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1 Introduction

During almost half a century following the invention of Lax-Friedrichs scheme, which is
the first numerical algorithm that gives stable numerical solutions to the compressible
Euler equations, various difference schemes have been proposed by many authors. The
schemes have been already examined by various test problems and practical examples, and
now in the field of numerical computation we have experience somehow enough to obtain
numerical results to wide range of problems by chosing some appropriate difference scheme
considering the cost and required quality of computation. But any scheme can not be used
yet to prove the existence or uniqueness of solution to the compressible Euler equations,
which means that any difference scheme is not completely guaranteed in mathematical
sense. Even from the viewpoint of practical computation, we often have to make several
trials with different schemes to select an appropriate one. In other words, we still have
essential problems to be solved in the field of difference schemes.

So called the “numerical carbuncle”[3] ! [4] 2 is one of such open problems in the
computation. This strange numerical instability often happens and grows around shock
wave surface in the numerical simulation of gas flow governed by the compressible Euler
equations. While the instability is very small and invisible in the beginning of computation,
it may grow as the computation goes on and finally destroy the computation. From the
viewpoint of practical treatment to avoid this instability, it is already known that some
additional numerical viscosity works well enough to suppress the instability, while it is
inevitable to deteriorate the quality of computational result. Therefore it is naturally
required to discuss the instability theoretically and to know how much numerical viscosity
is the minimum to suppress the growth of instability.

In this article we try to give some mathematical explanation on the machinery that
makes the instability, and we show some numerical experiments to verify the explanation.

1 This instability should have been observed even before (3], but it seemed to have been recognized not
as a part of property of numerical algorithm but as a kind of quantization error just coming from the digital
computation. In [3] it was mentioned for the first time that the instability might have some relation with
the essential property of difference scheme or numerical algorithm.

2The article [4], which does not aim so much theoretical discussion, is written from rather comprehensive
viewpoint and observes various examples obtained by several different schemes. This is one of the best article
to know the situation of research on this issue at the time of writing.
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This article is organized as follows. In sctions 2 and 3 we review the compressible Euler
equation, Godunov method, and the phenomenon of numerical curbancle. In section 4
the main thorem is given to explain the machinery of growth of numerical carbuncle. In
section 5 we verify the formula in main theorem by some numerical examples.

2 Compressible Euler Equations and Godunov Method

We are concerned with difference approximation for the compressible Euler equations in
TYy-space;

Ui+ F; 4+ Gy =0, —o0 <z <00,—00 <Y <00,0<t< 00,

p pu oo |
_ | pu _ _ | pP+p _ _ | pw (1)
v=| o | F=FO)=| AP e=c)=| &% |,
e u(e + p) v(e +p)

where p, u, v, p, e are density, velocity in z-direction, velocity in y-direction, pressure, total
energy per unit volume of the fuid, respectively. The total energy e is determined by the

equation of state;

p L 2, 2
= —— 4= 2
e= 2 + ol +07) @
with the adiabatic constant . U is called the vector of conservative variables and F, G are
called flux functions in z- and y-direction, respectively. By V, we mean the vector of so

called primitive variables;

(S < <Y

V= (3)

p

We employ Godunov method [1] to discretize the problem (1). Godunov method is one
of difference approximation based on the concept of finite volume and Riemann problem.
It is given as follows.

The zy-space (—00,00) X (—00,00) is divided into the set {i;}, ;integer of finite vol-
umes [;j = ((z— DAz, (i + %)Am) X ((j - DAy, (G + %)Ay), where Az and Ay are
spatial difference increments in z- and y- directions, respectively. The node (iAz,jAy)
represents each finite volume I; ;, The discretization of time ¢ is given by 0 = P <tl <
co» < t" < "1 < ... where the temporal increment At" is determined by At® = ¢"+1 —¢m,
The approximation of values p,u,v,p,e over each I; j (or at the node (iAz, jAy)) at the time
t = t" is written by p7';, u;, v7;, P;, €;, respectively. Throught the discussion we assume
the relation n .

ef = g+ 5ok (1) + o)) “@)
for all n, 1, j to be consistent with (2). The discretized temporal evolution of approximate
values of conservative variables

Y
Pij
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is given by the difference scheme

At™ ( - = At"™ [ - =
+1 __ n
Urft =0 - e - P - e G ) ©

where the numerical fluxes F" i+l C_;:.’j 41 inz- and y- directions, respectively are given as
’ 2

J’

follows.
First we assume the Riemann problem
Ut + Fx = O
Ulz,0) = Ul z<0 (6)
! 1, >0

given by the states of neighboring finite volumes I; ] and I;11,;. Using the exact solution
to (6), which is self similar; U = U(z,t) = U(z/t; U}, U}, ;), we determine the numerical

zy?
flux Fi+§’j by _n -
Py = F L) 9

where U™ , _ is given by
1.+§,J
z+1 =U(0;U}, Ul ,5)-
U ’_"_  is regarded as a kind of virtual state assumed at the contact {(i + 3)Az} x ((j —
2’
)Ay, G+ —)Ay) between I;; and Ij;1; to determine the numerical flux F:f}_ 1 The
20

numerical flux G" i+ is obtained in a similar manner. From the exact solution U =

Uly,t) =Ul(y/t; U,J, T41) to the Riemann problem

Uy, y<o (®
U , 0 1.7
(y,0) = B U>0,
we determine
Grivy =G(07,1), | 9)

where -

U,,J+1 - U(O U,JaUrJJ{-l)

3 Numerical Carbuncle

“Numerical carbuncle” (or “carbuncle instability”, “carbuncle phenomenon”) is numerical
instability that may happen when the numerical computatlon includes a strong shock wave.

Sometimes it happens a misunderstanding that the computation simlulates so called
physical carbuncle, a physical phenomenon that the surface of a shock wave in dusty air is
fluctuated by dust particles. But in the case of numerical carbuncle the assumed governing
equation is just the compressible Euler equations where the situation of dusty air is never
taken into account. Therefore it is reasonable to think that the numerical algorithm to
approximate the compressible Euler equation might include some machinary that makes
the numerical instability.

From the experience of numerical computation, the following empirical facts are ob-
served.
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1. The instability occurs not in one-dimensional numerical computation but
in more than two dimensional cases. Even in the case of one dimensional
physical phenomenon to be simulated, the instability may happen if the
numerical computation is done in two dimension. (The example discussed
in this article is one of the most typical cases. A progressing planar shock
wave is a one dimensional phenomenon. But, if the computation for the
problem is done in two dimension, the instability may occur.)

2. When the shock surface is oblique enough to any of axes of the discretization
mesh, the instability does not occur.

3. The instability seems to be initiated round off error that is from quantiza-
tion, i.e. essential error in digital computation.

4. Once the instability is observed, the growth rate of instability seems to be
exponential with respect to the step number n for the temporal discretiza-
tion.

5. The increase of numerical viscosity is useful to suppress the instability. The
numerical viscosity in the direction along shock surface works more effective.

6. When the instability is small enough, the perturbation of each value (mass,
momentum in each direction, or pressure) seems to have “odd-even” prop-
erty [3], i.e. the perturbations of each value at any neighboring computing
nodes (finite volumes) have the opposite signs.

The experiences above implies the followings.

1. If the distribution of variables in discretized model are completely one di-
mensional at some time step n (i.e. U; does not depend on j), there is
no reason that the exact computation of algorithm determined by (5)-(9)
makes any loss of one dimensional property at the next time step n + 1.
Therefore, some error derived from digital computation should initialize the
instability (or make some numerical perturbation that is grown up to the
instability).

2. Error from digital computation is understood to have pseudo-stochastic
property. It implies that the carbuncle may grow almost in the order of
V/n if it is only because of this error. But the observed fact is different.
We may expect that the numerical algorithm includes some machinery to
amplify the error at each step of temporal evolution.

The discussion on the occurence of error in digital computation is not so easy because
it depends on the hardware architecture and operationg system etc. of each computer.
Threfore we assume that some small numerical error is already given. Then we discuss
how the error propagates in the procedure of temporal evolution given by Godunov method

(5)-(9)-

4 Analysis of Noise Progagation

In this section we assume that some small perturbation is given to numerical values *7';
at the time step n and we then analyze how the small perturbation propagates in the
procedure of discretized temporal evolution from the time step n to n + 1.
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Our analysis is done to Godunov method given by (5)-(9). We have some additional
assumption.

Assumption 1 There are some p?, u?, p?, e (for all n,i) and Prjr U5, 005, P4y €1
(for all m,i,j) that satisfy :
n _ AN ATV
Pij = Pi ¥ Pij
n . ,n L)
Uj = Ug +Uij
no— o
S
Pij =D tPij
e = e + &

; 18 small enough. We chose some representative § of

(10)

. Am A Am A
where each of Prjr U3y O DLy €7

the order of them;

? } ?

o) fazs] s o) |85 Jets] < 066) (1)

We also assume that the ralation of disctretized temporal evolution of Godunov method
(5)-(9) should be satisfied between {U},‘j}id and {U:f; l}i’j when pP; =47, = 0F; = pP; =

ét; =0 for alln,i,j.
Under assumption 1 we emply the following notation.

o} 2 AL
up= | P e = | W o= -ur = | S L @)
€ 24 pZ‘;
Assumption 2 Each ul satisfies
uy >> ¢, ‘ (13)
where ¢ = 12:—?

1

Assumption 3. Each At™ should satisfy
( ) 3e
Az’

where C is a positive constant less than 1.

n

n
u,-,j +

n
Cij

(3
Cij

vi,j +

At™

Assumption 1 means that the situation is almost one dimensional and the essential
direction of phenomenon is z-direction. Assumption 2 means the complete upwindness in
z-direction. In other words, we assume it so that lemma 3 below could be applied, i.e. the
characteristic at each finite volume or those caused by Riemann problem (6) should have
positive velocity. Assumption 3 is a usual CFL-condition, a basic stability condition for
discretized temporal evolution.

Now we analyze the discretized temporal evolution of perturbations, i.e. the relation
between §7;, 4f';, 07, B7;, €75 and p7F, a7fh, oPF, R, €17, We obtain the follwing

theorem especially for v}f*.
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Theorem 1 We assume Godunov method (5)-(9) and assumptions 1-3. Then we obtain
the following formula.

n (]
N

Yij =V Az pn+1' i—l("}{fj—@?—l,j)
At” . pr ot (15)
Ay { n+1(P,y+1 Pﬁj—ﬂ—;gfﬁ 2’(?; 1 — 207 +Uu+1)}
13
+o(6).

This is the main theorem and formula to imply the machinery that the discretized model
of Godunov method amplifies the numerical carbuncle. While we show some verification
of the formula (15) via some examples of numerical simulation in the next section, here we
have some theoretical discussion on the formula. When the numerical data, especially the
density, is smooth (i.e. it does not contain so big a gradient in z-direction), there is no
ampliﬁcatxon machlnery But, once there is a big gradient of the density like a shock wave,
the factor pi +11 or f::q would be larger enough than 1 and it implies that the perturbation
{08} m1ght be a.mphﬁed in the temporal evolution from the time step n to n + 1.

It is natural to assume the odd even property of perturbations according to the obser-
vation given by [3]. In this case we have the following corollary.

Corollary 2 When the perturbation {v i }i,j at the time step n satisfies the odd-even prop-
erty;
;= (1) g", p; = (1) (16)

then the formula (15) in theorem 1 is written in the following form.

. . At™ pfr At™
'n.+1 = (-1)"%p n{l -2 (Ax :;;Hu, 1+ Ay pZTH )} + o(9). (17)

L]

The proof is easily given just by substituting the assumption (16) into the formula (15).

We remember that also the usual CFL condition for the stability can be derived from
a similar manner to the corollary above, and we understand that the formula (17) gives a
stability condition, which requires that the condition

At® pf At o
Az p:1+1 ?—1+ Ay pnl i S 1 (18)
1
should be satisfied. We easily have the following observation on the relation among the
condition (18), the usual CFL condition (14) and the smoothness of numerical data for
density p.

Observation Under the situation assumed here, the satisfaction of condition (18) depends
on the smoothness of the numerical data for density p.

1. We suppose that the numerical data for density p is smooth enough, i.e. the ratios

p‘l—- d pz

i an oo

the usual CFL condition (14) of assumption 3.

7 are near enough to 1. Then the condition (18) can be guaranteed by
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2. We suppose that the numerical data for density p has a gradient big enough.

[
T pn+1
K3 1
dition (18) might be violated even though the usual CFL condition (14) of assumption
3 is satisfied.

may be larger enough than 1. In result, the stability con-

Therefore, if a big gradient is included in the numerical data, the usual CFL condition (14)
is not enough to guarantee the stability of numerical calculation.

From the discussion above we may insist that the machinery represented by the formula
(15) in theorem 1 is a main reason of the amplification of perturbations in the numerical
carbuncle. In the next section we demonstrates some numerical examples to verify it.

The remaining part of section is devoted to the proof of theorem 1. First we analyze the

effect of perturbation V" on each of the flux differences F" 15 F." 1; and G"J 1 —G’““.7
2 2 El 7 2 !

From the assumption 2, we can use the following lemma

Lemma 3 Ifui; and uly, ; are larger enough than ci; and ¢}y, ;, respectively, the follow-
ing holds for the numerical flux F"

i
p’f:J
£ p”(u ])2 +pz_7
Fnl _F(Ugj)‘: ’n’n n . (19)
+2d pm Us,5Yi,j
ug;(ef; + L)

The proof is easily obtained from the basic property of Riemann problem (6) that [Z 1 i=
2
UT; because of the upwindness. (For example, see [1, 2].)

To discuss G" i+ G"j 1 we use liniarization. Assumption 1 means that the partial
’ 2 5
differential equation
that arises in the Riemann problem (8) is near enough to the linear problem
Ui+ A?U, =0, (21)
where
= Al ,
U=Up

and A is Jacobi matrix of the flux function G(U);

oG
oU’
It is also noted that the Jacobi matrix A is diagonalizable with the eigenvalues v—c, v, v, v+

c. Throughout the discussion, let +]' and *('; mean *l and *I , respectively.
U=Up U=Uy,

A=

Lemma 4 For the difference Gz
approzimation holds.

n
e J+2 -Gr

1
An( i1 — Uli—1) — 2 |A7| (U1 — 2U7; + Uy 41) + 0(6),

s G’:"jg 1 of numerical flux in y-direction, the following

(22)
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where the matriz |A| is given by

A1l O 0 0
_ 0 |A] O 0 -1
|A|=PIA\P1=P 0 0 | 0 P (23)
0 0 0]
using any diagonalization
A 0 0 O
10 A 0 0} 5

A= 0 0 X 0|~ P7AP (24)

0 0 0 M

of the matriz A. It should be noted that |A| is uniquely determined.

Proof:
We consider the following Riemann problem (25), which is the Riemann problem (8)
with the PDE replaced by the linearized one (21),

U, + AP, =0
Ur,  y<0, (25)
U(y,0)={ ‘1

and the exact solution U = U(y,t) = Uj;,(y/t; U, Ul4q) to the problem (25). The
linear problem (25) is solved by characteristic decomposition into four scalar equations in
characteristic variables. (See basic text books, for example, [2].)

From a matrix A we determine the matrix sgn(A) by

gn(A;1) O 0 0
_ 0 sgn(h) O 0 1
sgn(4) = P 0 0 sgn(ds) O P (26)
0 0 0  sgn(Ag)
using the diagonalization of A;

A 0 0 0

14p_| 0 X 0 O

PTAP = 0 0 X O

0 0 0 M

and the function sgn(s) (s:any real number);

-1, <0
sgn(s)=¢ 0, s=0
1, §>0

Then we can write the solution Ujip in the form

1 ‘ n
Uhn(§ U,J’ tJ+1) (Un + 1]+1) ésgn(A EI)( ij+1 UZ,‘,), (27)
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where [ is the unit matrix. We obtain

n n 1
Ulin(o Uzy’ U; ]+1) (Ui,j + i,j+1) —Z'Sgn(A ) ( 3,741 U:j) (28)

especially in the case £ = 0.
Then we obtain the following approximation.

. 2
ZG(U:“;) G(U,nj..;)
= AUy — U0y +0(6) (29)
“An(Uhn(O Ul Ullie1) — Ugin(0: U721, UTy)) + 0(6)

1
An( ig+1 — Uljo1) — |A"]( i1~ 2U5 + Uilp) +0(6),

Here we mention that the relation A - sgn(A) = |A| is used.

This completes the proof.

Now we observe A and |A|. For simplicity, we rewrite the PDE (20) in the following
non-conservative form using the primitive variables p, u, v, p.

Pt +vpy +pvy =0
Ut +'U'U:y =0
N +uvy I—g =0 (30)
Pt +7puy +upy = 0
that are quivalent to
P v 0 p O
u 0 v 0 O
Vi + BV, =0, where V = v B=10 0 o % (31)
p 0 0 p w
We observe the following facts easily.
Lemma 5 Between U and V', hold the followings.
1 0 0 O
ou U p 0 O
v=| v 0 p 0| #2)
2 2
Pl v
and
1 0 0 0
oV _ (8U —~2 1 0 0
bl S - p p
aUu (av) —% 0 1 0 (33)
2L (w2 + v?) —(y=lu —(y-1v y-1
Lemma 6 The matriz B is diagonalized as follows.
v—c 0 0 O
0 v 0 0
-1 - —
0 0 0 v+c
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where .
pop P P L 27{
0 ¢ — 0 a_|% om0 -3
Q=120 o ad Q=¥ ¥ o . (3)
2p 2c 1 %yp
v 0 0 9p 0 0 5 35

By the relation A = (g‘U/) B (gg—) , which is easily observed, we also obtain the following

lemma.

Lemma 7 The matriz A = g—g— is diagonalized in the following manner.

v—c 0 0 O
AN U 0 v 0 O
EDRICE RS I A
) 0 0 0 v+ec
Using lemmas 5-7, we we proceed the calculation from (29);
G?,j+§ ~ Gy
= G(OF,,) - 6T, y)
1 /0UY* ov
=3 (57 ) erarn (37 ) @i - vz
1 /06U s —
-3 (v @ 1@ (5 )| VT 208+ Uy) 009
1/0U -
~5 (50 ) [@rar @ (W - 035a)
—QF AP (@)™ (Vi — 2V + V- 1)]+o<6) (37)
1| ul g 0 0 00 0 O _1+1 ,J 1
== n 1 "
2 (ug)z 0 pf (1) 00 0 o ‘t.7+1 ,J -1
5= 0 0 -5 00 vy O D1 — Pija
000 & {321+1 ;ﬁm‘*'ﬁm -1
_ 00 0 O 1,_1+1 i, +u‘z.7 1
0 O C;l 0 3J+1 2U +UZJ 1 +O(6).
00 0 P it 2pz,1+pz,, 1

Then the substitution of (19) and (37) into the definition of Godunov method (5) yields

A n
1
Py =pli— {pm Uiy~ Pi1,iUi- 1,7}
38)
At" R 1. 3 (
T 2Ay { Pz (0541 — i) — vi-1 — 2Di; +p?,g+1)}+0(5)
Z
tn
Pl tunst = ptuly — S {on (i) - Ayl g) + oy — Pl )
At" R un
32y {p?u?(vffjﬂ 0i-1) = (Pij1 — 2pw+p”+1)}+o(5)
)
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n+1 n-H__ .
Pij Yij PV {pw 2§V — Pi1,%i-1,jVi-1,5}

At?

(40)
T 9Ay { ij+1 ‘Pz',j—l) — pi e (01 — 200; + ’Uu+1)} +o(6

=€hj {“,J( R ORL S CEVES )

At P (“:')2 g/ AW uh)? 4
_2Ay { ( 2 -+ 7_1 (UZJ""I - Uz,]——l) 2;:,’ 'YT'Ll (pz’]-l 2p1’_7 +p1,3+1) + 0( ).
(41)
a.ddmg each of the both sides to those of (40) and deviding the

Multiplying (38) by —v;,

both sides of summation by p*!, we obtain
n ,n
orFl = m._ﬂ_ﬁt’_—_l.u. G
W W Agx pr_H-l i—1\%,5 = Yi-1,5
1

n

A 1 . P
Ay { n+1 (pz,J+1 p?,'j—l) - pn—:—l - ( V-1 2'"1,] + ’U,, ]+1)} + 0(6)

’ (42)
This completes the proof.

5 Numerical Experiments

We verify the formula (15) in theorem 1 by numerical calculation of a progresing planar
shock wave.

We assume a flow including a shockwave in ry-plane (two dimension). The shock
surface is a line parallel to y-axis, and the velocity vector of flow is parallel to z-axis,
i.e. the y-component of velocity vector is 0. We simulate the situation by numerical
calculation. The condition of numerical calculation is the following. Every physical value
is treated in non-dimensional manner.

1. The mesh size (number of finite volumes) is 400 (in z-dirextion) x 20 (in y-dirextion).
The mesh is uniform and Az = Ay. i.e. We extract the rectangular region [Tmin, Zmax] X
[Zmins Ymax), Where Tmax — Tmin = 400AZ, Ymax — Ymin = 20Ay, and then we divide
the region into 400 x 20 rectangular finite volumes of the same size Az x Ay.

2. The temporal increment At"™ is determined to satisfy the assurhption 3. Practically,
let the constant C in (14) be 0.7 and then we take the equality of (14) to determine
At

3. The left state and the right state of shock wave are given as the following table.

| Left Right
Pressure p | 5.999 1.0
Velocity » | 20.60 1.0
Pressure p | 460.9 0.01

The adiabatic constant v is 1.4.

4. The boundary is treated in the following manner.



a) Supersonic inflow condition at {Tmin} X [Ymin, Ymax)
b) Supersonic outflow condition st {ZTmax} X [Ymin, Ymax]
c) Slipping boundary condition at [Zmin, Zmax] X {Ymins Ymax }

5. We use the scheme of Godunov method (5)-(9).

We mention that the situation of numerical calculation satisfies the assumption 1-3 in
the previous section.

Godunov method (5)-(9) is of the first order accurate. Therefore the shock that is
captured by numerical computation is smeared, i.e. includes several intermidiate states
between the left and right states. The smearing is caused by the scheme’s own numerical
viscosity. On the other hand we remember the property that the characteristics associated
with a shock wave collide with the shock wave from the both sides. The property still
works in the numerical calculation, 7.e. the information of left and right states always tend
to propagate toward the shock wave. Therefore the numerical smearing of shock wave does
not expand beyond some extent. In fact, after some time steps the profile of shock wave
is somehow stable and includes around 20 intermediate states between the left and right
states. See figure 1. (Between the two lines, there are 20 nodes.)

As the time is going on, the occurence and growth of numerical carbuncle is observed.
Figure 2 shows the situations at the time ¢t = 1,5,7,10. At ¢t = 1 the curbuncle is not yet
seen, and at t = 5 it is still rather small. Then, it grows rapidly and the curbcuncle nearly
destroys the calculation at ¢ = 10. This is never a good numerical result, but it is a good
demonstration of numerical carbuncle.

Using the numerical data we now examine to which extent the formula (15) is valid in

the real numerical carbunle. We estimate the left hand side 1‘)23"1 of (15) taking the value of

v{f}'l from the real calculation. We also calculate the right hand side with the values from
real calculation, which means that to 9%, 9%, ;, 941, B7j11 — PRj_1, PP1, PP and g2t
we substitute vil;, vl j, V741, Pije1 — Pij—1s Pie1,j Pij and p:-fjl, respectively. Then we
calculate the relative error of right hand side (RHS) from the left hand side (LHS);
(RHS) — (LHS)
(LHS) ’

Tables 1-4 show the relative error, where the integer +M (M > O)means that the
relative error is equal £M% or between +M% and +(M + 1)%. The tables show only the
part of numerically caputured shock wave where the carbuncle phenomenon is observed.
The left column shows the numbers indicating the position of each node in z-direction.

We observe that the the formula follows the amplification of numerical curbancle rather
well. Even at ¢t = 7 or t = 10, when the numerical curbuncle is rather strong, the coin-
cidence between the left hand side of formula (in some sense, theretical estimate of the
amplification of numerial curbancle from the time step n to n + 1) and the right hand side
(the real error) is still much better than might be expected from the caotic pictures in
Figure 2 by which one would feel that the computation is almost destroyed. We observe
some number in the tables are so big as 159 or 51. The violation of assumption 1, espe-

cially the fail of linearized estimate (22) for G’:.‘j +1—G?._1, gives such big numbers. But,
> 2 2

i,
generally speaking, we observe that the formula (15) demonstrates the propagation and
amplification of numerical carbuncle rather well.

We conclude that the formula (15) in theorem 1 gives a good explanation of the growth
of numerical carbuncle until it becomes too big to apply the linear approximation (21) to
Riemann problem (8).

189
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6 Concluding Remarks

The discussion in this article gives some theoretical explanation on the growth or amplifi-
cation of numerical carbuncle. It is interesting that linear approximation in the direction
parallel to the shock surface is useful to obtain the explanation. We a,lso mention that the
: 7
nonlinearity of the compressible Euler equations results in the ratios %1—11 and ﬁ—ﬂrl of the
Pi Pi

density when we obtain the formula (5).

The discussion here is still restricted to some specilized case. It may be an interesting
problem to extend the analysis to some more general case, while the extention does not

seem so direct.
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