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Abstract

In this paper we study a boundary value problem for an infinite elas-
tic strip with a semi-infinite crack. By using the single and double layer
potentials this problem is reduced to a singular integral equation, which is
uniquely solved in the Holder spaces by the Fredholm alternative.

And we also study a quasi-stationary model of crack propagation in an
infinite elastic strip with a semi-infinite crack and how to determine the
real crack propagation from virtual crack extension by applying maximum
energy release rate criterion at the crack tip. Then we prove that the crack
propagates the direction only given by surface force.

1 Introduction

Theory of elasticity has been thoroughly developed (see for example, [17], [18],
[19]). Mathematical existence theorems in a linear elastic theory were established
by Fichera [6]. Recently, Constanda studied the boundary value problems for the
system of equilibrium equations of plane elasticity in [2]-[5]. By means of elas-
tic single and double layer potentials he reduced the boundary value problems
mentioned above to the integral equations. Then applying the theory of inte-
gral equations lead to the solvability of the interior and exterior Dirichlet and
Neumann problems. However, the problems considered in [2]-[5] are those in a
compact domain without any cracks.

On the other hand, for boundary value problems in a planar domain with
cracks, Airy’s stress function is, in general, used so that the system of partial dif-
ferential equations is transformed into a biharmonic equation (see, for example
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[8]). Although the stress tensor is uniquely determined by this transformation, the
boundary conditions seem to be inequivalent. Recently, Chudinovich and Con-
standa [1] investigated plate problems for both an infinite and a finite plates with
a finite crack and proved a unique solvability in Sobolev spaces. Krutitskif [14]-
[16] studied the Dirichlet and Neumann problems for Laplace and Helmholtz
equations in a connected plane region with cuts. The problems were reduced to
Fredholm integral equations of second and first kind, which were uniquely solv-
able with the help of a nonclassical angular potential.

In the present paper we consider a problem in a two-dimensional infinite elastic
strip with a semi-infinite crack. This problem leads to a singular integral equa-
tion by the potential theory. By proving the compactness of singular integral
operator and using the results in [13], [20], [25], the existence of a unique solution
is proved by the Fredholm alternative.

And propagation of cracks is a phenomenon which leads to the brittle failure
of materials. Analysis of the crack growth has been a major subject of frac-
ture mechanics from the mathematical viewpoint since Griffith’s celebrated work
[11]. Two types of fracture criteria have been advanced for defining the condition
of crack instability. The first one assumes that the onset of crack propagation
is governed by the local stresses, while the second one by energy consideration
of the crack system. Of these, the latter has been misinterpreted in [11]. To
clarify this [24] investigated the correct version of the Griffith energy treatment.
And [23] dealt with the application of linear elasticity to fracture and discussed
dynamic running crack problems, the energy rate computations and the stress
concentrations at smooth-ended notches. [8] described the energy release rate at
the crack tip following [23] and [7]. [9] analyzed an asymptotic solution of fields
near the moving crack tip. The coefficients of leading terms in this solution is
called stress intensity factors. When a crack propagates in an elastic medium,
the stress intensity factors evolve with the crack tip. Then, [10] derived formulae
which describe the evolution of these stress intensity factors for a homogeneous
isotropic medium under plane strain conditions. At present, it is well known
that there are many criteria which determine the crack extension. Ohtsuka [22]
introduced the three famous criteria in homogeneous isotropic elastic plates and
showed the crack extension is described by the stress intensity factor. In the
present paper we only apply the maximum energy release rate criterion of them,
(see for example [26]). For virtual crack extension, using the results of [21], [22],
an energy release rate due to non-smooth crack growth can be represented by
calculating the potential energy function. And in our situation we show the di-
rection of kinked crack extension can be given only by the surface force without
using the stress intensity factor.



2 Preliminaries

By v = (ui)i=123, € = (€ij)ij=123 and o = (04;)ij=1,23 We denote the dis-
placement vector, the strain tensor and the stress tensor, respectively. The linear
elasticity equations for a homogeneous isotropic material consist of the constitu-
tive law (Hooke’s law)

0y = 2p€i; + Aeprbij, 4,5 =1,2,3 (1)
and the equilibrium conditions without any body forces

0 ..
—a—;:;a,-,- = 0, 1,] = 1,2, 3. (2)
Here and in what follows we use the summation convention. A and p are Lamé
constants, d;; is the Kronecker’s delta and the strain-displacement relation is

given by ‘

€ij = -;- (uij + Uj,i) , Ui =0, 1,7 =1,2,3. (3)
In the state of a plane strain, the 3rd component u; of the displacement u is zero,
while the components u; and uy are functions of z; and z, only, hence ;3 = 0,
013 = 093 = 0. Let Q@ = {(z1,23) | 71 € R,—a < z2 < a} (a > 0) be a strip
in R2, representing a homogeneous elastic plate. Then (2) gives the system of
equations '

A(By)u=0 (4)

for u = (uy,up)T, where A(8;) = A( 6, o ) ,

821’ Bzy

&=g+8.

2 A 2 A
Al ) = (Nf + (A + )& (A + wéi&s )’

A+méls  pe+ A+ p)é

We assume that shearing strain p > 0, modulus of compression 3\ + 2x > 0, in

which case it is easy to see that the operator A is elliptic. Moreover we introduce

the boundary stress operator T(9;) = T (%, %) defined by

(A4 2p)néy + pnés uvefy + Ao )

T(61,62) =
(61, 62) ( Aioby + pnks  pinés + (A + 2p) e

where v = (v1,1,)T is the unit outward normal to 8. In the case of v = (0,1)T

pé2 | 73 )

T(£,, &) =
) (mcwwm
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We denote by I' = {(z1,0) | —oo < z; < 0} the crack in Q. On the crack we
assume the free traction condition

t Ty = +
ogvi=o05v; =0 on I¥, (5)

where 't means both sides of I'. Here for every z € I" af;- = 0i5(z) means the

limit of (v, 0:;(Z)) as Z € Q\ T tends to z € I along the normal v,, in this case
vz = (0,F1). The limit values ¢ and oj; may be different in general, therefore
0;; may have a jump on I. At the end-point (0,0) of I' we assume

. + —
L "if”flzeri\{(o,on =0

On 0Qy = {(z1,a) | z1 € R}, Q- = {(z1, —a) | z1 € R} (a > 0) the boundary

conditions

vu=0 on 00_, (6)
OV =p; on 8(2_,. (7)

are imposed, where p; are given continuous functions on 99Q.,.
We introduce the class K of functions u(z) with the properties (cf. [16]):
) ueC\T)NC*Q\ D),

2) Vu € C°(Q\ T\ {(0,0)}),

3) in the neighborhood of (0, 0) there exist positive constant C' and € > —1 such
that

| Vuz) [KClz [ as z—0, | (8)

4) for every z € 014 there exists a uniform limit of (v, Vzu(Z)) as z € Q\ T
tends to x € 00+ along the normal —v;.
We define the internal energy density by

1 1
E(u, u) = 50’,‘_7'5,']' = 5 {/\(ul,l + 'U/2,2)2 + ZM(uil + Ug’z) -+ M(ul,z + U2,1)2} .

Then it is easy to see that F(u,u) is a nonnegative quadratic form and that
F(u,u) = 0 if and only if u is a rigid displacement

u = (¢ + oz, ¢y — Coz1) T (9)
with arbitrary constants ¢y, ¢; and c¢,. It is easily seen that
F=(1,07 F= (0, DT, F3=(z,, ——xl)T
consist of a basis of the space of such rigid displacements. For the matrix

F=(Fl’ F2> F3)
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it is clear that AF = 0 in R?, TF = 0 on 8. UT, and a generic vector of the
form (9) can be written as Fk with an arbitrary constant vector k.

Furthermore, we introduce the class p = {u |z — 0 as | | = oco}. One can
easily verify for u € C2(Q\D)NC*@Q\T) Np

/ FTAuda=/ FTTuds+2/FTTud3.
o\r I r
Also, if u € C?(Q\T)NCYQ\T) N p is a solution of (4) in Q\ T, then
_ T T
2/9\FE(u,u)da—/{;Qiu Tuds+2/ru Tu ds. (10)

Indeed, Divergence Theorem and (4) yield that for any uw € C2(Q\I')NCH(Q\ )N
P

0= / uT Au da = ——2/ E(u,u) da+/ uwTu ds + 2/ uw Ty ds.
o\r Q\r 80 r

3 Integral equations on the boundary
It is well known that the fundamental matrix of A(J;) is given by

D(z,y) = A*(8:)t(z, 1),

where A* is the adjoint operator of A and #(z,y) is a fundamental solution of
p(A +2p) A%,

tz,y) = —{8rp(A+2u)} |z —yPIn]|z—y|.

Hence, D(z,y) is given explicitly by

D(z.y) 1 Dy Do 1)
TY) =~ N )
Amp(B+1) \ Dy Dy
~ ~ (T2 — 12)?
Dy =2ihh|z—-y|+20—-142-——,
11 filn | y | +24 (z—y 2
z, — y1)(z2 —
D1y =D21=—2( 1= y1)( 22 ’yz),
EXS
)2
Dy, =2ﬁln|x—y|+2ﬁ—1+2(|xxl_—zll)2,

A+ 3p
A+ p
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In view of (11), D(z,y) = D(y,z) = D(y, z)".
Along with D(z,y) we consider the matrix of singular solutions

P(z,y) = (T(8y)D(y, ))",

which is written explicitly as

P(z,y) = 1 —6—1n|x—y|1+g:—1—a—ln|x—y|f
21 \ Oy, [+ 107,

(12)

+

2 ;0 (@—y)"z—1)
g+1 0 |z—yl?

with I = ( (1) (1) ), I= ( _01 (1) ) and 7 = (11, 72)T a unit tangential vector to
o0, UT.

It is easily verified that the columns of D(z,y) and P(z,y) are solutions of
equation (4) for any z € R?, y € 0Q. UT, z # y, and that

D(z,y)=0(n|z|), P(z,y) =0(|z ") as |z |- c0. (13)

Now we denote by D and P the reflection of D(z,y) and P(z,vy) with respect
to 00 = {(z1,—a) | z; € R}

ben=o((2) (1)) -2(( e ) (B)) w0
Pen=p((2)(5)-2(( ) () @

Then it is obvious that the columns of D(z,y) and P(z,y) vanish on dQ_.
Using a potential theory, we will find a solution of problem (4)—(7) in the form

u(z1, z2) = Vo, (9) + Vo (f) + Wr(9), (16)

where

Voo, (9) = /am D(z,y)g(y) dy,

() = fFD(w, ) f(y) dy,

Wr(g) = frls(:v,y)g(y) dy,.
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Now let us introduce function spaces. By C%*(G) we denote a Hoélder space
with exponent o € (0, 1) of functions defined on a domain G and by C'#(G) the
subspace of functions of C'-class whose first order derivatives belong to C%#(G),
B € (0,1). If (f,g) € CO*(T) x (C%=(02,) N C#(T)), then it is easily seen that
u defined by (16) is continuous on 8§, U T and satisfies (4) and (6). In order
to see that u satisfies boundary conditions (5) and (7) we substitute (16) into (5)
and (7) so that we deduce the integral equations for g (cf. [3], [25]). From (7) it

o (%) row fo,mo((2):(4)) (%)
hro((2)-(8)(5)
frr((2)(5)e(%) m=(3) oo

where the integral on 02, means a principal value. Let

Qz,y) = —?ﬁzli—ﬁ(lﬂx—yll—j_f.(m'l—j)j(yxl;‘y))’
e = of(2):(0)-ol(a)-(0))
Then ) -
TP = —B'rmaTyQ'

Substituting (16) with P replaced by Q into (5) yields
(5 humn((3)(2)e(2)
e fmo((3).(5)e(5) »
-a((3)-(3))o(5)] .
oo foare((5)(5)) s (5) = (3). oo

where the integrals on I are taken as principal values. The upper and lower signs
correspond to the integrals on I't and I'~, respectively. One can easily check that
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the solution u of the form (16) satisfies condition (8) (cf. [15]). Subtracting two
equations in (18) implies

I _ 0
f(o)—(o) on TI. (19)
Therefore the integral equation (17) on 6Q‘+ becomes
(Z + %I) g=p on 00, (20)

with Z = T(Vaq, + Wr). And adding two equations in (18), we obtain
3 T ()1 1
2 ((5):(%)) () o

9 = T N [ ’

-20((5):(5))a(%)]
y1=-00
0 = Al {5 _é_ n — 0

+V.p. -~ '5; (( 0 ) ) ( 0 aylg 0 dyl - 0 3 (21)

oo 20((2)3) =5} (3)
Lo((3)(2))o(2) o
-2a((3) (1) (2

Now we introduce the new space C,,"""(G) defined by

0
(22)

y1=-—00

Cy*(G) ={f(z) €C**(G) | fz) =O(lz | ") as |z | 00} (1<7)
equipped with the norm |

g “'y,a'—"” g ”7,00 +19 Im (23)

|9() —9(3) |
=sup | (1+ | z |M)g(z) |, = su 7 ’
|9 lho=sup] 1+ [2Mg@) |l 1gl= sup 52—
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Let g € C%#(T') and vanish at the end of crack. Inverting the singular integral
operator (22), we arrive at the integral equation of the second kind (cf.[20])

_ 4 0 R(y) dy: ~
( Yl)a 9(z) 7r2R(m)/R — BQ+TD(y,z)9(Z) dz,

as R—o00, z€l, (24)

where the integral on I is in the sense of principal value and

(g = s [ FO 1 (2 50— LY s,

-R Y—2Z
R(z) = +/(z + R)z.

4 TUniqueness and existence of solution

In this section we prove that problem (4)—(7) has a unique solution.
THEOREM 1 Problem (4)—(7) has at most one solution of class KN gp.

Proof. Let 4 be the difference of two solutions of class XNy to problem (4)—(7).
Then, 4 satisfies (4)—(7) with p = 0. Therefore, (10) implies

E(@,4)=0 in Q\T.

Hence, 4 is of the form (9) in Q\T. Since @& € p, we conclude that 4(z) = 0,
zeQ\T. =

From (11), (12), (14), (15) and straightforward calculation one can easily obtain
the following lemma. Similar result is proved in [4] in the case of a compact
boundary.

LEMMA 1 If f € C%*(8Q4 UT), then
(1) Wfep,

(i) Vf € p.

Next we will prove the existence of the solution. As shown in the previous
section, problem (4)—(7) is reduced to integral equation (20) for g on 0Q2,. Since
the kernels of Z are 1 — singular kernels on 01 defined below, it is not so easy
to solve it.

Here upon, following [3], we call a matrix function k(z,y) defined for all z € 0Q,
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and y € 0§1;, z # y, and continuous there an w — singular kernel on ),
w € [0, 1] if there exists a positive constant m such that

| k(z,9) [Sm|z—y[™ for all z, y€dy, z#y.

If an w — singular kernel k(z,y) on 09, satisfies

| k'(:r;,y) —'k(ﬁ’y) |S m l zT—1ZI H rT—Y I—w_l
forall z, £ € 00, and y € 904, 0<|z—Z |< % |z —y |, then k(z,y) is called a
proper w — singular kernel on 0€1,.

THEOREM 2 If k(z,y) is a proper w—singular kernel on 0Q., w € [0,1),
k(z,y) = k(y,z) and k(z,y) = O(| z |™!) as | z | oo for any y € 89, then
operator K defined on C3* by

(Ko@) = [ ke )ol) du, o €00,

18 compact.

Proof. This theorem was proved in [3] in the case of a compact domain. In the
case where 02, is unbounded, however, the compactness of K is not a direct
consequence of that in the compact domain. We prove here that K as a mapping
from C%(8Q4) to C2*(8Q), v > 7 > 1, with o = 1 — w for w € (0,1) and any
a € (0,1) for w = 0 is compact.

Let M; be a bounded set in Cg’“(69+), that is, there exists a positive constant
¢ such that

| gllve<c forall ge M, (25)

and let {0,}32, C M, = K(M;). Then there exists a sequence {g,}32, in M,
such that 6, = Kg,, n=1,2,3,... It is obvious that 8, € C%*(6Q.).

(23), (25) imply that {gn}32, is uniformly bounded and equicontinuous on
C(094). Thus by applying Ascoli — Arzeld’s theorem there exists a uniformly

convergent subsequence of {g,}32;, which is denoted by {g,}32, for simplicity,
and a g € C(09) such that

I 9n— 9 |ly,0— 0 as n — oo. (26)

Let 6 = Kg. Then, 6 € cg’“(am) for some constant 4, 1 < 4 < . Really, we
have

|6al@) = 0@) |< [ 1 K@) 1| 9a0) ~ 9(0) | dy

<a

1,

sup | gn(y) — g(y) ! / I k(.’l,‘, y) l d

|z {7 yesa, [1 -2 Flz—y [V oo |z —y 7



consequently,
’ 977' -0 l (x) Lo | z |_:/” gn — 9 “’Y—%OCH n= 1’2’ 3. (27)
with some positive constants c;, ¢;. Since k(z,y) is a proper w— singular kernel,

| K(gn — 9)(z) — K(gn — 9)(Z) |

- . /a o [k(z,y) — k(Z,9)](9n — 9)(¥) dy

<cslz—Z|* sup ||y|" (9. —9)W) |
y€8Q+

Hence,
l On - 0 las 63 “ gn - g “fy,w, n= 1,2, 3, ven (28)

The assertion now follows from the fact that the constants ¢, ¢, c3 are indepen-
dent of z and Z. (27), (28), (23) and (26) yield

|6 —0]la—0 as n— oo,

which proves that K : C*(09,) — C3*(6) is compact. O

THEOREM 3 Problem (4)—(7) has a unique solution u € X N p for any p €
C3*(8Q) with any a € (0,1) and any v > 1.

Proof. In (20) Z is represented as Zg = K19 + Kag, where

‘ 1
K,g =v.p. g ( y ) dy1,

0y T — Y1 a
(29)
Kyg =(Z - Ki)g.

Then K, has a 1-singular kernel and K is a non-singular operator. Applying the
operator (K; — 1I) to both sides of (20) yields

1 1 1
((K1)2 + KiKy — 5Ky - ZI) g= (Kl - 51) p. (30)

Here we claim that

((K1)*g)(z)

=/ ;[/ Q_(del} au,
o, T—y |Jen, y—2

= —7r29(w)+/ [/a 9(z) )dyl] dz;. - (31)

oy [Joar (z—y)(y—2
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LEMMA 2 If g € C)*(09), then (31) holds.

Proof. In the case of a compact boundary (31) is well-known as a Poincaré-
Bertrand formula ([20], §23). For convenience we consider the functions of a real
variable £ = (z1,z;) as the functions of a complex variable z = z; + izs. Let
T =1+ 1Ty, Yy = th + iy2 and 2 = 21 + i22. In the present case where 0(1, is
unbounded first we prove the formula

/a ! [ $(v,2) dzl] dys

Q. T —Y |, y—2

=-m¢(,2) + a0y Vam (z —¢$i;)— z) dyl} da

for ¢ € C*(004 x 09). Let

o(t) = fa -—1—[ ¢—(y-’—z-ldz1} dys,

Q. t—y |Joay Y —2

where t = t; + ity is a point on the plane, not on 0€2,. Then,

o(t) = (1) | (32)

holds. Indeed, it is sufficient to prove

_ o0 1 ‘ y1+€¢(y’z)
Il _.-[—oot—y[/yl—s — dz1 dy1 — 0,

no= [ e e e oo

as e — 0.

For I, we divide the integral over (—oo, 00) three

) o -R R
Lom o+ ]e
—00 R —00 -R
Since the above assertion for the third integral was proved in [20], we consider

ther for the first and second integrals. Since ¢(y,z) € CP*(09% x 0Q), when
R is sufficiently large, the first integral can be estimated as follows.

[ 1 [/yym 9w, 2) dzl] dy,

R t—y 1—e Y— 2




/oo 1 [ /yms (qb(y,z)—cb(y,y) +¢(y’y) dzl} dy,

R t—y [Jn-e y—z —
© 1 [ru+e (C(¢(y,2) | +]6(y) D*  dv)
s /R m [/yl_e ( |y — z |I-(1-&)a + y— 2 ) dzl] dy,

< €92 sup ||y | d(y,9)|*
R—e<y1 <00

— 0 as € — 07,

where C is a constant and 1 > a > @ > 0. In the same way the second integral
tends to 0 as € = 01. Similarly one can show that I, — 0 as € — 0*.

We denote by ®*(z) and &~ (z) the limits of ®(t) as t - x from the upper and
from the lower of 8., respectively. By the Plemelj’s formula, the relation

(I>+(a;) + ‘I)_(z) =92 —1—— { M dzl] diy, (33)
e, T—y |Jony y—2
holds. Furthermore, ¥(t) is represented as
G
() = b, 2 —1 dzy, (34)
1 1
wat = [, (1) s

Denoting by 1% (z;z) and 1~ (z;z) the limits of ¢(z;t) as ¢t — = from the upper
and from the lower of 9,, respectively. Again by the Plemelj’s formula we
obtain

¢+(z;x)_¢_(z;m) = 27rz'¢(x,z), (35)

1 1

y—r Yy-—2

- sz $(y; 2)
=269 o T

)+ a) = 2 ) ét02) am

Put

¥(z;t) = ot (z;z2)+et  (if ¢ is in the upper of 09.),
| (36)
¥(z;t) = 9 (z;z2)+e~ (if ¢ is in the lower of 0Q).
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Then it is obvious that e — 0, e~ — 0 as t — z. Moreover, one can prove

et €”
/ dz — 0, / dz; — 0 (37)
My 2 —1 a0y 2 —1

as t — z along *v,. In fact,

¥ =1 ¥(zt) — 97 (250) [< C8°CD [ §(z58) — 97 (22) |9,

where C is a constant, § =| ¢t — z |, and «, & are the same as above. Therefore
+
€
/ dZ]_
8Q+ Zz — t

The case of €~ can be treated in exactly the same manner. Replacing ¥(z;t) in
(34) by expression (36) and using (37), we obtain

Y — oy (o é@
< Cda(l—&) I T/)(Z, t) d) (z,x) | d
804 |z—t]

21 =0

as 0 —0.

Ut(z) = mi™(z;2) + - ¢:(f’;) dz,

¥ (57)

3Q+ Z—=T

U (z) = —my~ (z;2)+ dz,

hence by (35)
Ut (z) + U (z)

-wtvea 2 [, ([ et e o

Since from (32) the left sides of (33) and (38) are equal, the formula is proved.
Hence, for any g € C9*(99,) and = € 09 (31) holds. O

Now we return to the proof of THEOREM 3. Using Cauchy’s integral theorem
to the integral in the right-hand side of (31) yields

(K1)’g)(z) = —mg(z)

1 dyl dy]_
+/an+ |::E-Z (Ln+z_y ~/<90+Z—y) g(z)} dz;

= —mg(z).

Hence, equation (30) can be written as

(Kike - 3o = G +701) o= (Ki = 51) (39)



It is easily seen that K,g satisfies the Lipschitz condition if ¢ € C3*(99) and
the right-hand side of (39) also belongs to Cg’a(69+) if p € C9*(0Q,). Since
KK, and K, have proper 0 — singular kernels, by THEOREM 2, we can apply
Fredholm’s theorem to problem (39) in the dual system

(U 0200, U c8(09.))

¥<70 ¥<y<v0
with a fixed v > 1 (cf. [5]).
We can apply the same argument to (24). The operator ¥; can be decomposed
into

Y1 =Y + Yo,

where Y7; has a 1-singular kernel and Yy is a non-singular operator. Similarly,
if 6—21—9 € Cg’ﬁ (') which vanish at the crack tip, then we can apply Fredholm’s
theorem in the dual system :

(Ucm), U 6 ).

<70 F<r<70
It is not difficult to prove that u defined by (16) with g given above is a desired
solution to problem (4)—(7). O

Moreover, we require stronger regularity of g.

THEOREM 4 If p € C*(09), then g € C}*(8Qy) N C2A(T') whose first
order derivative vanishes at the crack tip.

This THEOREM 4 can be proved in a similar way as in the proof of THEOREM
2 in [12]. :

5 The model of crack propagation

In this section we consider a quasi-stationary model of crack propagation. To
obtain an explicit formula we adopt the energy criterion given by Griffith [11].
According to his theory, when a crack is extended, there is a flow of energy from
the stress field in the body to the crack tip. This energy is stored on both faces
of the newly enlarged crack. In the case of linear elasticity, we call the released
potential energy G as the crack increases a unit area the energy release rate.
Following [22], we represent G in the form

G = — lim Hlte) ~ W) (40)

e—0 £

where II is the potential energy functional defined by

I(u) = /n\r E(u,u) dz — / s-udz; (41)

N+
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and s = (s;) = (oyv;) = Tu.
Now let us consider the virtual kinked crack extension

T, ={z. |z = 20+ %,20 € T,% € T} (42)

with T = {kX = k(cosfy, sinfp) | 0 < & < £}. This means that the virtual crack
extension I'. propagates with an angle §;. Then we deduce the boundary value
problem with respect to the displacement u,

(Au, =0 in Q\T,
Tu.=0 on I,

*
()j ue=0 on 0Q._,

Tu.=p on 09y,

\

where 'Y mean both sides of I'.. We seek a solution u, of problem (*) in the
form

U = u + €l, (43)

where v is a solution of problem (4)—(7). Differentiation of T'w, on I'F with respect
to £ yields

ou, Ou, 0 Ou, 0 .
0=T ( 5 + 9%, BsE cos By + 52, aEssm 00)

rs

Letting € — 0, we get

= 0.
T+

T o+ —%cosﬁg+ —a—u—sinao
8x1 6.’82

In view of (4)—(7), (43) and (*) we obtain the boundary value problem of 4 :
(Aa=0 in Q\T,

Tia=—-T (2% cosbp + 2 sinfy) on TI¥,

(**) ) (6:!:1 8o 0) ‘

4=0 on Of_,

{ T4 =0 on 09Q,.

Similarly for u we can apply the potential theory to problem (*x), so that the
solution of (*#) is described in the form

'&(zl, .’1)2) = 1739+(h1) + Vp(hg) + Wr(hl), (44)
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where (hy, h1) € C(T) x (C9*(892) N C3#(T)), v > 1, have the similar prop-
erties as (f, g). In order for 4 in (44) to satisfy the boundary condition in (%)
we substitute (44) into (*x) and derive the integral equations on 9, and T.

It is easily obtained

(@) e oo ((2)(2)m (%) o
hro((2):(5))m(%) o
+L:rﬁ((”2),(%))m(%)dy1=(g) on 00, (45)

It yields

_5%(2«?)7( 01))’“( Ol)ylﬂo
o fu((5):(4)) (%) o

ou ou
= -T|— — r+ 46
T(B 1COSGO+32:281D0°) on , (46)
since h; vanishes at the crack tip. Note that
52 62 .
\ - = 1 -y,
0907, nlz-yl 0z,0v, nlz-yl
(47)
0? 0?
- - — 1 - .
0x,0v, Infz-y| 01107, njz-yl

Then using integration by parts and THEOREM 4, we can rewrite (46) to
_1_ T ~ T 51 ()1
(5 ) e Lo, ((5)(%))m (%) o

oo (%) (%)) (%) o

+
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ha(2) =~ 5—30(z), (19)

(2)e (2
onfoa((3)(5)w(z) o
onf22((3)(3) &n(2) o

0
—TD
+ (/{m+ 02

e 2((5) () 2) o]

Substituting (49) into (50) leads to the similar formula as (24)

2

0 . 1 ° R(y) [ v - 0
(I Yl)aa:lhl(m) ~ 7m2R(z) ./—R y—z {Tvaﬂ+hl - Tvra—a:%g |

0 v 0
-+ cos 90 (—azTVaQ_’_g + a—T-}fgg>



. d .- 0
+ sin 6, (EETV39+Q + a—y-Ygg) } dy;

as R—oo, zeTl, (51)

an=va (). () 5(3)

Applying THEOREM 3 and 4 for problem (*x), we can get a unique solution .

where

6 The direction of crack extension

In this section we calculate G defined by (40). Taking into account (10), if u is
a solution of problem (x), then II(u) vanishes except on 0. Then from (41),
(43) II(u,) is written by

1
(u,) = =3 o, pT -y, dzy = [I(u) + eII(@). (52)

In order to determine the crack direction 6y we apply maximum energy release
rate criterion in 2-dimensional plane (cf. Wu [26]). Thus by virtue of (40), (52)
we seek the angle 6y such that

max G= max (-II(2)). | (563)

—n<fo< -
From (24) it implies that

0

_ (1:)=Y3(TVaQ+g) on T, (54)
8.’L'1

where

. -1
Yag = lim ((1+7I'2)I-Y11Y10—Ym)

{(I +H) ( i, 7oy v T2 1) } |

Substituting (54) into (39) yields that

g(z) = (K1K2 - ‘;'Kz ~ (-}I +7r2)I) - {(Kl - -;—I) p} on 09Q,. (55)

Similarly, h; is described by g and 6. Indeed, from (51) it follows that

0 ~ - 0%
—hi(z)=Y; (TVaQ+h1 -TVr—;

6y + B; sin 6 ', (56
o amzl,g)+Alcos o+ Bisinfy on I, (56)

87



where A;, B, are functions defined by

0 __~ 0
A = Y, (a—szVamg-i- -a—;;ng) ,

B,

0 .~ o)
Ys (%;Tvamg + 5;;169) .

Substituting (49), (56) into (45), we have
h1 (ZE) =C+ A2 CcoS 90 + B2 sin 00 on 8Q+,' (57)

where

C = (K1K2 - §K2 - (Z"i‘ﬂ' )I)

(e~ 30) (£ [ @) (i) |
4 = (K1K2~%K2—(:11-+7r2)1)_1

(29[ 2] )
B = (Kika- -;—Kg - (:11- +797) B

1 0 ~ ‘
K, —=I — - .
{(xi-37) ([ 20en) 50
Since A;, B; and C are functions depending on g, h; depends only on surface
force p for i = 1,2. Hence, substituting (49), (56), (57) into (44), we have

~ - 62
@ = Vpa, (C+ Azcosby + Bysinby) + Vi (— 5;59)
1

. _ - 2
-l'Vf\t (Yg (T‘/ag_'_ (C + Ag COS 00 + Bz sin 00) - TVra—g) .

oz?
+A4, (;os 6, + Bj sin 90) )
since (47) leads to
Wr = E%Vr

Thus, from (52) II(#) is written as
—2I1(4) = D + A3 cosfy + Bssin by,




where
52
D =
/an+ (Vag+o + V[' .’II )

- 2
+VF< (TV@Q+C TVr 9 ))) dz,,

e
As

Lo, 7" - (Voa o + V5t (Y5 (T30, 42) + 41)) das,
By = [ 0" (Voa,Bot % (¥ (Tan, By) + BY)) dan.
(40) is equivalent to
G= %(D + As cos 0y + Bssin 6y).
From this it is easy to see that G attains the maximum value in (—m,m) at

B
— Tup-L (B2
fo = Tan ( Ag). (58)

Hence, summing up the above

THEOREM 5 Suppose a homogeneous elastic body Q2 with a crack T is loaded
a surface force p. Then according to mazimum energy release rate criterion T’
propagates along the direction 6y given by (58) dependent only on surface force p.
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