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1 The Furuta inequality and the chaotic order

In what follows, an operator means a bounded linear operator on a Hilbert space H
and is denoted by a capital letter. An operator T is said to be positive (denoted by T > 0)
if (Tz,z) > 0 for all z € H, and also T is said to be strictly positive (denoted by T > 0)
if T is positive and invertible.

We start this report with introduction of the following order preserving operator
inequalities.
Theorem F (Furuta inequality [5]).

If A> B >0, then for each r > 0,
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(i)  (BEAPB3): > (BiB’B

and

()  (ASAPA%)e > (ASBPA%):

(0) —7‘)

hold forp >0 andqg>1 with (1 +r)g>p+r.

Theorem F yields the famous Lowner-Heinz theorem “A > B > 0 ensures A* > B*
for any o € [0,1]” by putting 7 = 0 in (i) or (ii) of Theorem F. An elementary one-
page proof of Theorem F was given in [6]. It was shown in [15] that the domain of the
parameters is the best possible in Theorem F.



The order defined by log A > log B for A, B > 0 is called the chaotic order. The
chaotic order is weaker than the usual order since log - is an operator monotone function.
The following characterization of the chaotic order is an application of Theorem F and
an extension of a result in [1].

Theorem 1.A ([3](7]). Let A,B > 0. Then the following are mutually equivalent:
(i) log A > log B.
(ii) (BfA”B’S')# > B for allp >0 and r > 0.

(iii) A" > (AFBPAS)7+ forallp >0 andr > 0.

We remark the correspondence of Theorem 1.A to the essential part of Theorem F:
A > B >0 ensures

(B5APB3)# > BI*" and A" > (AEBPA%)s
for allp > 1 and r > 0. Another simple proof of Theorem 1.A was given in [17]. It was

shown in [18] that the domain of the parameters is the best possible in Theorem 1.A. It
can be proved by the following Lemma F that

(BEAPB3)57 > BT «= AP > (A3 B AR)i+ (%)
holds for A, B > 0 and p,r > 0.
Lemma F ([9]). Let A > 0 and B be an invertible operator. Then
(BAB*) = BA3(A3B*BA%)*"1 A3 B*
holds for any real number A.
It was shown in [14] that similar relations to (*) hold even if A and B are not invertible.

Theorem 1.B ([14]). Let A, B > 0. Then for each p > 0 and r > 0, the following hold:

r

(i) If (B3 APB3)7 > B', then AP > (A BT A3)7.

(ii) If AP > (A3BTA%)5% and N(A) C N(B), then (B3 APB%)5+ > Br.

2 Operator inequalities related to the relative oper-
ator entropy

The relative operator entropy was defined in [2] as S(A | B) = A1 log(AT BAT)A%
for A,B > 0. We remark that S(A | I) = —Alog A is the operator entropy. In case
p, 7 >0,

A" > (AFBPA%) 57 = log AP*" > log(A2 BPA%)
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holds for A, B > 0, so that (iii) == (i) of the following Theorem 2.A is an extension of
(iii) = (i) of Theorem 1.A.

Theorem 2.A ([8]). Let A, B > 0. Then the following are mutually equivalent:
(i) log A > log B.
(ii) A" > (A5BPA5)5 for allp >0 and r > 0.
(iii) log AP*" > log(AZBPA%) for allp > 0 and r > 0.
(iv) S(A™" | AP) > S(A™" | B®) for allp>0 and r > 0.

Here we consider the case p > 0 > r. We obtain the following result by applying
Theorem 1.A.

Proposition 2.1. Let A,B >0 and p > 0.
(i) In case s > —p, log AP*® > log(AT BPAZ) <= A~*t" > (/_ﬁl?pfﬁ)—???t for allr > s.
(i) In case s < —p, log Ap+s > log(A3 BPAZ) <= A+ > (AgB"’Ag)_P_iP forallr < s.
The following is an immediate corollary of Proposition 2.1.
Corollary 2.2. Let A,B>0andp>t>0.
AP > BP = log A" > log(A7 BPAT) = A' > B.
Corollary 2.2 corresponds to the case § /" t of the following result.
Proposition 2.B ([12]). Let A, B>0andp >t > >0.
A > B = AP > (AT BPAT )5 = A* > B,
where v = max{2t — 8, p} and é = min{2t — B3, p}.
Proof of Proposition 2.1. log AP** > log(A3BPA%) implies

(p+o)r wtory s s Gar | THT
A 12{A P2 (ASBPAS) AT }

for r; = =% > 0 by Theorem 1.A, then we have (=>). (<) is obtained by taking the

logarithms of both sides of A~*" > (A3 B'pAg)—T??[ and letting r — 5. O

Proof of Corollary 2.2. The first implication is obvious since log - is operator monotone,
and the second is obtained by putting s = —t < 0 and r = 0 in (i) of Proposition 2.1. O

We can summarize relations among orders and the inequality log AP*" > log(A% BPA3)
as follows.



(i) In case p,r > 0,
A2 By -
log A > log B = log AP™" > log(AZBPAz).
A" > BT =
(ii) Incase p >t > 0,
AP > BP = log AP~ > log(A7 BPA7 ) = A' > B' = log A > log B.
(i) In case t > p > 0,
A > B A7 > B’”’/ log A > log B
S log A7t > log(A7 BPA7).
We obtain the following result on the best possibility of Corollary 2.2.
Proposition 2.3.
(i) Let p>q >0 andt > 0. Then there exist A, B > 0 such that
AT> B and logAP™' ¥ log(A7T BPAT).
(ii) Let p >t >0 and q > t. Then there exist A, B > 0 such that
log AP~ > log(A7 BPA7T) and A% # BY.
Proposition 2.3 can be proved by applying the following results.
Theorem 2.C ([16]). Letp > 1 andt > 0. Ifa > 0, then there exist A, B > 0 such that
A>B and AP Y ¥ (AT BPAT)"

Theorem 2.D ([18]). Let p > 0 andr > 0. If a > 1, then there exist A, B > 0 such that

logA>logB and A™ ¥ (A3BPA%)#.

Proof of Proposition 2.5.
Proof of (i). The case p =t can be proved easily since 0 > log(A7 BPAT) is equivalent
to AP > BP. In case p > t, there exist A;, B; > 0 such that

A; > B, and A(m—tl)a # (A:;J‘BMA__;L)G

fofp1=§>1,t1=—>0anda—§§—t>0byTheorem2C Put A = AI,B B1 and

T = %tZT) > 0, then we have

A2 B' and AP 3 {ATS (AT BrAT )A—“"”}‘*"

so that log AP~ ¥ log(A% BPA% ) by Theorem 1.A.
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In case p < t, there exist A;, B; > 0 such that }
—t -1
A2 By and AP # (AT BRAT )

1 1
for p; = g >1, 4= % >0and a = 17_'1'?2-5 > 0 by Theorem 2.C. Put A= A}, B = B} and
r o= p—”_% > 0, then we have

- @=try ot sty (mOn ) Tie
A?>B7 and AP-In ¥ {A 7 (AT BPAT )A‘—:“} T
so that log APt ¥ log(A% BPAT) by Theorem 1.A.
Proof of (ii). There exist Ay, By > 0 such that
logA; > logB; and AD® # (A7 B,AZ)™n

forr = zﬁ >0 and a = 1 > 1 by Theorem 2.D, then we have the desired conclusion by
putting A = Af_i‘ and B = (Af‘”_t‘tj BlAf(':—_tf)z'l’, that is, A; = AP~t and B, = AT BPAT.
d
We obtain the following result by applying (i) of Proposition 2.3.
Theorem 2.4. Letp>1t, s> 1 andr < 0. Then there exist A, B > 0 such that
AP > BP and log Aw-t)sr # log{AT (AT BPA7)* A3},
Proof. There exist A;, B; > 0 such that

—t
-

__‘1‘
A1 > B; and log Aj™ #log(A;® BiA? ).

fort; = = > 0by (i) of Proposition 2.3, then we have the desired conclusion by putting
A= AP and B = (A™ B AT0)}, that is, A; = AP~ and B, = AZBPAZ. O
It turns out by Theorem 2.4 that the generalized Furuta inequality ([9])
“4> B >0 with A>0=> A" > {A5(AT BPAT ) AS o orr
“forp>1,te0,1],s>1andr >t”

isnotvalidforp>1,p>t¢t, s>1land r <O0.

3 Operator inequalities in a characterization of the

chaotic order

The following relation holds between the inequalities in Theorem 1.A for 0 < py < p
and 0 < r; < ry. In fact, this relation can be proved by Theorem F and Lemma F in case
A and B are invertible, and by Theorem 1.B in case they are not invertible.
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Proposition 3.A ([11][14]). Let A, B>0,0<p; <py and 0 <7y <.
(B? AnBF)7it > B = (B# A B% )tz > B,

Here we consider the case p; > p, or r; > 15 in Proposition 3.A. In case A and B are
not invertible, the following was shown in the proof of [13, Theorems 5, 6].

Theorem 3.B ([13]). Let p; > 0 and r; > 0. Then there exist A, B > 0 such that
(B%APIB%)## > B™  and (B%AWB%)E?E z B
for all ps > 0 and ro > 0 such that p; > ps.

In case A and B are invertible, the following was given as a concrete example for
P1=7 =23.de2=7'2= 1.

Example 3.C ([4]{10]).
17 7\’ 10\
Let A = (7 5) and B = (0 4) . Then A, B > 0, (BA2B)% > B? and (BiAB%)? # B.

We obtain the following result by applying Proposition 3.A and Example 3.C.

Theorem 3.1. Let p; > py > 0 and ry > vy > 0. Then there exist A, B > 0 such that
(BT AnB3)7# > B" and (BFAPBF)mtn ¥ B,

It turns out by Lemma F that A and B in Theorem 3.1 also satisfy

AP > (AR B AR )t and A7 3 (A¥BAR)RTE
Proof. Assume that the following holds for A, B > 0:
(B3 4» BF)mt > Bn = (B# AmB# )i > B, (3.1)
By Proposition 3.A and (3.1), we have
(BF AP B#)ntn > B = (B A B7 )t > B%, (3.2)
where § = max{2,72} < 1. Let n be an integer such that 6" < min{2*+, 7--}. By
applying (3.2) n times, we have
(BF AP BH st > B — (B3 ATP B )mdn > BT (3.3)
By Proposition 3.A and (3.3), we have
(B5A'B%): > Bt = (BiA31B#)3 > B3, (3.4)

where ¢ = min{p;,7:}. The proof is complete since (3.4) contradict to Example 3.C. O
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The domains of (ps,r2) in Proposition 3.A, Theorem 3.B and Theorem 3.1 are as in
the following figures.

p S e p

(p1,71) e

The following remains an open problem which corresponds to the case A and B are
invertible in Theorem 3.B.

Conjecture 3.2. Let py > 0 and r; > 0. Then there exist A, B > 0 such that
(B3AmB3)5i* > B"  and (B AmB%)nin # B
for all p, > 0 and r3 > 0 such that p; > p,.

The following follows from Conjecture 3.2 by Lemma F since A and B are invertible
in Conjecture 3.2.

Conjecture 3.3. Let py > 0 and vy > 0. Then there exist A, B > 0 such that
(B*AnB?)7+1 > B"  and (BFAmB%)mts ¥ B

for all p; > 0 and r5 > 0 such that p, > ps orry > 71g.
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