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Hyperbolic balance laws and entropy
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0. Introduction

The aim of this note is to give a definition of the entropy for hyperbolic balance
laws in d space dimensions:

d
(HB) we + Z fj (w)zj = g(w)’

j=1

where w is an N-vector. The notion of mathematical entropy was first intro-
duced by Godunov (3] and Friedrichs and Lax [2] for hyperbolic conservation
laws:

(HC) wy + i fj(w)xj =0,
j=1

and the entropy plays as a symmetrizer of the system (HC). We give a brief
reveiw of this theory in Sect. 1.
In Sect. 2, we discuss the entropy for viscous conservation laws:

d d
(VO)  wit L fi(w), = 3. (G (w)us,)si,
Jj= 1,j=1

which was introduced in [8]. We also discuss the global well posedness for
(VC) under the stability condition formulated in [11].

Sect. 3 is the main part of this note and it is based on the recent joint work
[10] with Wen-An Yong of the University of Heidelberg. We give a definition of
the entropy for hyperbolic balance laws (HB). Our definition is different from
the previous one given by Chen, Levermore and Liu [1] but is closely related
to the one adopted by Yong [12]. We see that our definition of the entropy
is suitable not only for 1) global well posedness but also for 2) application of
the Chapman-Enskog theory. This definition is based on the observation of
the Boltzmann H-function in discrete kinetic theory and gives a reasonable
generalization of the H-function for a class of hyperbolic balance laws (HB)
which includes the discrete Boltzmann equation. We also discuss the global
well posedness for (HB) under the stability condition in [11].

Finally in Sect. 4, we apply the Chapman-Enskog theory to hyperbolic
balance laws (HB) and derive the corresponding Navier-Stokes equation which



is written in the form of (VC). We discuss some mathematical structure of

this Navier-Stokes equation in connection with the original hyperbolic balance
laws (HB).

1. Hyperbolic conservation laws
We briefly review on the entropy for hyperbolic conservation laws (HC).

Definition 1.1. ([3],(2]) A function n(w) is called an entropy for hyper-
bolic conservation laws (HC) if the following two conditions are satisfied:
(i) n(w) is strictly convex for any w.
(i) Dyfi(w)(D%n(w))?! is symmetric for any w and j =1,---,d.

Let us consider a diffecomorphism w = w(u) and rewrite (HC) as

d
(HCY Ao(u)ut + ZAj(u)umJ. =0,
AR
where

A%u) := Dyw(u),
A’ (u) := Dy fi(w(u)) = Dy fi(w(u))Dyw(u), j=1,---,d.

Definition 1.2. The system (HC) is called symmetric if the following
two conditions are satisfied:
(i) A°(u) is real symmetric and positive definite for any w.
(i) A’(u) is real symmetric for any w and j = 1,---,d.

Theorem 1.1. ([3],[2]) The system (HC) admits an entropy if and only
if (HC) is symmetrizable by using a diffeomorphism.

The outline of the proof of this theorem is as follows. Suppose that (HC)
has an entropy n(w). Then the desired symmerlzatlon is given by the diffeo-
morphism defined by

U= (Dwn(w))Ta

where the superscript T denotes the transposed. Conversely, we suppose that
(HC) is symmerizable by using a diffeomorphism w = w(u). Then there exist
functions 7j(u) and ¢ (u) such that ‘

Duﬁ(u) = w(u)T’ Du(i](’ll.«) = fj(w(u))T’ .7 = 11 Tt :d-

The desired entropy and the corresponding flux are then given by the formulas



n(w(u) = < w(u),u > —ij(u),
Pwk) =< filww), u>-¢g@), j=1,---,d,

where <, > denotes the standard inner product in RY. This completes the
.proof.

As a corollary of this theorem we can prove the local well posedness for
hyperbolic conservation laws (HC) for initial data in H*(R%) with s > [d/2]+2.

2. Viscous conservation laws

The notion of the entropy was generalized in [8] for a class of viscous conser-
vation laws (VC). Here we review the main results of [8].

Definition 2.1. ([8]) A function n(w) is called an entropy for viscous
conservation laws (VC) if the following four conditions are satisfied:
(i) and (ii) are the same as in Definition 1.1.
(i) {GY(w)(Din(w))"} = G*(w)(Din(w))~" forany wandi,j =1,---,d.
(iv) ¥ GY(w)(D2n(w)) 'wiw; is real symmetric and nonnegative definite
for any w and w € S9!, where the sum is taken over all 4,5 =1,.--,d.

Let w = w(u) be a diffeomorphism. Then (VC) is rewritten as

d d
(vey  A%w)u + 21 Al(u)ug, = .z;l(B"j (w)tz; )z;s

where A%(u) and A?(u) are the same as in (HC)' and
Bii(u) := G(w(u)) Dyw(u), &,j=1,"-,d.

Definition 2.2. ([8]) The system (VC)’ is called symmetric if the following
four conditions are satisfied:
(i) and (ii) are the same as in Definition 1.2.
(iii) BY(u)T = B%(u) for any u and i,j =1,---,d.
(iv) The viscosity matrix B(u,w) := ¥;; BY(u)ww; is real symmmetric and
nonnegative definite for any u and w € S%!, where the sum is taken over all
,j=1,---,d.

Theorem 2.1. ([8]) The system (VC) admits an entropy if and only if
(VC) is symmetrizable by using a diffeomorphism.

The proof of this theorem is analogous to that of Theorem 1.1. Here we
note that the entropy n(w) for (VC) satisfies



d

n(w): + iqj(w)xj =Y (<u, B (W)ug, >)q, — zd: < umi,Bij(u)uzj >,
=1

1,5=1 3,j=1

where ¢/ (w) is the corresponding entropy flux and u = (Dyn(w))7.
The symmetization in Theorem 2.1 is not sufficient to show the local well
posedness for (VC). But this symmetrization together with the following con-

dition (#) formulated in [8] gives the local well posedness for initial data in
H*(RY) with s > [d/2] + 2 (see [6], [8]):

(#)  N(B(u,w)) is independent of u and w € S%1,

where N'(B(u,w)) denotes the null space of the viscosity matrix B(u,w).

Furthermore, we can prove the global well posedness for viscous conserva-
tion laws (VC) under the following stability condition (x) formulated in [11].

(*)  Let AA%u)z + A(u,w)z = 0 and B(u,w)z = 0 for some z € R¥,
A€R,we S% 1, Then z=0.

Here A(u,w) = ¥; A/(u)w;. In fact we have:

Theorem 2.2. ([6],[7]) Suppose that the system (VC) admits an entropy
and satisfies (#) and (*). Then (VC) is globally well posed for initial data in
a small H*(R%)- neighborhood of a given constant state , where s > [d/2] +2.

3. Hyperbolic balance laws

Let us give a definition of the entropy for hyperbolic balance laws (HB). To
this end, we introduce:

M = {¢p e R¥; <9, g(w) >=0 for any w}.

M is a subspace of RY. Obviously, we have g(w) € M~ for any w. In discrete
kinetic theory, M is called the space of collision invariants.

Definition 3.1. ([10]) A function n(w) is called an entropy for hyperbolic
balance laws (HB) if the following four conditions are satisfied:
(i) and (ii) are the same as in Definition 1.1.
(iii) g(w) = 0 holds if and only if (Dyn(w))T € M.
(iv) Let w* be such that g(w*) = 0. Then the matrix —D,,g(w)(DZn(w))!
evaluated at w = w* is real symmetric and nonnegative definite. Moreover, its
null space coincides with M.

We note that the Boltzmann H-function for the discrete Boltzmann equa-
tion satisfies all these conditions in Definition 3.1.



Let w = w(u) be a diffeomorphism and we rewrite (HB) as

d
(HB)  A’(u)ue + Y A’ (w)us, = g(w(v)),

i=1
where A%(u) and A?(u) are the same as in (HC)'.

Definition 3.2. ([10]) The system (HB)' is called symmetric dissipative if
the following four conditions are satisfied:
(i) and (ii) are the same as in Definition 1.2.
(i) g(w(u)) = 0 holds if and only if u € M.
(iv) For any u* € M, the matrix L(u) := —D,g(w(u)) = —Dyg(w(u))D,w(u)
evaluated at u = u* is real symmmetric and nonnegative definite. Moreover,
the null space N (L(u*)) coincides with M.

In discrete kinetic theory the matrix L(u*) is called the linearized collision
operator.

Theorem 3.1. ([10]) The system (HB) admits an entropy if and only if
(HB) is put into a symmetric dissipative system by using a diffeomorphism.

The proof of this theorem is analogous to that of Theorem 1.1. Here we
note that the entropy n(w) for (HB) satisfies

D)+ 3¢ (wley =<, g(u(w) >,
Jj=1

where u = (Dyn(w))7.

To develop the global existence theory for (HB), we need to examine the
term g(w(u)) carefully. Let @ € M. We write g(w(u)) in the form

gw(w) = —L(@u+r(u).

Claim 3.2. Suppose that (iii) and (iv) of Definition 3.2 hold true. Let
% € M. Then we have r(u) € M* for any u. Moreover, there are positive
constants § and C such that

|r(u)| < Clu —al|(J - P)u|
for any u with |u — G| < &, where P is the orthogonal projection onto M.

An important consequence of Claim 3.2 is the following qualitative estimate
for the entropy production term: There are constants §, ¢ > 0 such that

<u, g(w(u)) > < —c|(I - P)ul?



for any uw with |Ju — @ < 4.

By virtue of Claim 3.2, we can prove the global well posedness for hyper-
bolic balance laws (HB) under the following stability condition (**) formulated
in [11]. Let 2 € M.

(xx)  Let AMA%(@)p + A(Z,w)p = 0 and L(T)p =0 (i.e., ¢ € M)
for some o € RN, A € R, w € S9!, Then ¢ = 0.

Our global existence theorem for (HB) is a modified version of the one obtained
by Yong [12] and is regarded as a generalization of the global existence result
in [5],[11] for the discrete Boltzmann equation.

Theorem 3.3. Suppose that the system (HB) admits an entropy and
satisfies (**) at a constant state @ € M. Then (HB) is globally well posed for
initial data in a small H*(R?)- neighborhood of W = w(&), where s > [d/2]+2.

We remark that a similar global existence result has been obtained by
Hanouzet and Natalini [4] in one space dimension (d = 1).

4. The Chapman-Enskog expansion

The Chapman-Enskog theory was developed in [1] for hyperbolic balance laws.
Here we follow the traditional approach (see [9]) and derive the Navier-Stokes
equation corresponding to the hyperbolic balance laws

[HB] W+ i Fi(W)s; = GW),
j=1

where W is an N -vector; capital letters are used to describe the hyperbolic
balance laws in this section.

Let M be the subspace defined by G(W):
M ={peRY; <y, G(IW) >=0 for any W}.
We assume that dimM = n and write M = span{r,b(l),-;.,w(“)}, where
{y®,-.. 4™} is a basis of M. Let us introduce the moment vector w in
the usual way:
w=(w1a"'awN)T) wk=<¢(k)7W>7 k=1,---,n.

If we use the N x n matrix ¥ := (¢3), ..., 9(), we can write

w=UTW.



We assume that the hyperbolic balance law [HB] has an entropy H (W) in
the sense of Definition 3.1. Then we can apply the traditional Chapman-
Enskog expansion (see [9]) to [HB] and obtain the corresponding Navier-Stokes
equation in the form of the viscous conservation laws:

d d
[VC] Wy + Zl fj (w)z‘j = Z (gij (w)wxj ):mf-a

i,j=1
where w is the moment vector; small letters are used to describe our Navier-

Stokes equation.
The symmetric form associated with [HB] is written as

HB] AU+ U)W, = GWU)),

=1

where U = (DwH(W))T, and this defines a diffeomorphism W = W(U). We
see that G(W(U)) = 0 holds if and only if U € M. Such a vector U = U* is
characterized in term of an n-vector u = (u, -+, u,)T as

U* =Y up® = T,

k=1

Furthermore we see that w — u is a diffeomorphism and our Navier-Stokes
equation [VC] can be symmetrizable by using this diffeomorphism as

d d
[VC]  a®(u)us + Z o (w)ug, = Y, (0 (u)ug;) ;-

j=1 i,j=1

Here the coefficient matrices are given explicitly in terms of the coefficient
matrices in [HB]'. In particular, :

a®(u) = UT A% (Tu) o,
a(u) = VTAI (W), j=1,---,d

Also, the null space of the viscosity matrix b(u, w) = ¥;; b (u)w;w; is given as

N(b(u,w)) = {z € R*; A"(Tu)'A(Tu,w)¥ze M}

This null space depends, in general, upon © and w € S%! and therefore we
must impose the condition (#) in Sect. 2 in order to ensure the local well
posedness of the Navier-Stokes equation [VC].

Our Navier-Stokes equation [VC] is symmetrizable so that it has an entropy
by Theorem 2.1. This entropy n(w) is given explicitly in terms of the entropy
H(W) for [HB]. In fact we have:



Theorem 4.1. ([10]) The entropies for [HB| and [VC] are related as
n(w(u) = HW(Zu),  ¢ww) =@ W(Tu), j=1,-,d,

where Q¥ (W) and ¢/(w) are the corresponding entropy fluzes for [HB] and
[VC], respectively.

This is a refinement of the similar result obtained in [1]. This relationship
between entropies is known in discrete kinetic theory (see [9]).

The stability conditions for [HB] and [VC] are formulated as

[#x]  Let AMA%(U)p + A(U,w)p = 0 and ¢ € M for some ) € R,
w € §41, Then ¢ = 0.

[*]  Let Aa®(u)z + a(u,w)z = 0 and b(u,w)z = 0 for some z € R",
AeR,we 941, Then z=0.

As in the discrete kinetic theory, these two stability conditions are equivalent
to each other (see [9]).

Theorem 4.2. ([10]) The hyperbolic balance law [HB] satisfies the stabil-
ity condition [*x] at U = Yu if and only if the corresponding Navier-Stokes
equation [VC]| satisfies the stability condition [x].
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