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1. Introduction and main results

Let ® C R3 be a simply connected and bounded domain with smooth boundary
and let £2 be an exterior domain to O, i.e. 2 = R?\ O. Suppose that there is some
Ry > 0 such that 82 C Bg,(0) = {z € R?||z| < Rp}. In this note we study the initial
boundary value problem of the magnetohydrodynamic system (the Ohm-Navier-Stokes
system) in £2 x (0, 00) concerning the velocity field v = (v (z, t), va(z, 1), v3(z, 1)), the
magnetic field H = (H,(z,t), Ha(z,t), H3(z,t)) and the pressure p = p(z, t):

(v —Av+ (- VIv+Vp+HxcurlH=0 in 12 x(0,00),
H,+curlcurlH+ (v-VYH—- (H-V)y=0 in £ x (0,00),
ﬁ divve=0, divH=0 in 2 x(0,00), (MHD)
v=0, culHxv=0 v-H=0 on 08 x (0,00),

v(z,0) =a, H(z,0)=b in L.

\

Here a = (a;(z), a2(x), a3(z)) and b = (by(z), ba(x), bs(x)) are prescribed initial data
and v is the unit outward normal on 9{2.

The magnetohydrodynamic system is known to be one of the mathematical models
describing the motion of incompressible viscous and electrically conducting fluid (see
Cowling [3] or Landau and Lifshitz [10]). We impose the perfectly conducting wall
on the magnetic field on the boundary. The perfectly conducting wall means that the
surface of the obstacle is the perfect conductor.

The main purpose of this note is to show the global existence theorem for (MHD).
The initial boundary value problem of the magnetohydrodynamic system was treated
mainly in a bounded domain. Sermange and Temam [14] and several authors consid-
ered the interior problem by the Galerkin method. However, in general the Galerkin
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method does not work well in unbounded domain case. So we shall take another
approach. Yoshida and Giga [17] considered the interior problem by the nonlinear
semigroup theory and constructed the global strong solution. ‘

On the other hand, there are some works in exterior domain. Recently Zhao [18]
considered the magnetohydrodynamic system with non-perfect conductor body case,
that is the boundary conditions for the magnetic field are replaced by the homogeneous
or nonhomogeneous Dirichlet conditions. However from a physical viewpoint, the case
of the perfectly conducting wall is also important. The author knows only the result by
Kozono [9] concerning the case of perfectly conducting wall, where the weak solution
was dealt with. There has been no result on the global existence of strong solution to
(MHD) in the exterior domain.

Our approach is based on the argument of T.Kato [8]. Kato showed the global
solvability of the Cauchy problem of the Navier-Stokes equations in RYN (N > 2) with
small initial velocity with respect to L¥-norm. The argument of Kato is based on
the estimates of various Li-norm of the Stokes semigroup. In particular L%-L" type
estimates play crucial role in it. The argument of Kato was extended to the case of N-
dimensional exterior domain (N > 3) by Iwashita [7]. Our aim of this note is to show
the global solvability of (MHD), by use of the argument of Kato and Iwashita. In order
to do this, one of the main points is to study the linearized problems corresponding to
(MHD). They are consisted of two systems of equations. First is well known system
of the nonstationary Stokes equations and second is the linear diffusion system with
the perfectly conducting wall:

u +curlcurlu =0, divu=0 in £ x (0,00),
curlu xv =0, v-u=0 on 812 x(0,00), (1.1)
u(z,0)=b in L.

Here u = (uy(z, t), uz(x, t), us(z, ) is unknown vector valued function and initial data
b is given. We call the above system (1.1) the parabolic Mazwell system. To derive
good estimates to investigate (MHD), we have to study the parabolic Maxwell system.

Before stating our main results we shall introduce some notations. Throughout
this note Bg = {z € R3||z| < R}, Sk = 0Br = {z € R¥||z| = R}, 2p = 2N Br
and B(X,Y) denotes the set of bounded linear operator from X to Y. L9(D) denotes
the usual L7 space on D and W™4(D) denotes the usual L¢-Sobolev space of order m.
Furthermore we put

LY(D) = {f € LYD)| f(z) =0 for = & Bz},
Wi(D) = {f €e W™I(D)| f(z) =0 for = ¢ Br},
Wm’q(D) _ 'C?‘(‘D‘j”'uwm‘q(o) .
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In order to give the operator theoretic interpretation of (MHD), we shall introduce
the Helmholtz decomposition. Let 1 < ¢ < oo. It is well known that LI(£2)® admits
the Helmholtz decompoasition:

LY(2) = L) & G!(N2), & : direct sum.
Here

L3() = Tl @) 1,
Ce.(2) = {f € C(R)*| div f = 0 in 2},
GU(N) = {f € LY ()} | f = Vp for some p € L (2)}.

By the assumption that 842 is sufficiently smooth, the space L3 (2) is characterised as
(see e.g., Galdi [6, Chapter 3])

L) ={f € L)} | divf=0in £2, v- f =0 on 82}.

Let P = P, be a continuous projection from L9(£2)® onto L(£2) and let us define
linear operators A = Ay p and B = By g as follows:

D(4) = WH(2)* N We*(Q)° N L§(N),
Av=—PAv for v € D(A),
D(B) = Li(2) N {H € W*9(2)*| curl H x v = 0 on 802},
BH = curlcurl H for H € D(B)

From Akiyama, Kasai, Shibata and M. Tsutsumi [1], Borchers and Sohr [2] and
Miyakawa, [12, 13] both — A and — B generate the bounded analytic semigroups {e7*4}
and {e*B} in LI(£2).

By Duhamel’s principle (MHD) is converted into the system of integral equations:

t
v(t) = e"*a — / e 4P [(v(s) - V)u(s) + H(s) x curl H(s)] ds,

0

. (1.2)
H(t) = e~tFb — / e=95(u(s) - V)H(s) — (H(s) - V)v(s)] ds.

0

To solve (1.2) by use of the successive approximation, we need some estimates for
L%-norms of the semigroups {¢~*4} and {¢*B}. On the Stoke semigroup {e~*4} we
already have enough information by Iwashita (see Theorem 1.3). Therefore we have to
study the semigroup {e~*?}. The first result is concerned with the local energy decay
property for {e~*B}.
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Theorem 1.1 (Local energy decay). Let 1 < g < co. For any R > Ry and any integer
m > 0, there ezxists a constant C = C(q, R,m) > 0 such that

187%™ flweagan) < CE ™| fllzaay, 21,
for any f € LL(2) N L% (02).
By use of Theorem 1.1, one can obtain the following L9-L" estimates for {e"tB}.

Theorem 1.2 (L?-L" estimates).
(i) Let 1 < ¢ £ r < oo and (g,7) # (1,1),(00,00). Then there ezists a constant
C =C(g,r) > 0 such that

for any f € Li(02).
(i) Let 1 < g < r < 3. Then there ezists a constant C = C(g, r) > 0 such that

1_1

Ve |y < Ct G073 fllpaay, ¢>0
for any f € Li(12).

The following result by Iwashita is concerning L9-L" estimates of the Stokes semi-
group, which is refined by Maremonti and Solonnikov and Enomoto and Shibata.

Theorem 1.3 ([7, 11, 5)).
(i) Let 1 < ¢ < 7 < o0 and (g,r) # (1,1),(00,00). Then there ezists a constant
C =C(g,r) > 0 such that

11
-

|y < CE3GE)

lle™4f

fllLoay, t>0

for any f € Li(£2).
(ii) Let 1 < ¢ < r < 3. Then there ezists a constant C = C(q,r) > 0 such that

_8(1_1)-1
Ve ™ fl|r(@) < Ct G0 oy, >0

for any f € L1(£2).

Finally, combining Theorem 1.2 and Theorem 1.3 we obtain the global solvability
of (MHD) with small initial data.
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Theorem 1.4. There ezists a constant € > 0 such that if (a,b) € L3(£2) x L3(12) and
l(a,8)||s < €, then a unigue strong solution (v, H) to (MHD) ezists and satisfies the
following properties:

t(0-3/9/2(y, H) € BC([0,00); L2(£2) x L1(2)) for any q, 3 < g < 00, (1.3)
t129 (v, H) € BC([0,00); L}(2) x L3(£2)), (1.4)

where BC(-) denotes the class of bounded continuous functions. All the values in (1.3)
and (1.4) vanish at t = 0 except for ¢ = 3 in (1.3), and in case ¢ = 3, (v(0), H(0)) =
(a,b).

The basic idea to prove Theorem 1.1 and Theorem 1.2 is similar to that of Iwashita
[7] deals with the nonstationary Stokes equations. However the boundary condition
of (1.1), the perfectly conducting wall, is quite different from the boundary condition
of the Stokes equations that is homogeneous Dirichlet condition, nonslip boundary
condition. Therefore in constructing the parametrix of the resolvent problem corre-
sponding to (1.1), we have to introduce a new idea which is based on a theorem due
to von Wahl [16, Theorem 3.2]. In order to prove Theorems 1.1 and 1.2, first of all we
have to study the resolvent problem corresponding to (1.1). In view of Miyakawa [12],
it is suffices to study the following Laplace resolvent system with perfectly conducting
wall:
Au—~Au=f in £,
curlu xv=0 on 02, (1.5)

v-u=0 on O£
Here A € C and f is given vector field.

2. Preliminaries
We consider the Laplace resolvent system in R3:

M —Au=f, inR>. (2.1)
If f € LI(R3)? 1< ¢ <ooand A € C\(—00,0], then a solution u to (2.1) is given by
e~ VAlz-yl

f(y) dy.

u(z; A) = [Ro(N) f](x) = Zl;r' /Ra W

We shall investigate Ry()). Set

Te={) e C\{0}||argA\| < ™ — €}, 0<£<—72£.
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Lemma 2.1. Let 1 < g < 00, 0 < € < /2 and m be a non-negative integer. As A —0
in X, the resolvent Ry(\) has an ezpansion

Z,\JG + }: Nt2E,
3=0 j=0

in B(Wp1(R?), W™+24(Bg)). Here F;,G; € B(Wg' ’q(Ra), W™+249(Bg)). Especially,

1 1
pi=p [ 10 Gf=g [ T

4r Jgs |z — 9l

This lemma plays an important role in the study of the expansion of the resolvent
(A + B)™! in section 4.

In order to introduce the well known lemma due to Bogovskil, we introduce the
function space W74(D) as follow
/ f(z)dz = 0} .
D

Here D denotes a bounded domain in R?® with smooth boundary 8D.

Wma(D) = {f € W™(D)

Lemma 2.2. Let 1 < ¢ < oo and let m be a non-negative integer. Then there erists
a bounded linear operator B : W9(D) — Wm™+14(D)3 such that

divB[f] = f in D and |[B[f]llwm+1.0(p) < Com.p|lfllwma(p)

Proposition 2.3. Let 1 < ¢ < 0o and R > Ry.

(i) Let G = 2, 2g41 or R3, m be a non-negative integer and let ¢ € CP(R3) be a
cut-off function such that o(z) =1 for |z] < R—1 and ¢(z) = 0 for |z] = R.
Ifue Wi (G)?, divu =0 in G and v-u =0 on 8G (when G = 2 or Qpy1),
then (V) -u € W'"’q(DR) where Dp = {x € R®| R — 1 < |z| < R}. Therefore

B[(V) - u] € W™t14(Dg)?, divB[(Vy) - u] = (V) - u and

IB{(Ve) - ulllwm+rems) < Comyp,rllullwma(Dg)-

(i) If u € WU (2)3, divu = 0 in 2 and v-u = 0 on 012, then there ezists a
v € W™(02)? such that v =u in 2, divv =0 in R? and

lvllwmawsy < Comllullwma(a)-
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3. On the operator By in the exterior domain

Let B, be an linear operator introduced in section 1. In this section we study the
properties of B,.

Theorem 3.1. Let 1 < g < 00, 0 < € < 7/2. For any A € I and f € LI(02)3, there
is a unique solution u € W29(02)3 to (1.5). Furthermore, there is a positive constant
C = C(q,¢, 2, \o) > 0 such that the following estimate holds:

IAlllwllza) + A2 Vulla@) + |VPulle@y < Cllfllzay,  for |A > Xo.

Moreover we have

IMllullzeea) < Cllfllzac-
Here the constant C is independent of A. If f € L3(R2), then we have u € L1(12).
Corollary 3.2. Let 1 < g < 00, 0 < € < 7/2. Then the resolvent set p(—B) D
C\ (~00,0]. And there ezists C = C(p,¢,§2) > 0 such that

_ C
H()\ + Bq) 1I|y(Lq(n)) < D\_l for any A € ¥,

where || - || #() denotes the operator norm. Furthermore for any & > 0 there ezists
C = C(d,q,€,§2) > 0 such that the estimate

1A+ Bo)™ fllwaa(ay < Cllflusca) for any A € Zcn {A] > 6}
holds. And (B,)* = By, where 1/q+1/¢ = 1. |
Proposition 3.3. Let m be a non-negative integer and 1 < ¢ < oc.

(i) Let u € D(B) and Bu € W™4(02)3. Then u € W™+29(02)? and moreover there
is C,n > 0 such that the following estimate holds.

lullwmaaia) < Col||Bullwma(e) + [lullLa)-
(ii) Letu € D(B™). Thenu € W2™4(2)3 and moreover the following estimate holds.
lullwamaa) < Cru(llB™ullLs(a) + llullze()-
Lemma 3.4. Let 1 < g < o0.
(i) For a non-negative integer m, there is Cp, > 0 such that
1B ull o) < Cmllullwamaa) for u € D(B™).

(ii) Let 0 < € < /2 and m be a non-negative integer. If f € D(B™), then we obtain

the estimate
I+ B) ™ fllwmszaay < Ol flwamaca)

for A € &, with [A] > 1.



4. Resolvent expansion near the origin

In this section we study the following Laplace resolvent system:

Au—Au=f in £,
curlu x v =0 on 042, (1.5)
v-u=0 on 0.

Here A € T = {A € C\{0} || argA| < m—¢, 0 < e < 7/2} and f = (f1(2), f2(2), fa(z))
is given function. Our aim of this section is to prove the following theorem.

Theorem 4.1. Let 1 < ¢ < oo and m be a nonnegative integer. There exists a
solution operator R(\) € B(Wp"9(£2), W™+29({2p,5)) such that R(}) depends on A €
Y. meromorphically and has the following properties:

(i) The set A of the poles is discrete.
(ii) uw= R(\)f is a solution of (1.5) for A € £\ A and f € Wg"(£2).
(iii) R(\) € B(WD™(£2), Wm+24(02)) for each A € S\ A.
(iv) Let =(8) = {\ € .| |A| < 8}. There ezists 6 > 0 such that Z(d) N A = ® and
R()) has the following expansion of A € T(d) in B(Wg"(£2), Wmt24(g)):

R()) = AYV2G, + Gy (A) + A2Gs(N). (4.1)

Here G, € B(W™(£2), W™*24(Qg)), G2()) is B(Wg*(£2), W™*29((2g))-valued
holomorphic function of A € £.(8p) and G3(}) is bounded.

In order to prove Theorem 4.1, first of all we construct the parametrix to (1.5).
Choose a positive number R > 0 such that R > R + 3. Here Ry is introduced
in the previous section. Let ® be a mapping of f € LI(2g43) to unique solution
u € W24(f2g,3) of the following problem:

~Au = f in 'QR+31
curlu xv=0 on 0f2g43,
v.u=0 on 08243

Then & € B(LY(2r+3), W29 (2r43)). Put ¢ € CP(R?) such that ¢ =1 for [z| < R+1
and = 0 for |z| > R+ 2. For f € LI(£2), let fr4s be the restriction of f to g3 and
let fo be the zero extension of f to R3, that is, fo = f in 2 and fo =0in R3\ 2. Let
us define an operator A(A) by

A f =1 — @)Ro(A) fo + ©PfR43. (4.2)

18
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For A())f we have
A-A)ANSf=Ff+SAN)f in £,
curl (A(A)f) xv =0 on 412,
v-(A(A)f)=0 on 812,
where
S\ f =2V - VRo(A) fo + (Ap)Ro(N) fo + Ap®fres — 2V - VO fry3 — (Ap)PfR43

From the definition of the cut-off function ¢, supp S(A)f C 2g4s. If f € LE,5(02),
then by the Fourier multiplier theorem and the property of Ry()A), we obtain

|Ro(A) follwa(Brys) < CllfllLe(a)-

Lemma 4.2. The inverse (I+S(X\))™! of I+ S(}) ezists as a B(LE,,(02), L% ,5(£2))-
valued meromorphic function of A\ € .. The set A of poles is discrete and has no
intersection with $.(d) for some & > 0. Furthermore, (I+S()))™! has the same type
of ezpansion as (4.1).

This lemma will follow from the following lemma.
Lemma 4.3. I + S(0) has the bounded inverse (I +5(0))~*.

Before stating the proof of Lemma 4.3, we introduce the following uniqueness result
which will be required in the proof of Lemma 4.3.

Proposition 4.4. Let 1 < g < 0o. Suppose that u € W23(2) satisfies

-Au=0 in £,
curlu xv=0 on 01, (4.3)

v-u=0 on 01,

and u(z) = O(|z|™!), Vu(z) = O(|z|2). Then u=0 in 0.

Proof of Proposition 4.4. By virtue of the local regularity theory for the elliptic equa-
tions, one can take u € W27 (2) for any r € (1,00). In particular, now we take
u € W22(£2). We consider a function ¢ € C§°(R?) with the properties 0 < ¥(z) <1,
¥(z) = 1 for |z| < 1/2 and = 0 for |z| > 1 and define Ygr(z) := ¥(z/R). According
to the well known formula Au = V div u — curl curl u, the divergence theorem and the
assumption we get

0= [)—Auwaud:c:/churlu-(V'(/:R xu)d$+AR(divu)(V¢R-u)dz

+ Yr[(div u)? + curlu - curl u dz.
Ng
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Since supp Vyr C {r € R*| R/2 < |z| < R}, we have

/ curlu - (Vg x u) dx+/ (divu)(Vyg - u)dz| < Q
g g R

Therefore letting R — oo, we have || curlu|}s o) + 1 div ul|72(q) = 0. This implies that
curlz = 0 and divu = 0 in 2 and moreover by virtue of theorem due to von Wahl
[16], we obtain Vu = 0 in £2. Hence u = const in 2. From the assumption that u
satisfies v - u = 0 on 812, we have u = 0 in £2. This completes the proof. O

Now we shall show Lemma 4.3.

Proof of Lemma 4.3. Since the operator S(0) is compact, by the Fredholm alternative
theorem it suffices to show injectivity of I +S(0). Let us pick up f € L%, ,(§2) so that
(I +58(0))f = 0. Then it follows from (4.2), A(0)f satisfies (4.3) and moreover A(0)f
has the properties that A(0)f = O(|z|™!) and V(A(0)f) = O(|z|™?). Therefore from
Proposition 4.4, A(0)f = 0. Namely we have

(1 - ©)Ro(0) fo + 9@ fry3 =0 in 2.

By the definition of the cut-off function @ we have ®fprys = 0 for |z| < R+ 1 and
Ro(0)fo = 0 for |z| > R+ 2. Put w = ®fgs for £ € 2r43 and = 0 for z ¢ £2. Then

w satisfies .
—Aw = fy in Bgys,

curlw xv=0 on Sgys,
v-w=0 on Sgys.
On the other hand, from R(0)f; = 0 for |z| > R + 2, we also have
—ARy(0)fo = fo in Brts,
curl (Ry(0)fo) x v =0 on Sgys,
v-(Ro(0)fo) =0 on Sgrya.

Hence we obtain w = Ry(0) fo in 2g43. Therefore
0= A(0)f = Ro(0)fo + ¢(®fr+3 ~ Ro(0) fo) = Ro(0) fo-
This implies fo = 0 in £2. O

Proof of Lemma 4.2. Let M = ||(I +S()))™*||, where || - || denotes the operator norm.
From the fact that S()) is continuous in X U {0}, there is some do > 0 such that
IS(X) — 8(0)|| < 1/2M for any A € E.(do). Hence, for A € Ze(6o),

(I+SO)™ = i[(r +5(0)7H(S(0) - SNFUT+SO) (44)
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Since S()) is holomorphic in A € X, by analytic Fredholm’s alternative theorem (see
e.g., Dunford and Schwartz [4, p. 592, Lemma 13]) we obtain (I + S()))~! for any
A € ¥, as a meromorphic function and we see that the set A of poles is discrete in X,.
The expansion of (I + S(A))™! follows from Lemma 2.1, Lemma 4.3 and (4.4). O

With help of Lemma 4.2, we prove Theorem 4.1.
Proof of Theorem 4.1. Define R()\) by

R(N) = AQ)(I +S(N) ™ | (4.5)

Then the assertions are immediately derived from the expansion of Rg()), Lemma 4.2
and (4.5). O

5. Proof of Theorem 1.1

In this section we will prove Theorem 1.1 with aid of Theorem 4.1. Let 0 < € < ¢; <
7/2 and let 7y be a contour as follows: v = y; U 72, where

Nn={AeC|0< |\ <&/ |argA =7 —€},
Yo ={A € C||N > 8/2,|arg A| =7 — €1 }.

tB

According to Theorem 4.1, the semigroup e™*¥ is represented as

e tB = 1 / eMR()\) dA + 5—1—— e®(A+ B)"td),

2 " Ly

in L2(2) N LY, ,(£2). Hence we have

e B = —1—_ / eMATR(A) dX + —1—, / eMA™(A + B)"1d)
211 Jy, 2711 J,,
=: I, (t) + L(¢t).
By Corollary 3.2 we easily see that
12| 8Ly, ), W2a(2r42)) < Ce™, (5.1)

for t > 1. Therefore it suffices to estimate I;(t). In order to do this, we introduce the
following well known lemma concerning the gamma function I'(c).

Lemma 5.1. For o > 0 and t > 0, it holds that

) .
— / ear1dx — 22T pg)e| < Ceet,
2m " T




From Theorem 4.1 we see that

1 1 1
I — At ym+1/2 Atym / Atym+1/2
1(t) 5 /ﬂe A Gld,\+2m. /ﬁe A GZ(A)d/\+2m. 71e A G3(X) dX
=: Ji(t) + Jo(2) + J3(t).

Here G;,G2()\) and G3()) are given in Theorem 4.1. By use of Lemma 5.1, we have
|1 ()l Bezs,, (), w2e(2R42) S C ¢=m=3/2, (5.2)
Since G()\) is holomorphic, by use of Caﬁchy’s integral theorem we see that
192(8) |32,y (@ W2a(20420) S CE (5.3)

Finally, since ||G3(A)||(Ls,, ,(2),w2e(0r+2)) < €, We have

s (8)l|3(zs,, oy was(@msay < CE™2. (5.4)

Combining (5.1), (5.2), (5.3) and (5.4), we obtain Theorem 1.1.

6. Proof of Theorem 1.2

In this section we will give the proof of Theorem 1.2. Here and hereafter T'(t) denotes
the analytic semigroup generated by —B, (T'(t) = e™*F). Let us define an operator

E(t) b
b 1 |z — y|?
B(u(e) = G /R exp (— = )u(y) dy.

If b € LI(R?), then u = E(t)b solves the following equations:

{ut—i—curlcurlu-—-(), divu =0 in R? x (0,00), (6.1)

w(z,0)=b in R
By Young’s inequality and Sobolev’s embedding theorem we have

Lemma 6.1. Let 1 < ¢ < r < 0o and put 0 = 3(1/q — 1/r)/2. Then for any integer
j we have
16{02 E(#)bl - sy < Ot 972 bllpoms), 21,

| . 6.2)
|G] 02 E (t)b|-msy) < C(1 + t)_a_rlalﬂ"b||W[2ol+1+|u|+zJ',q(Ra), t>0,

where [-] denotes the Gauss symbol.

83
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Next we prove the local regularity property of T'(t).

Lemma 6.2. Let 1 < g < oo and R > Ry. Assume that b € L1(£2) N LE(2) N D(BY)
for some integer N > 1. Then the estimate

18I T ()bllwacv-s2a(2m) < Canvr(1+ )72 [[bllwaraa),
holds for anyt >0 and j = 0,1, 2.
Proof. By virtue of the local energy decay theorem we have
18T (£)bllw2aages) < Ct™* ™||bl| o) for any ¢ > 1, m > 0. (6.3)

Let 0 < r < 1 and let us choose ¢ € C$°(R?) in such a way that ¢(z) = 1 for
|z| < R+ and ¢(z) = 0 for |z] > R+ 1. Since b € LI(2) and u(t) = T(t)b satisfies
the equations:

{ Ut — Au = O, divu =0 in 2 % (0, OO), (6.4)

curlu xv=0, v-u=0 on 912 x (0,00).

If we put v = pu — B[(V¢p) - u] and w = 8"v, then by Proposition 2.3 and (6.4), w
satisfies the equations

—Aw=h, divw=0 in 241,
culw xv =0, v-w=0 on 082p4; =02USp41,

for any ¢ > 0 and
h= -2V Voru ~ (Ap)du — (8, — A)O]"B|(Vep) - u] — 90" u.

From (6.3) we have du, /""'u € W>9({2g41), therefore h € WH9(£2g41). So by the
local regularity theorem, we obtain w € W34(£2z4,) and

l[w]lwsa(agss) < Ct 3 ™||bllzag), fort>1.
Therefore we get
187 ullwsa(ap,,) < Ct 3 ™||bl|ze(m), fort>1.
Repeated use of the above argument implies that
107 T (®)bllwamaqazy < OS> bllisgay for ¢ 21

for any integers m > 0 and N > 1. When 0 < t < 1, by using the analytic semigroup
theory and Proposition 3.3, we obtain

107" T (£)bllwawv-mra(ay < Cllbllwana(a)-

This completes the proof. ' O




Put b = e~Bb for b € LI({2). Then b € D(BY) for any integer N > 0 and

Hallww-q(n) < Cyn |16l Lagey- (6.5)

Put u(t) = T(t)b = T(t+1)b. Then u(t) is smooth in t and z and satisfies the following
system:
ug+curlcurlu =0, divu=0 in 2 x(0,00),

curlu xv=0, v-u=0 on 81 x(0,00),
w(0)=b in £

Since the asymptotic behavior of T'(t)b for large ¢t > 0 follows from that of u(t), so we
shall start with the following step. :

1st step. For any m > 0 and t > 0 we have the relations:
Hatju(t)“pvzm,q(nn) <C(l+ t)_3/2_j||bHLq(g) fort > 0. (66)

In fact, let N be an integer so that N > (3/q+2m+4)/2. Since b € D(BY) C Li(%2),
we have divb =0in 2, v-b = 0 on 912. Therefore by virtue of Proposition 2.3, there
is ¢ € W2N4(R3) such that ¢ = b in 2, dive = 0 in R? and

lellwamagrsy < Cllbllwanaqay < CllbliLee)-

Put v(t) = E(t)c. Then v satisfies (6.1) and by Lemma 6.1 and Sobolev’s embedding
theorem, we have

1670(®) lwamaam < COL+D) 5 Bllosay, (6.7)

for any t > 0 and j = 0,1. Take ¢ € CP(R?) such a way that ¢(z) = 1 for lz| < R
and = 0 for |z| > R + 1. In view of Proposition 2.3, put

w(t) = u(t) — (1 — ¢) divo(t) - B{(Ve) - v(t)].

We see that divw(t) = 0 in 2 and » - w = 0 on 842 for any t > 0. Moreover from
Proposition 2.3 and (6.7) we have

1B((V) - v(E)]|lwamsramsy < C(L + )% 7 |[bl| oy (6.8)

for any t > 0 and j = 0,1. Since suppB[(Vy) -v(t)] C {z € R*|R—1 < |z| < R}
and 1 — ¢(z) = 0 for |z| < R, we see that w = u n 2. Therefore, if we obtain

. e
18 w(t)||wema(ag) < C(1+1)7%7{|b]|Le(a) (6.9)
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for j = 0,1, then we get (6.6). To obtain (6.9) we set
d = pb—B[(Vy) - b,
g(t) = 2V - Vu(t) + (Ap)(t) — (8: — A)B[(Ve) - v(t)];
and then w satisfies the following equations:

dw +curlcurlw = g, divw=0 in £ x (0,00),
culwxv=0, v-w=0 in 82 x (0,00),
w(z,0)=d in §2.

In order to represent w(t) by Duhamel’s principle and to estimate the resulting formula
by using Lemma 6.2, we require the following facts:

de D(BY)nLYR)N LY, 0, (6.10)
dlg(t) € D(BYN )N LI(2) N LE,, (), foranyt >0, (6.11)
ldllwzvaia)y < ConllbllLe(a), (6.12)
16{ (&) lwacv-1-a(a) < Com,r(1 + )" lal| o), (6.13)

where j = 0, 1. From Proposition 2.3 and (6.5), (6.12) holds and from (6.7) and (6.8),
(6.13) holds. The following lemma tells us that (6.10) and (6.11) hold. ’

Lemma 6.3. Let 1 < g < oo, U be a neighborhood of O in R® and N > 1 be an
integer. If b € W2N4((2) satisfies divh = 0 in 2 and b= 0 in 2NU, then b € D(BY).
As a consequence, if b € W2N49(02) N LL(R) coincides with some ¢ € D(B)) in 2NU,
then b € D(BY).

By (6.10), (6.11) and Duhamel’s principle

w(t) = T(t)d + /0 Tt — 8)g(s) ds,

and from Lemma 6.2, (6.12) and (6.13) we obtain

t
[w(t)|lwame(ag) < C {(1 + )72 | d||wama(e) + / 1+t — )2 ||g(s) lwama(a) ds}
0
< C(1+1t)%2||b|| (), for any t > 0,
because 3/2¢ < 3/2. And we see that

ow(t) =0T (t)d+T (-;—) g9 (-;—) + Ot/2 ;T (t — s)g(s)ds + /Ot/2 T(5)(8:g)(t — s) ds,




therefore by Lemma 6.2, (6.12) and (6.13) we obtain
18w (t)llwamagaq) < C(L+ )27 [1bllzs(a)-

This completes the proof of (6.9), and therefore we obtain (6.6). By Sobolev’s embed-
ding theorem and (6.6), we obtain

i 3 _; .
107 u(®)lwamoeam < CA+0) F bl §=0,1,  (6.14)

foranyt>0,1<g<oo,m20.

2nd step. Take ¥(x) € C°(R?) such that (z) = 1 for |z < R—1 and = 0 for
|z| > R. Let us put

2(t) = (1 - P)u(t) + B{(VY) - u(?)].

Then we see that div z(t) = 0 in R® and z satisfies

_ — . _ . 3
zz—Az=h, divz=0 Tn R3 x (0, 00) (6.15)
2(0)=e, in R’
where
h =2V - Vu+ (Ay)u + (8; — A)B[(VY) - u],
e=(1-1)b+B[(Vy)-b].
From Proposition 2.3, (6.5) and (6.14), we obtain dive = 0 in R?® and
llellwamams) < Cllbllze(a), (6.16)
1@l < O+ 82 blLuxca (6.17)

Especially from (6.15) we see that div h = 0. Therefore by Duhamel’s principle
. : t
2(t) = BE(t)e + 2(2), Z(t) = / E(t — s)h(s) ds.
0

Note that z = u if |z| > R because 1 — 4(z) = 1 and B[(V¥) - u] = 0 for |z| > R, so
that we shall estimate z(). From (6.2) and (6.16) we have

1_1

IE@®ell-msy < €1+ G )|blleca), (6.18)
IVE®ellz-@s < CQA +8)"FG2) bl oga). (6.19)
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Next we shall estimate Z(t) for 1 < ¢ < 7 < 0o. In order to do this choose p in
such a way that 1 < p < min{g, 3/2}. Since supph(z,t) C {z € R®*|R-1< |z| < R}
by the Hélder inequality and (6.16) we have

-3
”h(s)“LP(RS) < C(1+ s)"24||bl|ze(n)- (6.20)

Let x be an integer such that x > 3(1/¢ — 1/r) + 1. Then by Sobolev’s embedding
theorem and (6.17) we have

_2
[|B(s)lw.-ray < Cllh(s)llwems) < C(1+ )% |b|La(a)- (6.21)
From (6.2), (6.20), (6.21) we have

1Z2(¢) L (R8) < CI,(t)|1bl| (o), (6.22)
IVZ (&)l rs)y < CIp(B)|0l| ey (6.23)

where

L) = /Otu +t—5) G2 (1 +5) % ds,

For notational simplicity, we put o = 3(1/g — 1/7)/2. We shall estimate I,(¢) and
Jo(t)-

L(t) < (1+ %)Fa /Ot/z(l +t—5) G0 +s) % ds
+ (1+%>_, Ot/2(1+s)"(*")(1+t—s) > ds.

Since 0 < s < t/2, we see that 1 +¢ — s > 1+ s. Therefore

t/2

L <C (1 + %) (1+5)"% ds.
0

Next we consider J,(t). Note that 1/2 < 3/2r and r < 3, below. By the similar
calculation we obtain the following. ,

1
t\ 773 t/2 s
J,t)<C (1 + -2-) / (1+ s)" % ds.
0
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Therefore combining (6.18), (6.19), (6.22) and (6.23) we obtain
||Z_(t)||Lf(R3) < C(1+t)7|Ibll ey,
forl<g<r<oocandt>0and
IVZ(®) sy < CL+1)7 4Bl lzocon,
for 1 < g <r<3andt>0. Recalling that v = z when |z| > R, we obtain
lu(®)llzr2) < C(L+8)7|Iblloay, t>0 (6.24)

forl<g<r<ooand

IVa(t)llz(a) < CA+8) 5 |bllzagy, ¢ >0 (6.25)

for 1 < g < r < 3. Since u(t) = T(1+t)b, from (6.24) and (6.25) we have Theorem 1.2
in the case of ¢t > 1, except for the case when g = 1.

9rd step. We consider the case when 0 < ¢ < 1. For any real number s € (0,2m),
by the complex interpolation theorem we have W*9(£2) = (L(£2), W*™(£2))s with
s = 2m@ (see e.g., Triebel [15]). By Proposition 3.3 (i) and the theory of analytic
semigroup, we have

IVST(t)bll gy < Ct4|[bllzocoy, |  (6.26)
| VAT (£)bllwam.a2) < C—%{HB;"T(t)bUm(n) + IT®)b| ey} < Ct™™||bllLe(a), (6-27)
for j = 0,1. Therefore interpolating (6.26) and (6.27) for s = 2mf we have
VT (t)bllwes(a) < Ct 34 {[bll1aca),

for j = 0,1. In particular by virtue of Sobolev’s embedding theorem, for s = 3(1/q —
1/r) we have

IVIT®)bllzr(a) < CIVIT@bllweaa) < Ot % |bllzaca)- (6.28)
Next we consider the case when 1 < ¢ < oo and r = oo. Let Bj.({2) be the

Besov space and we shall use the fact that Bg,/l” C L*(£2) to estimate the L*-norm

of T(t)b. If we choose an integer m such that 0 < 3/g < 2m, then we have B%"(Q) =
[L9(£2), W?™9(2)]s; with 3/p = 2mf. Here [-,-]s, denotes the real interpolation.
Hence, interpolating (6.26) and (6.27) we obtain

IVIT(£)b|BEH @) < O34 |bllzacay,
for j = 0,1. Hence we have
VT ()bl @) < CIVT(©BIBYE(2)]| < Ct ¥ [blls(a), (6.29)

for j = 0,1. Therefore from (6.28) and (6.29) we have Theorem 1.2 for0 <t <1,
except for the case when ¢ = 1.
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4th step. Finally we consider the case when ¢ = 1. By the duality we have
(T, )| = (6, TP < [Ibllr @ IT@)llze() < Cllbllzayt™>* llle a)

for any ¢ € g5 (£2) which is dense in L% (£2), where ¢’ = ¢/(g—1). Therefore we have

1

IT @bl ey < Ct 30D |b1 1 (6.30)

for 1 < ¢ < 0o and t > 0. Furthermore (6.30) also holds for ¢ = co. In fact we have
< Ct %

s = |7 (3)7 (5)8] . <c %7 (5)?

< Ct‘%t‘%(l—é)llbllm(n) = Ct_%“anl(ﬂ)'

L(N)

This completes the proof of Theorem 1.2.
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