=v_{p}=g(x^{*})$ $-h(x^{*})$ that implies

$h(x^{*})+h^{*}(y)\geq g(x^{*})+g^{*}(y)$ (3.21)

holds for every $y\in \mathrm{d}\mathrm{o}\mathrm{m}(h^{*})$ , and $( \mathrm{x}, y_{0}\rangle+\epsilon \geq h(x^{*})+\langle y, y_{0}\rangle$ $-h(y)$ which yields

$\langle x^{*}, y\mathrm{o}\rangle+\epsilon\geq h(x’)$ $+h^{*}(y_{0})$ . (3.22)

Ultimately, it follows from (3.21) and (3.22) that for every $\epsilon>0,$

$\epsilon+\langle x^{*}, !/\rangle\geq h(x^{*})f$ $h^{*}(y_{0})\geq g(x^{*})+g^{*}(y_{0})$ . (3.23)

It is nothing but $y_{0}\in\partial_{\epsilon}g(x^{*})$ .
Suppose $\partial_{\epsilon}h(x^{*})\subseteq\partial_{\epsilon}g(x^{*})$ holds for every $\epsilon$ $>0.$ It yields

$h(x^{*})-h(y)\geq g(x^{*})-g(y)$

for all $y\in R^{n}$ . In fact, if $h(x^{*})-$ h(yo) $<g(x^{*})-$ g(yo) for some $yo$ we take $z\in$ $\mathrm{h}(\mathrm{y}\mathrm{o})$

and

$\epsilon_{0}:=.\frac{1}{2}\{g(x^{*})-g(y_{0})-h(x^{*})+h(y_{0})\}+h(x^{*})-$ h(yo) $+\langle y_{01}-x^{*}z\rangle$ .
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Then $” 0$ $>0.$ From $z\in$ dh $(\mathrm{y}\mathrm{O})$ we have $h(x)\geq h(y_{0})+\langle x-y_{0}, z\rangle$ . Hence

$h(x^{*})-h(y_{0})+\langle y_{0}-x^{*}, z\rangle+$ h $(\mathrm{x})\geq h(x^{*})+\langle x-x^{*}, z\rangle$ .

It implies $\epsilon_{0}+$ h(x) $\geq h(x^{*})$ $+-$ $\langle x-x^{*}, z\rangle$ for all $x\in R^{n}$ , i.e., $z\in\partial_{\epsilon_{\mathrm{O}}}h(x^{*})$ . On the other
hand, by the definition of $\epsilon_{0}$ we have

$\epsilon_{0}</(x^{*})-g(y_{0})+\langle y_{0}-x^{*}, z\rangle$ .

It means $z\not\in\partial_{\epsilon 0}g(x^{*})$ . It contradicts $\partial_{\epsilon}h(x’)\subseteq.\partial_{\epsilon}g(x’)$ for every $\epsilon$ $>0.$ Cl

For a given point, it is still very difficult to check its globally optimality by Theorem 4.
Let us consider some local properties of $g-h.$ A point $x^{\star}$ is said to be local minimal of
$g-h$ if there exists a neighborhood $N$ of $x^{\star}$ such that

($g-$ h $(\mathrm{x})\geq(g-h)(x^{\star})$ , $\forall x\in N.$

It is easy to see the following result.

Lemma 5 A point $x^{*}$ is local minimal for $g-h,$ then $\partial h(x^{\star})\subseteq\partial g(x^{\star})$ .

Proof: Suppose that $(g-h)(x)\geq(g-h)(x^{\star})$ , $\forall x\in N.$ Then $g(x)-g(x^{\star})\geq$ h $(\mathrm{x})-h(x^{\star})$

Taking $z\in\partial h(x^{\star})$ , we have $h(x)\geq h(x^{\star})+\langle x-x\star, z\rangle$ for all $x\in R^{n}$ . Therefore we see that
$g(x)\geq g(x^{\star})+\langle x-x^{\star}, z\rangle$ for $x\in N.$ Note that $g$ is convex, then $g(x)\geq g(x)$

$+\langle x-x_{1^{\mathit{7}}}^{\star}\sim\rangle\square$

holds for $x\in R^{n}$ .

Lemma 6 If $h$ is a piecewise-linear convex function on $\mathrm{d}\mathrm{o}\mathrm{m}(h)$ and $\partial h(x\star)$ $\subseteq\partial g(x^{\star})$ ,
then $x^{\star}$ is local minimal for $g-h.$

Proof: It is enough to consider $x\in$ dom(g). Suppose that $h$ is piecewise-linear convex.
Then there exists a neighborhood $N(x^{\star})$ such that for any $x\in N(x^{\star})$ we can choose
$z\in\partial h(x^{\star})$ such that $h(x)-h(x^{\star})=\langle x-x^{\star}, z\rangle$ . From $\partial h(x^{\star})\subseteq\partial g(x^{\star})$ we have $g(x)\geq$

$g(x^{\star})+-$ $\langle x-x^{\star}, z\rangle$ holds for $x\in N(x^{\star})$ . It implies that $g(x)-$ h(x) $\geq g(x^{\star})-h(x^{\star})$ for
$x$ $\in N(x^{\star})$ . Then $x^{\star}$ is local minimal for $g-h.$ $\square$

Next we describe the framework of DCA.

$\mathrm{a}\mathrm{g}\circ \mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}$ BASIDCA

step 0: pick up a point $x^{0}\in$ dom(/i), calculate $y^{0}\in\partial h(x^{0});k=1;$

step 1: calculate $x^{k}\in\arg$ $\mathrm{g}(\mathrm{x})-(h(x^{k-1})+\langle x-x^{k-1}, y^{k-1}\rangle)|x\mathrm{E}R^{n}\}$ ;
calculate $y^{k} \in\arg\min\{h^{*}(y)-(g^{*}(y^{k-1})+\langle x^{k}, y-y^{k-1}\rangle)|y\in R^{n}\}$ ;

step 2: If $\partial h(x^{k})\cap\partial g(x^{k})7$ $\emptyset$ , stop; otherwise, $k:=k+1$ goto step 1.

Lemma 7 Suppose that the points $x^{k}$ and $y^{k}$ are generated in BASIDCA, then $x^{k}\in$

$\partial h^{*}(y^{k})$ and $y^{k-1}\in\partial g(x^{k})$ .

Proof: Assume that $x^{k-1}$ and $y^{k-1}$ are in hand. We have

$\min\{g(x)-(h(x^{k-1})+\langle x-x^{k-1}, y^{k-1}\rangle)|x\in R^{n}\}$

$=$ $\min\{g(x)-\langle x, y^{k-1}\rangle|x\in R^{n}\}-h(x^{k-1})$ $+\langle x^{k-1}, y^{k-1}\rangle$

(3.24)
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and

$\min\{h^{*}(y)-(g^{*}(y^{k-1})+\langle x^{k}, y-y^{k-1}))|y\in R^{n}\}$

$=$ $\min\{h^{*}(y)-\langle x^{k}, y\rangle|y\in R^{n}\}-g^{*}(y^{k-1})$ $+\langle xk, y^{k-1}\rangle$ .
(3.25)

Thus, from Step 1 of BASIDCA $\mathrm{g}(\mathrm{x})-\langle x, y^{k-1}\rangle\geq g(x^{k})-\langle$ $xk$ , $y^{k-1})$ for all $x$ , and $h^{*}(y)-$

$\langle x^{k}, y\rangle\geq h^{*}(y^{k})-\langle x_{7}^{k}y^{k}\rangle$ for all $y$ . It yields $y^{k-1}\in\partial g(x^{k})$ and $x^{k}\in\partial h^{*}(y^{k})$ . $\square$

Lemma 8 $g(x^{k})-h(x^{k})$ and $h^{*}(y^{k})-g^{*}(y^{k})$ in BASIDCA are decreasing as iteration $k$

increasing. If $g-h$ is bounded below and BASIDCA does not terminate within finitely many
iterations, then $g(x^{k})-h(x^{k})$ and $h^{*}(y^{k})-g$ ’ $(y^{k})$ in BASIDCA are decreasing as iteration
$k$ increasing, and the sequence $\{x^{k}\}_{k=1,2},\cdots$ converges to an accumulate point $x^{\star}$ such that
$\partial h(x^{\star})\cap\partial g(x^{\star})7^{\mathrm{J}}$ .

Proof: By $y^{k-1}\in\partial g(x^{k})$ in Lemma 8 we have $g(x^{k})+$ $Ct’(y”)$ $=\langle x^{k}$ , $y^{k-1}$ ). Then

$g(x^{k})-h(x^{k})=\langle x^{k}$ , $y^{k-1})-g^{*}(y^{k-1})-h(x^{k})\leq h^{*}(y^{k-1})-g^{*}(y^{k-1})$

$\leq$ $h^{*}(y^{k-1})+g(x^{k-1})-\langle xk-1,k-y1\rangle$ $\leq g(x^{k-1})-h^{**}(x^{k-1})\leq g(x^{k-1})-h(x^{k-1})$ .

Notice that $g(x)-$ h{x) is bounded below, therefore there exists a number $\alpha^{\star}$ such that

$\lim_{karrow\infty}g(x^{k})-h(x^{k})=\alpha^{\star}$

Assume that $x^{\star}y^{\star}$

} are two accumulated points of $x^{k}$ and $y^{k}$ , respectively. Then $g(x^{\star})+$

$g^{*}(x^{\star})=\mathrm{r}( \mathrm{p}^{\star})$

$+h^{*}(x^{\star})$ . On the other hand, from $y^{k-1}\in\partial g(x^{k})$ we obtain
$\langle x^{\star}, y^{\star}\rangle=\square$

$g(x^{\star})$ $+g^{*}$ $(x^{\star})$ It implies that $x^{\star}\in\partial g(x^{k})\cap\partial h(x^{\star})$ . The assertion is proved.

Generally, when we have $y^{0}\in\partial h(x^{\star})$ and $y^{0}\not\in\partial g(x^{\star})$ , then

$h(x)\geq h(x^{\star})+\langle x-x^{\star}, y^{0}\rangle$ (3.26)

and $\langle x^{\star}, y^{0}\rangle<g(x^{\star})+g^{*}(y^{0})$ . Let $x^{0}:=x^{\star}$ , by Step 1 of BASIDCA we obtain $x^{1}$ such
that $y^{0}\in\partial g(x^{1})$ . Then $\langle x1 , y^{0}\rangle$ $=g(x^{1})$ $+g^{*}(y^{0})$ . From (3.26) we have $\langle x^{0}, y^{0}\rangle\geq$

$h(x^{0})-h(x^{1})+\langle x^{1}, y^{0}\rangle$ . From the above inequalities and expressions we see that

$h(x^{0})-h(x^{1})+g(x^{1})+g^{*}(y^{0})$

$=$ $h(x^{0})-h(x^{1})+\langle’, y^{0}\rangle$

$\leq$ $\langle x^{0}, y^{0}\rangle$

$<$ $g(x^{0})+g^{*}(y^{0})$ .

It yields, ultimately, $g(x^{1})-h(x^{1})<g(x^{0})-g(x^{0})$ . It means that when $\partial h(x^{0})\ovalbox{\tt\small REJECT}$ $\partial$g $(x^{0})$

then we can find a smaller value at point $x^{1}$ .

4 Solution Methods and Algorithms
Now we go back to problem (P). In this section, we give an algorithms to solve the
problem. A general framework of branch-and-bound algorithm can be stated follows.

algorithm $\mathrm{G}\mathrm{F}$
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step 0initial setting and calculating,
step 1branching operation,
step 2local search for a smaller upper bound,
step 3: find a larger lower bound,
step 4: remove some regions, go to Step 1.

We describe the Step 1-3 following in detail.

branching operation (Step 1) A simplex-based division is usually exploited in branch-
and-bound method. At some step, a contemporary simplex $S$ is divided into two smaller
ones $S_{1}$ and $S_{2}$ . Taking into account the convergence of the algorithms we need the
division to be exhaustive, i.e. a nested sequence of simplices $\{S_{k}\}_{k=1,2},\cdots$ has the following
properties: int $(S_{i})$

” int(S;) $=li$ if $i\neq j$ , $S_{k+1}\subseteq g_{k}$ for all $k$ , $\lim_{karrow\infty}\bigcap_{k=1}^{\infty}S_{k}=x^{0}$ for
some $x^{0}$ . At each step, we chose divide a simplex $S_{k}$ into two smaller ones $S_{2k-}$ and
$S_{2k+1}$ by bisecting the longest edge of $S_{k}$ . The sequence $\{S_{k}\}_{k=1,2},\cdots$ in such process is
exhaustive.

local search for a smaller upper bound (Step 2) There are many methods to do
local search. Here we exploit BASIDCA in this step. Even BASIDCA is not going to find
a global optimum theoretically,, but in many numerical experiments, it finds a global
optimum practically.

As shown in (2.10) problem (P) can be rewritten as a $\mathrm{d}.\mathrm{c}$ . programming $\min\{g-h\}$ ,
then we can use BASIDCA to obtain a locally optimal solution. Then we assume that

$u^{\iota}:=\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{D}\mathrm{C}\mathrm{A}(X\cap S_{i})$

is a local optimal solution on $X\cap S_{i}$ by BASIDCA

find a larger lower bound (Step 3) Assume that $l_{\mathrm{t}}(x)$ is an affine function such
that $l_{i}(vj)=h(v_{\dot{J}})$ for all vertices $v_{j}\in$ V(St). From the convexcity of $h(x)$ , we have
$l_{i}(x)\geq h(x)$ for all $x\in S_{i}$ . Then

$L(X \cap S_{i}):=\min$ { $dx+\delta x$ns, $(x)-li(x)|x\in R^{n}$ } $\leq\min\{dx+\delta x\mathrm{n}s_{t}(x)-h(x)|x\in R^{n}\}$ .
Moreover, if $V$ (Si) $:=\{v_{1}, \cdots, v_{p_{1}}\}$ is in hand, then it is easy to calculate $L(X\cap S_{i})$

because

$\min\{dx+6_{X\cap}\mathrm{s}. (x)-li(x)|x\in R^{n}\}$

$=$ $\min\{d(\sum_{j=1}^{p}.\lambda_{j}\mathit{0}_{j})+t_{*}(\sum_{j=1}^{\mathrm{P}\iota}\lambda_{\mathrm{J}}r(v_{\dot{\mathrm{J}}})I$ $|$

$\sum_{j}\lambda_{j}=1,\lambda_{j}\geq 0A(\sum_{j=1}^{pi}\lambda_{j}v_{j})=$b’, $0 \leq\sum_{J}^{p}.\cdot=1\lambda_{j}v_{j}$ )
$\leq c\backslash$

.

Based on the above discussion, we give a whole algorithm as follows.

algorithm MMFDCA

step 0: let $\epsilon$ and $S_{0}$ such that $X\subseteq S_{0}$ . let $x^{0}:=0$ , $y^{0}:=(-1,$ $\cdot$ . .
$,$
-1 $)$ ,

$b^{U}:=\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{D}\mathrm{C}\mathrm{A}(X)$ , $b_{L}:= \min\{dx|x\in Ax=b, 0\leq x\leq b\}$ , $M:=S\mathit{0}$

step 1: select $S_{0}\in M$ such that $b_{L}=L$ ( $X\cap$ Sq) and divid $S_{0}$ into $S_{1}$ and S2,
step 2: $u^{i}:=\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{D}\mathrm{C}\mathrm{A}(X\cap S_{i})$ for all $i=1,2$ . if $u^{i}<b^{U}$ then $b^{U}=u^{i}$ ,
step 3: if $L(X\cap s_{i})>b_{L}$ then $b_{L}=L(X\cap s_{i})$ , if $b^{U}-b^{L}<\epsilon$ then Stop,
step 4: $M:=\{S\in\#|L(X\cap S)<b^{U}\}$ , if $M=\emptyset$ then Stop, otherwise go to Step 1.
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The convergence of the the above algorithm is from the exhaustive partition. Here we
omit the detailed proof. A general proof under such exhaustiveness can be found in many
books, scuh as [1].

5 Conclusion

A branch-and-bound algorithm via DCA subroutine for solving problem (P)$)$ is proposed
in this paper. Apart from the algorithm, we also discussed a dual formulation for (P)
and investigated some properties of a general $\mathrm{d}.\mathrm{c}$ . programming. Though we have not
proposed an algorithm for problem (DCP), it can be solved by differential programming.
Due to that problem $(P(t_{*}))$ is a concave minimization over a convex set, we can solve
it by many existing methods directly or indirectly. Among these methods, it might be
interesting to compare the behaviour of the different algorithms. We consider it as further
research topics.
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