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LP-L9 estimates of damped wave equation and their application
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1 Introduction

We consider the large times asymptotics to the Cauchy Problem to the following
damped wave equation:

0%u — Au+2a8u =0, u(0,7) =uo(z), Gu(0,z)=u(z) (1)

for (t,z) € (0,00) X R", where a > 0 is a constant. Several authors have investicated
that the problem (1) has the diffusive structure as t — oo([1]). We use the function
space LP = LP(R") with norm || - ||, = || - ||z=. Ff(€) = f(€) denotes Fourier
transformation of f with respect on z. Using the solution formula to the problem
(1), Marcati-Nishihara[8] and Nishihara[15] obtained the following estimate when
n=1,3:

Theorem 1 Let 1 < q<p < oo and € > 0. Assume that ug € L, u; € L. Let u
be the solution of the problem (1), and the let v be the solution of the problem:

2000 — Av =10, v(0,z) = uo(z) + u1(x)/2a, (2)
for (t,z) € (0,00) x R". Then the estimate |
ut, ) = o(t, ) = €M (@) (wo, ) ||, < O (| [nollg + [fuallo)

holds, for t > 1, where § = (1/q — 1/p)/2 and M(t)(ug,u1) is the corrected term
related to the wave equation: '

B2W — AW =0, (t,z) € (0,00) x R (3)

The first aim is to show that the above Marcati-Nishihara type estimates hold for any
space dimension n. We apply Fourier analysis to give estimates to the low frequency
part and the high frequency part of the solution to the equation (1). Next consider
the nonlinear equation:

0%u — Au+ 2a8u = f(u), u(0,z) = up(z), Opu(0,z) = ui(x) (4)

for (¢, ) € (0,00) x R", where f(u) = £|u|°u, £|ul|"*".
The second aim is to apply the above LP-L? estimates to show the existence of small
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data time global solution (SG) to (4), when n < 5, 2/n <0 < 2/(n — 2)if n >3,
and 2/n < 0 < oo if n < 2. It is well known that ¢ = 2/n is the Fujita critical
exponent.

Several authors have proved the existence of (SG) to the problem (4)). Matsumura[10]
has shown existene of (SG) when f(u) is smooth. Kawashima-Nakao-Ono[7] shown
existene of (SG) when 4/n < o. Marcati-Nishihara[8] and Nishihara[15] applied
their LP-L9 estimates to prove the existence of (SG), provided 2 < ¢ when n =1
and 2/3 < 2 when n = 3. Todorova-Yordanov[16] have shown the existence of (SG)
for general space dimension n, provided that initial data are compactly supported
and 2/n < o < 2/(n —2) when n > 3, and 2/n < o when n < 2. Moreover,
Todorova-Yordanov([16] and Zhang[17] also have shon that every non trivial solution
blows up in finite time, provided that initial data uo and u, are non-negative and
o < 2/n. Recently, Ikehata[4] and Hayashi-Kaikina-Naumkin[3] have shown the
existence of (SG) for general n without the assumption that the initial data are
compactly supported, provided that initial data are rapidly decreasing as |z] = oo
and 2/n < 0 <2/(n—2).

Hayashi-Kaikina-Naumkin[2] and Meier[11] have shown that the problem

28,V — AV = |[VI°V, V(0,z) =Vo(z), (t,z) € (0,00) x R

may admit time global solution even if o < 2/n, provided that the initial data V; are
not positive. When initial data are compactly supported and odd with respect one
variable, Ikehata-Miyaoka-Nakatake[5] and Ikehata[6] have shown that the problem
(4) may admit (SG) even if 0 < 2/n .

The third aim is to obtain new LP-L? estimate when the initial data are odd,
and to show the existence of (SG) to (4), provided that o, < ¢ < 2/n, n < 5. The
critical exponent o, will be denoted latter.

2 Preliminaries

In this section we state the preliminary results for the proof of LP-L? estimates. Let
J,(s) be the Bessel function of order v, and let J,(s) = J,(s)/s".

Lemma 1 Let v be not an negative integer, then the followings hold:
(1) sT,(s) = Joa(s) — 2w, (s),

(2) jllf(s) = —Sj,,+1(3),

3) Jorjals) = \/g cos s,
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(4) For fized Re v,

[Ju(s)l < Ce™™™ M (s < 1),
J,(s) = Cs7 2 cos (s - gw - Zl—r) +0 (627"1’“ ”‘]51’3/2) , (s} = 1).

- 9~
(5) r*pJusa(rp) = —BZJV(TP) .

The following lemmas are well known. See [13] and the references there.

Lemma 2 Assume that f(€) = g(|¢]) € L' be a radial function, then the equality

flz) = c [0 g oy (|zr) dr
holds.

Lemma 3 (Hardy-Littlewood-Sobolev) Let 1 < g<p<oo,1—-1/r=1/¢q—
1/p. Assume that |g(z)| < Alz|™™", where A is a constant. Then the estimate

If =gl < Clp, ) Allflle,  feL”
holds. '

Lemma 4 Let 1 < po,p1,9,q1 < 00. Assume that py # p1, g0 # ¢1 and that an
operator T is bounded from LP° to L® with norm My, and that the operator T is
bounded from LP* to L% with norm M,. Then, the operator T is bounded from LP(®
to L9°) with norm M < M}~°M?, provided that 0 < 6 < 1 and
1 _1—6+0 1 _1-0+£

p(6) Po n’ q(6) Qo n
Lemma 5 Let S = {z = 2+ 4y;0 < £ < 1,y € R} be a strip and let T, be an
analytic family of linear operators satisfying

I Tiyhlle < AoNo(W)llBllao, 1 Trrighllp < AiN1(®)][Rllgy,  No(0) = N1(0) =1

where 1 < pj;,q; < oo for j =0,1 and

sup e Wlog N;(y) < oo
—oo<y< oo

for some b <. Then, if 0 < 0 < 1, there is a constant C(0,b) so that
I Tohllne) < C(8,5)A5~° AflRllo@)

for
1 1-6 6 1 1-6 6

—— =t —, —== +—.
p) p p’ 9 @ @
Furthermore we may replace py = oo with BMO, provided that py # 1.
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3 [P-117 Estimates

In this section we state the LP-L? type estimates to the problem (1).
The estimates of low frequency part are as follows.

Theorem 2 ( Estimate near || = 0) Let 1 < g < p < o0, €>0andb >0 be
constants. Assume that u; € L? and supp 4; C {&: |&| < b} for i = 0,1. Let u be
the solution of the problem (1), and let v be the solution of the problem (2). Then,
for any multi-index o and for any integer k > 0, the estimate

18£8 (u(t, ) = o(t, )|, < O+ 87127 (fug g + [fuall)

holds, where 6 = (1/q — 1/p)/2. Furthermore, ifl < ¢g<p<oo,p=¢=2, or
g =1,p = 00, we may take e = 0.

(sketch) The Fourier transformation of (1) gives

sinhty/a? — |£|?
i(t,€) = e ®coshty/a? — [¢[*dp + e mhtya’ — (] (ato(€) + 41(8))

ya? — [€?

= exp (_ |£I2t) 2aﬂ0(€) - ﬁl(ﬁ)) + Rl(tag) + R?(tv 5),

2a 2a

where

) - 1 — 5\ ~1§_& . aﬁ0(§)+ﬂ1(§)
Bit,) =5 {exp (Zat-+ /) - e ( 2 )} (u°(£)+ Vo> —1¢P )
= g(t,I¢) (ao(a - f) - m@))

; v lePt) ¢’ aiio(€) + 11 (6)
Ry(t,€) = exp (—~
2(t, €) 2a a2 — €2(a + /ag _ Iflg-) %,
+1exp (——at —ty/a? — |§|2) o (£) — ato(§) + % (6) |
? Jot— P
Choose and fix a radial function x of class C* with compact support satisfying

x(§) = 1 on supp dg U ;.
Set

I(t,z) = F~" (x(&)g(t [€D)),
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then

Ri(t,z) =cl(t,-) *; F* (@o(g) +

where f x g is a covolution of f and g.
Lemma 2 shows that

(801t 2) = ¢ [ xa(p)g(t, "o olal) dp

for any integer k£ > 0.
The following proposition gives the estimates ||(—A)*R;(t, -)(|p-

Proposition 1 Let k be a nonnegative integer, then the following estimates hold
for any t > 0:

(1) sup [(=a)k1(t,2)| < (1 +1)/241,
(2) sup (1+ 2™ /2| (—AY I (2, 2)] < oL +)74*

To estimate ||Rz(t,-)||p, we use standard estimates to the heat equation (2).

Q.E.D.

The estimates of high frequency part are as follows.

Theorem 3 ( Estimate near || = o0) Let 1 < ¢ < p < co. Assume that u; € L7
and supp 4; C {€ : |€] > 2a} for i = 0,1. Let u be the solution of the problem (1).
Then the estimate

Jutt, ) = =M () (o, )], < Ce™”* (lluolly + Ifealle)

holds, where

f{M(t)(uo,ul>}=(cost|s| Y o)

0<k<(n+1)/4 (2k)!

+sintlg] 3 ~(—_1—)k—(t@(§))2’°+1) ao(€)
0<k<(n—1)/4 (2k +1)!

- (=1)* 2%
+ (Slntlfl > W(t@(&)) — costé

0<k<(n—1)/4

x 3 ﬂ_(t@({:))%ﬂ) adip(§) + 41(§)

0<k<(nzy/a (26 +1)! V€2 — a? ,
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and O(€) = [¢] - \/l€P — a2.

(sketch) Fourier transformation of the proble (1) gives

_atSIn(tl¢] — 6(£))

\/|€|2 — a2

MacLaurin expansions of cos(t|¢| — t©) and sin(¢|€| — t©) with respect to © show
that we only have to estimate the terms

e:i:it|§l ei:it@({) e (g)ki‘) (6) )

a(t, €) = e~ cos(t|¢] — tO(€)) (&) +e (ado(€) + 1 (£))-

Since ©(&) = a?/24/1 + |€|? for large ||, the solution formula to the wave equation
(3), Lemmas 1-2 and 4-5, and Fourier multiplier theory show the desired estimates.

Q.E.D.

Remark 1 Theorems 2-3 show the character of damped wave equation of (1). Let
u be the solution of (1), let v be the solution of (2), and let w be the solution of (3).

Then
o(t, £), for small [¢],
a(t, €) = {

e"%d(t,€),  for large [¢].

The damped wave equation (1) has the same decay properties as those to the heat
equation (2), and it has the same reqularity properties as those to the wave equation
(3), though the amplitude of the solution decays ezponentially.

Theorems 2-3 give the following decay estimares.

Theorem 4 (1) Under the assumptions of Theorem 2, the estimates
|[Bkagu(t, ||, < CG,a) (1 + )7+ (jlug|, + Jfuall,)

holds for 1 < ¢ < p < o0.

(2) Under the assumptions of Theorem 3, the estimates

[lutt, M, < CRe™" (lluollyy, + lluall,)

hold for1 <p < oo when1<n <3, and for1/2—1/2m <1/p<1/2+1/2m
when n > 4, where m = [n/2].
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4 Applications to nonlinear problem

Let n <5,2/n<owhenn=1,2 and 2/n <0 <2/(n—2) when 3 <n <5 We
show that the nonlinear problem (4) admits small data time global solution (SG).

Theorem 5 Letn=4,5,2/n<0<1ando <2/(n—2). Assume that
(uo,w1) € Zy = (H3 N H}yyyp N HE,, NEY) x (HENLY),
and set
1,12, =l g + luollsy, _+ llollz, + ol + Il + I,

If [|(ug, u1) ||z, is sufficiently small, then the problem (4) possess a unique solution
u in the class

C ([0,00); H N L***7 0 L) n ¢ ([0, 00); HE) N C? ([0, 00); L?)

and it satisfies the estimates:

llu(t, Iy < O+ )~ DC2 | (ug, u) |,
Jorl+o<p<l+1/o, |

[ofogu(t, )||, < C + &)~ 4=k=1e1/2) | (ug, ua) z,

fork+|a| <2, k<1, and

|[82utz, ][, < O+ )47\ (ug, wa) | .
Theorem 6 Letn =3 and 2/3 < 0 < 1. Assume that

(uo, w1) € Zp = (Hiyyy, N Hiy, NLY) x (LY 0 LY,

and set

[|(uo, u1)|z, = ||U0HH;+1/,

+ llwollgy, , + lluolly + llwallyyy /e + lwally -

If ||(uo, u1)|| 2, is sufficiently small, then the problem (4) possess a unique solution
u in the class

C ([0,00); Hy n L7 n L) 0 C* ([0, 00); L?)
and it satisfies the estimates:
llutt, My < C(1+ 6D CTD||(ug, u1)) |,
forl+o<p<1+1/0,
|[BF02u(t, -)||, < C(1 +t)=3/4=+12] (g, wy)| ,
fork+|of <1.
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Theorem 7 Let 1 <n<4and2/n<o,0>1, and o < 2/(n—2) when n > 3.
Assume that
(uo,wr) € Zs = (Hi N L) % (22 n L),

and set
(w0, ur)llzs = lluollgry + luolly + [lually + [loall; -

If ||(ug, w1)|| 2, is sufficiently small, then the problem (4) possess a unique solution

u in the class
¢ ([0,00); Hj) N C* ([0, 00); L?)

and it satisfies the estimates:
|[0F02ut, )||, < C1+ &)/ 4=*112) | (ug, us) |,
fork+|a| < 1.
Remark 2 Theorems 5-7 give the following enrgy estimate:
|E@)] < C(L+8)72 Y| (uo, w)llz,

fori=1, 2, 3, where

B() = & (Il6(t, )1+ 1 v (e 1) - [ 18—

When 140 > 2, the several authors have shown the above energy estimates([7], [5]).

dz.

Sketch of the proof of Theorem 5.
Choose and fix a radial function 0 < x;(£§) < 1 of class C* satisfying

xi@)=1 ({<2a), x(§)=0 ([£]=3a)

We construct the approximate solutions {U;}j=01, to the Cauchy problem (4) as
follows: Let U-; = 0, and let Uj41 be the solution of the Cauchy problem

Bij+1 - AUJ'.H + 2a6tU,-+1 = f(UJ), (t, 37) < (0, OO) X Rn (5)
with initial data
Uj+1(0,z) = uo(z), aUjp1 +200:U;11(0,7) = uy(z), z € R" (6)

for j > —1. Then the prblem (5)-(6) is equivalent to the following system of the
integral equations:

Uj+1 (t7 ) = vﬁ(t: ) + /: S(t - T)fl(Uj (T1 )) dr, (7)

wia(t) = wnlt) + [ S - ) FUr, ) dr ®
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for 5 > 0, where
v(t,) = F (xOTi), wilt,) = F (@ - x() Tilt, ),

L)) = F (x(V FU5¢,9))
and X
PU;t) = FH (A - x() fU(2,)) -
Then the approximate solutions (v;, w;) satisfy:
Lemma 6 Under the assumptions as ones in Theorem 5, it follows that
v; € C([0,00); L®NLY),  w;eC([0,00); HENLINLY)

and
U; € C([0, 00); H3) N C*([0, 00); Hy) N C*([0, 00); L?)

forj=0,1,---, whereq=1+1/c and ¢ =1+o0.
Moreover, for j = 0,1,.--, the approzimate solutions (v;,w;) satisfy the following
estimates:

(1) Jlos(t oo < 20(1+ )72, loj(t, )|k < 20,
(2) [hwj(t,Mlg < 20X +8)77,  lwi(t, e < 20(1+1)77,

where
,31=2 1+0’-—l s ﬂgZE 1+0'—‘1- y
2 q 2 q

(3) ||6i8kv;(t, )|l < 2n(1 +t) %D for k + 1 < 2, where

vk 1) =2+ -’2? + min (z, 325)

and
102Ul = > 1165 -+~ 0zx Uk,
ai+--+on=k
(4) ||8L8Fw;(t,)|le < 2n(1 + )~/ (0+1/2=1/2 for k41 < 2.
In the above, 1 is a small constant satisfying ||(ug, u1)||z, < Cn.

Lemma 7 Under the assumptions as ones in Theorem 5, the estimate
1
sup ||Uj41(2, ) = Uj(t, )l < 5 sup ||Us(2, ) = Uj-a 2, )l
>0 >0

holds for j > 1.
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5 0Odd Data Problem

We consider the Cauchy problem (1) with odd initial data. Fix an mteger d € [1,n].
Set z = (z/,z") € R"=R*x R*™%, P(z') = (1+2})'*-.. (1 + z)"/%.

A function f(z) is said to be odd with respect to z' when the equality
f(xla'°'7_xk7'"’xd7xd+1:"',xn) = ""f(xlf")xk)'"7$d7$d+1a"')xn)

holds for any k € [1,d]. The new estimates for the Cauchy problem (1) with odd
initial data are as follows;

Theorem 8 (Estimates near { =0 )
Let 1 < ¢ < p < 0o0. Assume that u; is odd with respect to ©', and P(z')u; € L?
(1 =0,1). Under the assumptions in Theorem 1, the estimates

|P(a")? 0802 (u(t) - v(?) H
< C(1+ ¢)7mmkolel2aem (0472 (|| P(2)ug |, + || P(2")al )

hold for 0 < 6 < 1. Furthermore, when p=qg¢=2,1<g<p < o0 orp =00 and
g =1, we may take € = 0.

Theorem 9 (Estimates near |£| = 00 )
Let 1 < ¢ < p < oo. Assume that P(z')u; € L? (i = 0,1). Under the assumptions
in Theorem 2, the estimates

[P2) (ult, ) = e M(®) (uo, u0)) || < Ce™/2 (|| P(aYuoll, + || P(e")uall,)
hold for 1 < ¢ < p < .

Theorem 10 (Time decay)

(1) Under the assumptions in Theorem 8, the estimate
||P(a)P 0¥ o2u( H,, < C(1+t)™8k-1el/2=0=00/2 (|| p(g" Yy |, + || P(a") 4l
holds.
(2) Under the assumptions in Theorem 9, the estimate
1P(")u(t, I, < Cp)e/ (||P(z")woll, + || P(")wrll,)
hold.
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Now we consider the nonlinear problem (4) with odd initial data. Here and after,
we assume that initial data u; are odd with respect to z’ for (i =0, 1).

Theorem 11 (n =4,5) Assume that
o.=2/(n+d) <0 <2/n,n+d<6 and (ug,u1) € Zy,

i.€.,
P(z')uo € H{ N H{,,,, N H ,NL', P(z')u, € H;NL,

and set .
(w0, ur)llzs = [|1P(2")uoll gz + ‘!P(m’)u0||H11+l/d + |1P(z")uoll gy, , + 1P (z")uoll

HIP (@ )uall gy + 1P )], -

If \|(uo, u1)||z, is sufficiently small, then the problem (4) posesses a unique solution
u in class

C ([0,00); Hf n L+ n L*7) 0 C* ([0, 00); Hy ) N C* ([0, 00); L?),
and u satisfies the estimates:
llu(t, Iy < O 1+ ¢)~ /A CP=2) | (ug, 1),

foril+oc<p<1+1/o,

|[8Fagu(t,)||, < C(1 +)~/4= =412 |(ug, wy)|z,,
fork+la| <1, v(k,a) =min(k + |a|/2, (n + d)5 /2).
Theorem 12 (n = 2,3) Assume that o, =2/(n+d) < o < 2/n,
(w0, u1) € Zs, i.e.,

P(z')ug € H}yyp NHY,NL', P(z')uy € LN LY,

and set

(w0, )12 = [1P( )l , + 1P Yol + 1Pl

140
HIP () uall141/0 + || P(2)wa ]2

If |(uo, 1)z, is sufficiently small, then the problem (4) admits a unigue solution

u in the class C ([O, oc); Hi N L'*+7n L1+") N C*([0,00); L?), and u satisfies the

estimates:
lut, Mlp < C(1 + )W/ W=VE=42) | 4y, y)||

forl+o<p<1+1/0,
[0Fa2u(t, )|, < O + )/ klell2=072)|(ug, 1) | 5,

fork+|a| < 1.
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Theorem 13 (n = 1) Assume that o, =1 < 0 < 2, uo(z) and wi(z) be odd and
(uo, u1) € Zs, i.e.,

1+ z%)Y%u € HN LY, 1+ 2%, € PN LY,
and set

(o, wa)llzs = (1 + %) uollmy + [I(1 + 2%)/*uolx
+H(1 + 12)1/2,“1”2 + “(1 + 1"2)1/2“1”1-

If ||(uo, w1)||, 4s sufficiently small, then the pfoblem (4) admits a unique solution
u€eC ([0, 00); H21) nct ([O,oo); LZ) :
and it satisfies the estimates:
[B0ku(t, ||, < O+ o) 44217 (g, )1

forj+k<1.
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