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1. INTRODUCTION

In this paper we shall generalize the following well-known theorem on a relation
between Prikry forcing and iterated ultrapowers.

Theorem 1.1 (Solovay). Assume k is a measurable cardinal and U is a normal
ultrafilter on k. Let {Mp,jmn | m < n <w) be the iteration of ultrapowers of V by
U. Then the sequence {jon(k) | n € w) is a Prikry generic sequence for M,, with
respect to jo.(U).

We generalize the above theorem for normal filters which are not necessarily
maximal. Of course, the above theorem can be restated using the dual ideal of
U. In this paper we argue with ideals instead of filters. To generalize the above
theorem, we must generalize Prikry Forcing and the iteration of ultrapowers for
normal ideals which are not necessarily maximal. The iteration of ultrapowers has
an obvious generalization, i.e. the iteration of generic ultrapowers. On the other
hand, there are two natural generalizations of Prikry Forcing,.

Let I be a normal ideal on . If I is maximal then tree type Prikry Forcing, PR,
consists of all pairs (t,T) such that t € <“x and T C <k is a tree in which every
node has I-measure 1 immediate successors, i.e. for each s € T, {€ € k | 8™ (€)}
is in the dual filter of I. The order is defined by (t1,73) < (to,T5) if for each
s1 € Ty, there is 85 € T3 such that t; 7 81 = t5 "~ s5. In this case “I-measure 1” and
“I-positive” coincide, but if I is not maximal then this is not the case. So if I is
not maximal then there are two natural generalizations of Prikry Forcing, PR} and
PR}. PR} consists of all {t,T) such that ¢t € <“x and T is a tree in which every
node has I-measure 1 immediate successors. PR} consists of all (¢,T) such that
t € <“g and T is a tree in which every node has I-positive immediate successors.
In both PR} and PR;f, order is defined in the same way as Prikry Forcing. In this
paper we generalize the above theorem for both PR} and PR}*. (Theorem 3.3 and
3.5). ’

In Section 2 we study basic facts on the finite step iteration of generic ultrapow-
ers. In particular, we show that the n-th iterate of generic ultrapowers by an ideal
I can be represented as a one-step generic ultrapower by the n-th Fubini power of
I. In Section 3 we generalize Solovay’s theorem for both PR} and PR;f.

Basic Definitions and facts about embeddings between partial orderings:
Let P and Q be partial orderings.
o:P — Q is a complete embedding if
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(1) o is order preserving, i.e. Vp1,p2 € P, p1 < ps — o(p1) < o(p2)-
(2) If A C P is a maximal antichain of P, g[A4] is a maximal antichain of Q.

w: Q — P is a projection if

(1) 7 is order preserving, i.e. Vg1,¢2 € Q, ¢1 £ ¢2 — 7(q1) < 7(ga).

(2) Vg € Qvp € P, if p < w(g) then there is a ¢* < ¢ such that 7(¢g*) =p
Projections which appear in this paper have the following additional property:

(3) Vg € Q¥p € P, if p > m(g) then there is a ¢* > ¢ such that 7(¢*) =p
We call 7 a good projection if 7 satisfies (1)-(3).

If o : P — Q is a complete embedding and G is P-generic then the quotient Q/,G
is the p.o. obtained from restricting Q to {¢ € Q | Vp € G, g is compatible with
o(p)}. If : @ — P is a projection and G is P-generic then the quotient Q/,G is
the p.o. obtained from restricting Q to #~1[G]. If o or 7 is clear from the context,
we just write Q/G for Q/,G or Q/,G

We present basic facts on complete embeddings and projections without proof.

Fact . Let P and Q be p.o..

(1) Assume that o : P — Q is a complete embedding. Then H is (V,Q)-generic
iff G := 0~ 1[H] is (V,P)-generic and H is (V[G], Q/,G)-generic.

(2) Assume that 7 : Q — P is a good projection. Then H is (V,Q)-generic iff
G := 7[H] is (V,P)-generic and H is (V[G], Q/:G)-generic.

(3) Assume that o : P — Q is a complete embedding, 7 : Q@ — P is a projection
and oo = id.
(a) If H is (V,Q)-generic then o 1[H]| = n[H].
(b) If G is (V,P)-generic then Q/,G = Q/.G.

2. FINITE STEP ITERATION OF GENERIC ULTRAPOWERS.

In this section we study basics on the finite step iteration of generic ultrapowers.
This is a natural generalization of Kunen’s theory of iterated ultrapower. If n € w
and U is an ultrafilter on x then the n-th power of U7, U", can be defined as an
ultrafilter on "k and the n-th iterate of ultrapowers of ¥ by U can be represented
as a one-step ultrapower of V by U™. In this section we generalize this for the
iteration of generic ultrapowers.

2.1. Fubini powers of ideals.

In this subsection we introduce the Fubini powers of ideals and their basic prop-
erties. Throughout this subsection, let k¥ be an uncountable regular cardinal and I
be a k-complete ideal on k.

For each n € w, the n-th Fubini power of I, I™, is the ideal on "k defined as
follows: Let I0 = {0}. Note that 9% = {{)}, where () is the empty sequence. So I°
is an ideal on %k and (I°)* = (I°)* = {{()}}. Assuming I™ was defined as an ideal
on "k, let I"*1 be the ideal on "*1x such that for each A C 1k

Aer't! o {se™s| {¢<kr|s™ () e A}el } € (I

It can be easily seen that I"*! is a k-complete ideal on "+'x. Note that I! and
I are the same if we identify k with 'k in the obvious way. (For each sequence s,

05 =35~() =s)

The following lemma is basic:

Lemma 2.1. Assume m < n € w. Then for each A C "k
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(1) AeI* & {se™x]| {te™™r|s"teA}el"™} € (I™)*,
(2) Ac (")t & {se™s| {te™"™u|s"teAe T ™)t} € (I™)*,
3 Ae(I") & {se™k| {te™™k|s"teAte (I ™)} € (I™)*.

Proof. By induction on the lexicographical order of (n,m), we show (1)-(3) simul-
taneously. If n = m = 0 then (1)-(3) are trivial. Assume m < n € w and (1)-(3)
are true for each pair m/,n’ such that m’ < »n’ and (n/,m’) < (n,m). Because (2)
and (3) follow from (1), it suffices to show (1) for m,n. If m = n then (1) is trivial
and if m = n — 1 then (1) is the definition of I”. So we may assume m <n — 1.
Take an arbitrary A C "k. For each s € "1k, let A, be {€ < k|37 (£) € A}.

Then

Aelr

& {serlk|A, eI} € (In 1)

Y {t € Mk ‘ {u c n—l—mh: I At"u I= I} I= (In—l——m)* } € (Im)*

o {te™mk| e ™k |tTveEAe ™™} € (I™)*.
The first and third equivalences follow from the definition of I™ and I™™™. The
second equivalence follows from the induction hypothesis. O

If m < n < w, there are a natural complete embedding and a projection between

ij and P['n.
Let 0y n : P(™K) — P("k) be the function such that for each A C ™k,

Omn(A) = {s€™k|sIme A}
and let 7y, », : P("k) — P(™k) be the function such that for each B C "k,
Tnan(B) = {s€™x| {te" ™k |s"te By € (I"™™)* }.

Note that if m = n then o n = Tnm = id.

By Lemma 2.1, if m < n then 0, »[(I™)"] € (I™)t and m, ,[(I™)t] € (I™)7.
Moreover, as we show in the next lemma, 0, [ (I ™)+ is a complete embedding
from Pym to Pr» and mp, . [ (I™)7 is a projection from Py~ to Pym. We call 0, , the
natural complete embedding associated with I and call 7, ,,, the natural projection
associated with I.

Lemma 2.2. Assumel < m < n € w. Then the following hold:

(1) Om,n 9 0,m = Oln.

(2) Tmd © Tnan = Tn,l-

(8) Tn,m © O =1d[P(MK).

(4) Ae (I™)t & omn(A) € I™)7T, for each A C "k.
(5) A€ (It & mpm(A) € I™)7F, for each A C ™k.
(6) Oman|(I™)F :Pim — Prn is a complete embedding.
(7) Tnm [ (I™)T : Pin — Prm is a good projection.

Proof. (1) and (3) are clear by the definition of o and x. (2),(4) and (5) are clear
by Lemma 2.1. So we show (6) and (7). We can assume m < n.

(6). Clearly o, is order preserving and ALB — 0, n(A) Loy o(B) for each
A, B € P(pm). So it suffices to show that if M C Py~ is predense then o, ,[M] is
predense in P;». Assume M C Prm is predense. Take an arbitrary A € P;». We
must find B € M such that o,,, n(B) N A € (I")*. Because 7y, m(A) € Pim we can
take B € M such that BN 7, m(A) € (I™)*. Then for each s € BN 7y, ,,(4),

{te™ ™k |8 t€on(B)NA} = {te™ ™k |s"te A} € (I"™™)*.



So, by Lemma 2.1, oma(B)N A€ (I™)t.
(7). Clearly mn m is order preserving. By (3), 7n,m is surjective. Assume A €
Pin, B € Pym and B < @, m(A). Then, for each s € B,

{te™" k| s tEomn(B)NA} = {te™ "k |s"te A} € (I"™)T.

So C := opma(B)NA € (I")*. Moreover, clearly, C < A and 7, n(C) = B. So
Tnm 1S & projection. It is easy to see that m, ., is good. O

Lemma 2.3. Assume I is normal. Let n € w. Then A € (I™)* if and only if there
is an X € I* such that A C [X]|®, where [X]|™ is the set of all strictly increasing
sequences of elements of X of length n.

Proof. If X € I* then it can be easily seen that [X]|™ € (I™)*. So (&) is true. We
show (=) by induction on n € w. If n =0 or n = 1 then this is clear. So, assuming
n > 1 and (=) is true for n — 1, we show this for n.

Assume A € (I™)*. For each t € "1k, let Ay := {€ < k | t7(§) € A}.
Then B := {t € "1k | A, € I*} € (I"!)*. By the induction hypothesis, there
isaY € I* such that B D [Y]*!. For each £ < K, let A¢ = ({{A: | t €
B Amaz(t) < &}. Because I is k-complete As € I*. Let Z := A¢exAg € I'*. Then
let X :=Y NZn Lim(s) € I*. We show that if s € [X]|™ then s € A. Assume
8 € [X]™. Then, because s[n—1¢€ [Y]*"1,s[n—1¢& B. Let £ := maz(s[n—-1)+1.
Then max(s[n—1) < £ < s(n —1). Because s(n—1) € Z, s(n—1) € A; and so
s(n —1) € Ag,—1. This means s € A. O

2.2. Representation of a finite step iterated generic ultrapower.

In this subsection we see that a finite step iterated generic ultrapower of V by
some ideal I can be represented as a one step generic ultrapower of V by Fubini
powers of I.

All through this subsection, in V, fix &, I, (P, | 7 € w), (Op,n | M <1 < w) and
{Tn,m | m < n < w) so that

e x is a regular uncountable cardinal,

e [ is a normal precipitous ideal on x,
® Omn: P(™k) — P("k) is the natural complete embedding associated with

I,
® Tnm : P("k) = P(™k) is the natural projection associated with I,
. ]P’n :——-' PI" .

Our first aim is to show:

e [ is precipitous for each n € w.

o Assume G, is (V,P,)-generic and, for each m < n, Gy, is the (V,Py)-
generic filter naturally obtained from G, i.e. Gm = Tn m[Gn] (= 0,1,[Gx]).
In V[G,.], let M,, be the transitive collapse of Ult(V,G,,) for each m < n.

Then (M., | m < n) is an iteration of generic ultrapowers of V by I.
We begin with the factor lemma for P,.
Lemma 2.4. Assume that m,k € w, I"™ is precipitous and G, is a (V,Pp,)-generic
filter. Let jum : V — My, = Ult(V,Gy,) be the generic elementary embedding and

Ems Imy PP be jm(K), Gm(I). jm(Px) respectively. Then, in V[Gy)], there is a
surjective dense embedding from Pp, /G, to PP, ‘

Note: In M,,, I, is a normal ideal on k., and P7* =Pz _yx.

27
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Notation: Assume m,k € w. For each A € ™%k which is in V, let f/: be the
function on ™k such that

i) = {tekr|s"te A}
for each s € ™k. (Note that f2 e V)
Proof. In V[G,,], let d* : Ptk /Gm — PF* be the function such that

dr(4) = [falan

for each A € Py, 4x. Recall that |Prpyx/Gnl| = 7rm_HG lGm]. Soif A€ Pryx/Gm

then df*(A) € PP*. Moreover it is clear that d" is surjective and order preserving.

So it suffices to show that if A L B in Ppyx /Gn then d*(A) L d*(B) in PP
Assume d7*(A) and d*(B) are compatible. Then, by Lo#’s theorem,

= {se™k| ()N fa(s) €(I*)} € Gn.
So, by the definition of f2 and f2Z, Tmik,m(ANB) = X € Gp,. This means that
ANBEP,x/Gm and so A and B are compatible in Pp,1x/Gm. a

Next we show the factor lemma for a generic ultrapower of V by I™. If G,k
is (V,Pmys)-generic and Gp, = Tmik,m|Gmik] then dt[Gmyr] is (VIGm], PT)-
generic, where P7* and d}* are as in the previous lemma. (Note that df* is sur-
jective.) Because PT* € My, C VI[Gn], dft[Gm+x] i8 (M, PY)-generic. So, in
V[Gm+x], we can construct Ult(Mp,, di*[Gm+k]). We see that this model is isomor-
phic to UE(V, Gmps)-

Lemma 2.5. Assume m,k € w, I™ is precipitous and Gpyx 18 (V, P4k )-generic.
Let Gry = Tmtk,m|Gmik]. In VIGr], let jm, My, K, Im, PY be as in Lemma
2.4 and let A : Pmyx/Gm — P be the dense embedding defined as in the
proof of Lemma 2.4. In V[Gmtk], let GF = dPGm+k). Then UV, Gmyr) =
Ult{ My, GT).

Notation: Assume m,k € w. For each function g € V on ™%k, let f2 € V be
the function on ™k such that

f9(s) = the function on *x such that Vt € *x, f3.(s)(t) = g(s”"¢t)
for each s € ™K.
Proof. In V[G4k), define 7 : Ult(V, Grnyx) — Ult(Mp,, GT) 88

T((g)Gm+k) ([ 1n]Gm)G',’c"

for each (g)G,nty € Ult(V,Gmtx). We show that 7 is isomorphic.
First we see that 7 is well-defined, injective and elementary. Let ¢(vy,....v;) be
a formula and g1, ...,g; € V be functions on ™**x. Then, by Lod’s theorem,

Ult(Mm,Cm) E o(([f&lem)ap - ([F8am)ap) (1)
& {t€*im | MnEo([fSc, @), ... [[E)e.. (1))} € GP. (2)
Now, in V, let A € ™%k be such that
A = {u €™k |V E¢(g1(u), ... ai(u))}.

Then, for each s € ™k

fm(8) = {t €*k |V E (8 ()(t), ., ()}



holds in V. So, by Los’s theorem, in M,y,,
rlen = {t € m | My b o([f216,, () o, [ (£} -

Thus

(2) & [filg., €EGY & A€Cmix

& ULV, Gmir) F e((91)Gmens -~ (9)Cmis)- 3)
For the second equivalence, recall that df*(4) = [fi]g,. and GP = dP[Gmix].
The equivalence between (1) and (3) implies that 7 is well-defined, injective and
elementary. (For the well-definedness and injectivity, let ¢ be the formula “v; =

’l)g” .
Finally it is clear from the definition that 7 is surjective. So 7 is isomorphic. [

Remark: If UIt(V, Grmyx) and Ult(M,,, GT) are well-founded then, because the
above 7 is isomorphic,

Glamue = [falemlop-
Lemma 2.8. For each m € w, I™ is precipitous.

Proof. We show this by induction on m € w. If m = 1, this is clear by the
precipitousness of I. Assume I™ is precipitous. Assume G, 41 is (V, Py, 1)-generic.
Let Gm = Tmy1,m[Gm+1] and My, jm, Im, GT* be as in Lemma 2.5. (Let k = 1.)
Then G7* is (M, Py, )-generic. On the other hand, by the elementarity of j,,,
M., E “I, is precipitous”. So Ult(M,,, GT*) is well-founded. So, by Lemma 2.5,
Ult(V, Gpmt1) is well-founded. This shows I™*1 is precipitous. O

In the following lemma, note that if my < me < n € w, G, is (V,P,)-generic
and Gu; = Tn,m,[Gn] (F = 1,2) then Gm, = Tmy,my [Gma,)-
Lemma 2.7. Assume n € w and G, is (V,P,)-generic. For each m < n, let
G := Tn,m|[Gr] and M, be the transitive collapse of Ult(V,G,,). For eachm < n,
let GT* be as in Lemma 2.5. Then (M,,,G} | m < n, | < m) is an iteration of
generic ultrapowers of V by I.

Proof. Clear by Lemma 2.5, O

In the rest of this subsection, we show basic facts needed in the next section.
From now on, let W be an outer model of V' in which there is a sequence (G, | n € w)
such that if m < n € w then G, is a (V,[P,)-generic filter and G,, = T m[Gr].
Basically we work in W. For each m, k € w, let jm, Mm,PF?, e.t.c. be as before, i.e.

® jm:V = M, 2UI(V,G,,) is the generic elementary embedding,
® Km = jm(K‘)- In, = jm(I);
o PP = jm(Pr) = (Pyr, 0 )M,
o d' : Ppyr/Gm — PP is a dense embedding such that for each A €
IPm+k/Gma
din(A) = [f-r‘;{:.]Gma
¢ G :=dPGm+k)-

First we give a representation for the map from M,, to M, associated with the
iteration of generic ultrapowers. For each m < n € w, let jp n : My, — M, be the
function-defined as :
jm,n([g]Gm) = [g]Gn
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for each [g]a, € Mm, where § € V' is the function on ™k such that g(s) = g(s[m)
for each s € ™k. It is easy to see that if I < m < n € w then jo, = jn and

jl,n = j—m,n o jt,m,-

Lemma 2.8. Assume m <n € w. Then jmn : My — M, is the generic elemen-

 tary embedding associated with Ult(My,, Gt )-

Proof. Take an arbitrary « € M,,, and assume z = [g]g,,. We show that Jmn(Z) =
[ezlgm_, , where c; € My, is the constant function on e With the value x. Let g
be as above, i.e. the function on "k such that §(s) = g(s[m) for each s € "x. Then,
in My,, [f2]g,. = cz- By the Remark after Lemma 2.5, {[f{]c,.Jem . = [dla,. So

lczlem . = [fElenlem_ . = [Gla. = jma(T).

n—m

O

In particular, jmm+1 : Mm — Mpy4 is the ultrapower map associated with
Ult(V,G7). Then, because (My, jmn | m < n € w) is a directed system, jm,n :
M,, — M, is the map associated with the iteration of generic ultrapowers, i.e.
(My, GT, jm.n | m < n € w) is an iteration of generic ultrapowers of V by I.

Next we give the representation for the sequence of critical points. Because [ is
normal, the sequence of critical points have a good representation.

Lemma 2.9. Assume m <n €w. Then (kx |m <k <n) =[id [ " "kn|gm__.
So, for each A C ™ ™Ky, which is in My, A€ G™_ if and only if (kx [m <k <

Proof. For each k < n, let ix € V be the function on ™ such that ix(s) = s(k) for
each s € ™x. First we show [ix]q, = k&. Let hy be the function on ¥+1x such that
hi(s) = s(k) for each s € ¥1x. Then jit1,n([hxlais:) = lix]e,. Because jyi1,n
does not move &, it suffices to show [hx]g,,, = Kk-

In V, f,’:“‘ (s) = id | k for each s € Fx. (Here we identified 'x with x.) So, in
My, [f#*]6. = id|xx. Then, by normality of I, xx = [[f,’:k]gk]cf. Then, by the
remark after Lemma 2.5, [hk|g,,, = k.

Now let g € V be the function on "« such that g(s) = (s(m), s(m+1), ..., s(n—1))
for each s € "x. Then, because f2,(s) = id ™ ™k for each s € ™k, [f§]c,, = id]
M e S0

[fZlanlen.,, = idI™ " kmlen_ ..
On the other hand,
[g]Gn = ([im]Gnv [im+1]Gn 3o [in-l]Gn) = (Km”cm+1s-'-:"‘7n—1>-
So, by the remark after Lemma 2.5,
(I ™ Emlam . = (KmsKmt1s o Kne1)-
O
For each m, k,! € w such that k <, let
e ofy = Jm(ok1),
4 ﬂ'mc = jm("n,k)'

Note that if m, k,! is as above then, in M,,,
¢ o7y : P(*km) — P('&p) is the natural complete embedding associated with
I,



31

o P(*km) — P(*K,,) is the natural projection associated with In.

Lemma 2.10. Assume m € w and k < | € w. Then the following diagrams
commute. So GY" = n [GT*] = (o74) 7 [GP"].

OIm+tk,m+l
lP>m+k/G’m S — Pm+i/Gm

(1) a | Jar
ok

L

Tm4l,m+4k
Pm—}-k/Gm — IP"m—H/CT'm

@) a | | |a

Tk .
PP Ry
Prodf.

(1): Assume B € Ppyx/Gm. Let A := Opykm41(B). Then fi(s) = or1(FE(3))
for each s € ™k. So, by Lo&’s Theorem,

a(A) = [filen = ofu(fBla..) = o(dr(B)).

(2): Assume A € Pp4/G. Let B := mpiimyk(4). Then fB(s) = mx(fA(s))
for each s € ™x. So

P (B) = [fEle. = mi((fAle.) = (@ (A)) .
O

We end this subsection with a definition. By Lemma 2.7, (M, G, n | m <
n € w) is an iteration of generic ultrapowers of V by I. Then, because of the
iterability of generic ultrapowers, the direct limit of (My; jimn | m < 1 € W) is well-
founded. Let M, be the transitive collapse of the direct limit of (4, Jman |m <
n € w) and, for each m € w, let jm,, : My — M, be the associated elementary
embedding. Then we call {M,,,GT*,jmn | m < n < w, m < w) the iteration of
generic ultrapowers of V by I associated with {G, | n € w).

3. GENERALIZED PRIKRY FORCING AND ITERATION OF GENERIC ULTRAPOWER.

3.1. PR* and PR™.
In this subsection, we define two generalizations, PR* and PR, of Prikry Forc-
ing and show their basic properties.
First we give some definitions involving trees. Let a be an ordinal and 7' C <“«
be a tree. Then for each t € <¥q, let
¢ t"T = U{t|k|k< [t!}UU{t s|seT}, (sot T is a tree whose stem
is t and tT is isomorphic with T above its stem),
o T/t := {s€<“’a[t'"s€T}
o Sucr(t) :={{ <a|t™(f) T}
Next we generalize Prikry Forcing. Assume J is an ideal on some infinite ordinal
«. For each tree T C <¥q,
e Tiscalled a J*-tree if T # @ AVt € T, Suer(t) € J*,
o Tiscalled a Jt-tree if T #0 A Vt € T, Sucr(t) € J*.
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Let PR be the p.o. such that
|PRY| = {{t,T) |t € Yo A T C ““ais a J'-tree}

and, for each <t1,T1>,<tg,T2) S IPR3’1 (tl,T-l) S (tg,Tg) iff f.lATl - ta ATQ. Let
PR}L be the p.o. such that

IPRY| = {{t,T) [t € <“a A T C <“ais a J*-tree}

a.nd, for each (tl,T]_>, (tg,Tg) & IPR;', (t’l,Tl) S <t2,T2) if tlATl g tgATg.

In Shelah [2], PR* is treated as a variant of Namba Forcing and studied in
detail. Note that if J is a prime ideal then PR% = PRY and this p.o. is Prikry
Forcing. As is the case with Prikry Forcing, if I' is PRY-generic (or PR¥-generic)
then |J{¢ | 3T, (t,T) € T'} becomes an w-sequence of ordinals in a and I' can be
recovered from this sequence. First we show this.

Lemma 3.1. Assume W is a transitive model of ZFC', a € W i3 an infinite
ordinal and J € W is such that W E “J is an ideal on a”. Let P* := (PR%)" and
Pt := (PR})W.
(1) Assume T is a (W,P*)-generic filter. Let b := J{t | 3T,(t,T) € T} and
Ty :={{t,T) €eP* |Vnewbln€t™T}. Then[p=T.
(2) Assume T is a (W,P*)-generic filter. Let b:= J{t | 3T,(t,T) € T’} and
[y:={t,T) €ePt |Vn€w,blnet"T}. Thenly =T.

Proof. We show only (1). (2) can be shown in the same way. Clearly I' C I',. So
it suffices to show that I'y C T'.
Assume (s, S) ¢ . Because

D = {{t, T)eP*| ({t,T) < (5,5) or t¢ s~ S}

is in W and dense in P*, there is a (¢t,7) € DNT. Because (s,S) ¢ I, t ¢ s S.
Then. because t is an initial segment of b, b ¢ [s ™ S]. So (s,S) ¢ I's. O

We call the above b’s a PR%-sequence or a PR}'-sequence. More precisely we
make the following definitions.

Assume W is a transitive model of ZFC, « € W is an infinite ordinal and J €¢ W
is such that W E “J is an ideal on o”. Let b € “a. Then we say:

e bis a PR%-sequence over W if there is a (W, (PRY)™)-generic filter I such
that b= {J{t | 3T, (t,T) € T'}.
e bis a PR}-sequence over W if there is a (W, (PR})"W)-generic filter T
such that b = | J{t | 3T, (t.T) € T'}.
By Lemma 3.1, b is a PR%-sequence over W if and only if T, := {{¢,T) € (PR%)W |
Vn € w,bin € t™T} is a (W, (PRY)W)-generic filter. (For the backward direction,
note that if ' is a generic filter then b = |J{¢ | 3T, (t,F) € I'p}.) This is also true
for PR}.
The following lemma is useful.

Lemma 3.2. Assume W, a and J are as in Lemma 3.1 and b,c € “o have a
common tail, i.e. Im,n € wVk Ew, b(m + k) =c(n+ k). Then:

(1) b is a PR%-sequence over W iff ¢ is a PRY%-sequence over W.

(2) b is a PR} -sequence over W iff ¢ is a PR} -sequence over W.



Proof. We show only (1). Let W, «, J, b, c be as above. Let m,n € w be such that
Vk € w, b(m + k) = c(n + k) and let u,v € <“a be b|m, c|n respectively.

Assume that b is a PR%-sequence over W and I' witnesses this. In W, let P,
be PRY | {u, <“a), i.e. the p.o. obtained from restricting PRY to {(t,T) | (t,T) <
{u,<“a)}. Let P, be PRY [ (v, ““a). Then let d : P, — P, be such that

d({uv"s,8)) = (v7s,8)

for each (#7s,5) € P,. Then d € W and d is an isomorphism. Because u is
an initial segment of b, (u,<“a) € I. So I' NP, is (W, P,)-generic. So d[[' NP,]
is (W,Py)-generic. So the filter @ on (PR%)" which is generated by d[[' N P,] is
generic over W. Moreover,

{137, ¢.1) e @} = J{t| 3T, ¢,T) e dC NP}
= U{’UAS | 3T, ("8, T) e T NP}

= U{v"s | u” s € b}

=cC.

So €2 witnesses that ¢ is a PR%-sequence over W,
The other direction can be shown similarly. ' O

3.2. Generalization of Solovay’s Theorem.

Solovay’s theorem can be generalized for both PR* and PR*. In this subsection,
we show this.

All through this subsection, in V, let x be a regular uncountable cardinal and I
be a normal precipitous ideal on k. Moreover, for each m < n € w, let P,, := Py
and let 01,5 : P(™K) — P("k) and mp m, : P("k) — P(™k) be the natural complete
embedding and the natural projection associated with 7.

First we generalize Solovay’s theorem for PR*.

Theorem 3.3. Let P, be the direct limit of (Pn,0mn | m < n € w). Let G,
be a (V,IP,)-generic filter and, for each n € w, let G, be the (V,P,)-generic filter
naturally obtained from G,,. In V[G.], let (Mp, H™, jmn |m <n <w, m <w) be
the iteration of generic ultrapowers of V by I associated with (G, | n € w). Then
(Jon(k) |n€EwW) is a PR (1)-sequence over M.

To prove the above theorem, we need some preparation. Until we complete the
proof of the theorem, let P, G, (Gn | n € w) and (Mp, H™,jimn | m < n <
w, m < w) be as in the theorem, and, in V[G, ], let jm, £m, Im, PP, dP*, G, ory
Tk be as in Section 2.2 for each m, k,! € w with £ < . Let I, := jo.(I). Note
that H™ = GT* for each m € w.

P, is the p.o. defined as follows: First let ~, be the equivalence relation on
Unew [Pa] such that for each 4, B € Ureco [Pr], say A € P, and BEP,, A~, B
iff o 1(A) = 0,,1(A), where | = maz(m,n). Let [A], denote the equivalence class
represented by A. Then

o P,]| = Unew Pal/ ~o, .
o if A € P, and B € P, then, letting I = maxz(m,n), [Al, < [B], iff
O'm,l(A) _<_ Crn,l(B) in IPI.
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For each m € w, let Oum o : P — P, be the complete embedding associated with
the direct limit, i.e. the function such that o, . (A) = [4], for each A € P,,,. Then
G = 0,01G.] ={A € Pn | [Alo € G}

To prove the theorem, we need the factor lemma for I, and (Mp, Hmy Jmn |
m < n <w,m <w). To see this we define P, o, , d7} and GI}'. Let m € w.

Let

o P! = jm(HDw)s
e o7, = jm(oku), for each k € w.

Recall that Pp* = jm(Px) and o} = Jm(ok,) for each k <1 € w. So, in My, P}
is the direct limit of (PJ*,07; | £ < | € w) and of’,, : Pi* — P is the induced
complete embedding. For each A € |J,¢, [PP|, let [A]om denote the equivalence
class represented by A. Then o7, (4) = [A]om.

d™ : P,/Gp — P™ is defined as follows. Note that P,,/Gr, is the p.o. in V|G|
which is obtained from restricting P,, to {[A4], | 3In >m, A€ P,/Gr}. In>m
and A € P, then [4], € P,/Gm & VB € Gy, [A], and [B], are compatible in
P, & VB € G, A and 0, ,(B) are compatible in P, & A € P,/Gr,.) Then let
am : P, /Gy — P be the function such that

o d7([A]s) = [dF(A)]om,
for each A € Ppik/Gm. By Lemma 2.10, d7 is well-defined. Clearly d7* € V[Gn].
We show that dT is a dense embedding.

Lemma 3.4. d™ : P,/G,, — P} is a surjective dense embedding.

Proof. Because d7* : Ppyx/Gm — P is surjective for each k € w, d7} is also
surjective.

To see that d7 is order preserving, assume [A], < [B], in P, /Grm. Assume A, B
is in Py /Gmy Prmtt/Gm tespectively. Let i := max(k,1). Then 0pmyrmti(4) <
Omtt,m+i(B) In Pryyi/Gr. Because d* is order preserving, d7*(0m+k,m+i(A4)) <
d?(0m+t,m+i(B)) in P*. Then, by lemma 2.10, o3>, (d7*(A)) < o%(d*(B)). This
means that d™([A]s) < d7([B]s)-

By replacing “<” by “L” in the above argument, we can see that d' preserves

incompatibility. O
Let G := d7[G,]. Then G7 is a (V[Gy],P7)-generic filter and so is

(M, P7)-generic. We want to show that G7* = (o7,)”'(GT') for each k € w,
ie. GT is the (V[Gn], PP*)-generic filter naturally obtained from G7'. Assume
k€ wand A € PP. Let B € Ppyyx/Grm be such that A = df*'(B). (Recall that d*
is surjective.) Then d™([B],) = [A],m. Then

[Alom € Gt & [Bl, € Gu & B € Gar & A€ GY.
Thus G = (o2,) LG
Note that, by Lemma 2.5, (M 41, H™* joikmtt | £ €1 < wk < w) is the

iteration of generic ultrapowers of M,, by I,, naturally obtained from G7.
Now we can start to prove the theorem.

Proof of Theorem 3.3.
In V[G,], let B := (K, | n € w) and let

I := {{, T) € (PR} )M |Yn€w,RInet"T}.
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We show that I is a (M., (PR}_)M«)-generic filter. For simplicity of notation, we
write PR}  for (PR} )M~ for each m < w.

First we show the genericity of I'. Let D € M,, be a dense subset of PR} . We
show TN D # @. Let m € w and D € M,, be such that D = j,, ,(D). D is a dense
subset of PR} . In My, define £ C P’ as

E = {[Al,m € P |Vte A3T, (R|m”t, T) e D}.
Working in M, we show that E is dense in P,
Claim . Assume k € w and s € *k,,. Then there is an l € w such that
Bf = {t€lkm | 3T, (RIm™s™t, T) € D} € (I)H)*.

Proof of Claim. Let k € w and s € *k,,. Assume Bf € (I,,)! for every I € w. Then,
by Lemma 2.3, there is an X; € (I,,)* such that [X;]' N Bf = @ for each [ € w. Let
X := o Xi- Then X € (I,)* and if t € [X)* then t ¢ B;. Then [X]<“ is an
(Im)*-tree and so (K|m ™~ s, [X]<*) € PR} . But, by the construction of X, there
is no element of D which extends (K| m ™ s, [X]<“). This contradicts D is dense in
PR} . 0.Claim

Claim . F is dense in PI}.

Proof of Claim. Let k € w and A € PJ'. We find an element of E which extends
[A]om. By the previous claim, for each s € A, there is an I, € w such that B} is
(Im)'-positive. Because (I,,)* is km-complete, there is an A’ C A and I € w such
that A’ is (I,»)*-positive and I, = [ for every s € A’. Thenlet B := {s"t|s €
A’ At € Bf}. Because B is (I,)'-positive for each s € A’, B is (I,)*+!-positive,
ie. B € PP, Then clearly of%,,(A) > B in P{}, and so [A]sm > [B],m. On the
other hand, if u € B then there is a T such that (Z[m ", T) € D. So [B],~ € E.
O.Claim

Return to V[G,].

Because G7' is (M, P™)-generic, G N E # 0. Let A be such that [A],m €
G™ N E and A witnesses that [A],m € E, i.e. Vt € A3T, (R m™t,T) € D.
Assume A € PJ*. Then A € G} and so, by Lemma 2.9, £ [[m, m +k) € jm m4k(A4).
On the other hand, because jm, m4x is an elementary embedding and does not move
K|m,

Mupik E Vt € jmmr(A) 3T, \IE Im~t, T) € jm,m+k(D) .
So, in M1k, there exists an (I, 5)*-tree T such that (K [m+k, T) € jm m+x(D).
Let T := jink,w(T). Then

(E fm +k1 T) = .jrrt-i—k,w((‘r6 fm+k,'f>) € jm+k,w(jm.m+k(D)) = D.

Thus it suffices to show that (K [m +k, T) € T". To see this it suffices to show that,
for every I > 0, (Km+ks -y Em+k+i—1) € T'. Assume [ > 0. Let n := m + k. Because
T is an (I,)*-tree the I-th level of T, Ty, is in ((Z»)")*. So Tjy) € G. Then, by
Lemma 2.9, {(kn, ..., inti—1) € Jnn+i{T)). Then,

<K'n:~'-;ﬁn+l—l> = jn+l,w(<"€na-~aﬁ'n+l—l>) € jn+l,w(jn,n+l(T(l))) = T(l) .

This completes the proof of the genericity.
Next we show that I is a filter. Clearly I is closed upwards. We show that if
(t1,T1) and (te,T3) are in T then they are compatible in PR} . (Because of the
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genericity of I", this suffices.) Assume (t1,T1), (f2,73) are in I". Let n € w be such
that t1,t2 C £[n. Then let

SL = (szT,,)/(F.:’[‘n)

for i = 0,1. Because & |n € ;" T}, S; is an (I,,)*-tree. Then (¥[n, SN Ss) is in
PR} and is a common extension of (t;,T1) and {to, Ts).
This completes the proof of theorem. O.Theorem

Next we generalize Solovay’s theorem for PRT.

Theorem 3.5. Let P, be the inverse limit of (Pp,Tnm | m < n € w). Let G,
be a (V,P,)-generic filter and, for each n € w, let G, be a (V,P,)-generic filter
naturally obtained from G,. In V[G,], let (]Wn,Hm,jmn |m<n<wm<w) be
the iteration of generic ultrapowers of V by I associated with (G, | n € w). Then
(jon(k) | nEW) isa PR;F(;M( 1y-sequence over M.

To prove the theorem we need some preparations. Until we complete the proof of
the above theorem, let P, Gu, (Gn | 7 € W), (M, H™, jmn |m < n Sw,m < w)
be as in the theorem. In VI[G.], let jm, &m, Im, PF’, d'; G, 0k, 7]y be as in
section 2.2 for each m, k,1 € w with k < l. Let I, = jo . (I). Note that H™ = GT*.

IP,, is the p.o. such that

o |P,| is the set of all sequence (A, | n € w) such that 7, m(An) = A, for
eachm <n € w,
o (A, |n€w) < (B, |n€w) iff A, < B, in P, for every n € w.

First we modify P,. In V, let P be the p.o. of all I*-trees ordered by inclusion.
We see that P, and P are equivalent. Note that if T is an I*-tree then the sequence
of levels of T, (T(») | n € w), is in P,,. Let e : P — P, be the function defined by
e(T) := (T(n) | n € w).

Lemma 3.6. ¢ is a dense embedding.

Proof. Clearly e is order preserving. Moreover, if ¢(T1) < e(72) in P, then Ty < T5

in P. So it suffices to show that e[lP] is dense in P,,.
Take an arbitrary (B, | n € w) € P,,. By induction on n € w, define A, C B

as follows. Let Ap := By = {()}. Assuming A, C B, is defined, let An}1 :=
{s € Buy1 | sIn € A,}. Then T := |, An is a tree. Moreover, because
An € Bp = mn41,0(Bni1), {E €K |87 (€) € Ant1} € It for each s € A,. Thus T
is an I*-tree. Hence e(T) = (A, | n € w) < (Bn [ n € W). |

We argue using P instead of P,,. Let G := ¢7[G,]. Then G is (V,P)-generic. In
V, let m, : P — P, be the function defined by #,(T) := T(») for each T € P. Then
7, is the composition of e and the natural projection from P, to P,. Thus G, is
the filter generated by 7,[G] = {T(n) | T € G}.

As is Theorem 3.3, we need the factor lemma for P and (M, H™, jmn | m <
n < w,m < w). We define P™, 7%, d™ and G™. Let m € w.

Let

o P™ = jm(P),

o T = jm (k).
In M,,, P™ is the p.o. of all (Im)+-trees ordered by inclusion and 7}* is the function
defined by 7*(T) := Tiy).



d™ : P/Gp — P™ is defined similarly to dj*. For each T € P, let f£ € V be
the function on ™x such that fZ(t) = T/t for each t € ™«. Note that fZ(t) is an
It-tree for each t € Timy. Sof T € P/Gpy, ie. Ty € Gy, then | fg:]gm cP™ In
V[Gp)], define d™ : P/G,, — P™ by d™(T) := [fL]q,, for each T € P/G,y,.

Lemma 3.7. d™ is a surjective dense embedding.

Proof. This can be shown in the same way as Lemmma 2.4. We show only that d™
preserves incompatibility. _

Assume that 71,75 € P/G,, and d™(T}),d™(T>) are compatible in P™. We
show that 7;,T> are compatible in P/G,,. Let g € V be such that [g|g,, is a
common extension of d™(T}) and d™(75). We may assume g(t) is an I*-tree for
each t € ™k. Because [g|¢,, is a common extension, B := {t € ™k | g(t) C
Ti/t, Tg/t}ﬂTl(m)ﬂTz(m) € Gr,. Because 7,,[]P] is dense in P,,,, there isan A C B
such that A € G, and A € 7,,[P]. Then A is the m-th level of some I*-tree
and g(t) is an I*-tree for each t € A. So T := [J{t"g(t) | t € A} is an I*-tree.
Moreover T' C T1,T> and T € P/G,,. Thus T and T» are compatible in P/G,,. O

Let G™ := d™[G]. Then G™ is (V[G], P™)-generic and thus (M,,, P™)-generic.
We show that each G7* is the PP*-generic filter naturally obtained from G™.

Lemma 3.8. Assume k € w. Then G7' is the filter generated by n*[G™] = {T(s,) |
TeGm}.

Proof. G} is a (M, PY')-generic filter and 7]*[G™] generates a (M,,,, PT*)-generic
filter. So it suffices to show that 77*[G™] C G7*. For each A € Ppyx. let fA €V
be as in Lemma 2.4. Recall that d7*(A) = [f]g,, for each A € Ppryr/G,, and that
GP = d*[Gmyxl.

Take an arbitrary B € n7*[G™]. Then there is an S € G™ such that S, = B.
Let T € G be such that d™(T) = S and A := T, 4x). Note that A € Gp,4x. Then,
for each t € Ty, fA(t) is the k-th level of fZ(t). So, in M, [fA]e,, is the k-th
level of [fT(t)]g,,. Thus df*(A) = S(xy = B. Because A € G, 4, B € GP. O

Note that (M0, H™* o kmar | B <1< w, k < w) is the iteration of generic
ultrapowers of M,, by I,,, naturally obtained from G™.

Now we can start to prove the theorem.
Proof of Theorem 3.5.

In V[G], let & := (kn | 7 € w) and let

I := {(t,T) € (PR} )M |Vnew,RInet T}
We show that I is (M,,, (PR} )™~)-generic. For simplicity of notation, we write
PR for (PR} )M~ for each n < w.
First we show the genericity. Let D € M, be a dense subset of PR}:. We show

that I' N D # @. There is an m € w and D € M,, such that j,, (D) = D. Then D
is dense In PR}*M. In M,,, let E C P™ be defined by

E = {T eP™ |3k ewVt € Ty, (RIm™t, T/t) € D}.

Working in M,,, we show that F is dense in P™. Take an arbitrary S € P™. We
find an T € E such that T < S.
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Claim . For some k € w,
Bk = {3 & S(k) ! 35’2 (K:'{m,S) —>- ("{. f’mASsS,) € D} € ((Im)k)+'

Proof of Claim. Assume not. Then, for each k € w, there is an Xj € (I;n)* such

' (Ip)*-tree. Thus (R |m,SN[X]<“) € PR} . But if s € SN [X|<¥ then s ¢ B.

Hence there is no element of D which extends (& [m, SN [X]<¢). This contradicts
D is dense in PRY . 0.Claim

Let k € w be such that By is (I,,,)*-positive. For each s € By, let S, be an
(In)*-tree witnessing t € Bi. Note that s™ S, C S. Because 7*[P™] is dense in
P}, there is an A C B such that A is the k-th level of some (I,,)*-tree. Then

T = U{SASS | s € A}

is an (I,,)*-tree. Moreover T C S and k witnesses that 7' € E. This shows that E

is dense.
Return to V[G]. _
Let T be in G™ N E and let k be the element of w witnessing that T € E. Let

T := jmw(T). _
Claim . For eachl € w, R|[m,]) € T.

Proof of Claim. Let I € w. Because T € G™, Ty, € G* by Lemma 3.8. Thus,
by Lemma 2.9, & [ [m,m +1) € fm,m+1(Tp)). Then, because jm41. does not move
Km4i for each ¢ < I, R[[m,m +1) € jmitw(mm+i(Tw)) = Ty

O.Claim

Because T € E and k witnesses this,
My, E “Vte Ty, (RIm™t, T/ty e D".
Thus, because j, . is elementary and [ [m,m + k) € T,
(RIm ™ R[[m,m+ k), T/R|m,m+k)) = (Rim+k, T/E[[m,m+k)) € D.
On the other hand, by the previous claim,
(Rlm+k, T/R|[m,m +k)) € L.

SoI'NnD #£4.
Next we show that I' is a filter. Clearly I is closed upwards. So, because of the
genericity, it suffices to show that if (¢1,T1), (t2,T5) € I then (t;,T1) and (to,To)

are compatible in PR}';.
Assume (tl',T]_), (tg,Tz) € I and (tl,Tl) 1 (tg,Tz) in PR_I*; Let

D := {{,T)E€ PR |t¢t;" T V t ¢ t:"Tp}.

Then D is dense in PR;{J. Let (t,T) € ' D. Without loss of generality, we may
assume t ¢ t; " T;. Then, because {t,T) € T, t is an initial segment of X. Then,
because t ¢ t1 " T3, £ ¢ [t1” T1]. This contradicts to that (t,,T1) € T.

This completes the proof of theorem. ‘ O.Theorem



3.3. Observations about PR* and PRt from Theorem 3.3 and 3.5.

In this subsection, we observe well-known facts about PR* and PR* from the
point of view of Theorem 3.3 and Theorem 3.5. If U is a x-complete filter on &
then Prikry Forcing associated with U does not add any bounded subset of x and
so does not affect V.. It is known that this can be generalized to PR* and PR*:
if I has the strong saturation property then PR} does not affect Vi and if I is
strategically closed then PR} does not affect V,,. We show this using Theorem 3.3
and Theorem 3.5.

First we define strategically closedness of ideals.

For each p.o. Q and § € On, let Q5(Q) be the following two players game. In
£25(Q), Player I and II build a descending sequence {g¢ | € € § — {0}) in Q, where
Player I plays odd stages and Player II plays even and limit stages. Player II wins
iff the game can be continued for é stages.

We say that Q is 0-strategically closed if Player II has a winning strategy in the
game Q5(Q). Here, a winning strategy for Player II is a function 7 from the set of
all descending sequences (g, | 7 € £ — {0}) with £ < § to Q such that if Player IT
plays 7({g, | n € € — {0})) in each &th stage then Player II wins. An ideal T is
called d-strategically closed if P; is d-strategically closed.

Lemma 3.9. Let k be a regular uncountable cardinal and I be a normal ideal on
k. For eachm < n € w, let oy : Prm — Prn and wpm @ P — Prm be the
natural complete embedding and projection associated with the Fubini power of I,
respectively. .
(1) Assume & < & and I is 5-saturated. Then the direct limit of (Prn,0mn |
m < n € w) has the §-c.c..
(2) Assume & > w and I is -strategically closed. Then the inverse limit of
(Prn, Tnm | m < n € w) is 8-strategically closed.

Proof. For each n € w, let P, := Py~ and G, be the canonical name of a P,,-generic
filter.

(1). Tt suffices to show that IFp, “Pni1/Gn has the §-c.c.”. We show this by
induction on n € w. Note that if n = 1 then this is true because I is d-saturated.
Assume n € w and that this is true for each m < n. We show this for n + 1.

Let G, be a (V,P,)-generic filter and let j, : V — M, = Ult(V,G,) be the
generic elementary embedding. Because j, is elementary and j, does not move §,
Jn(Pr) has é-c.c. in M,. By the induction hypothesis, in V', P, has the é-c.c. and
so I is a k-complete é-saturated ideal. Thus *M,, N V[G,] C M,. So j,(P;) has
the d-c.c. in V[Gy]. By Lemma 2.4, P,,11/G,, and j,(Pr) are equivalent in V[G,].
Thus Pp,+1/G,, has the é-c.c. in V[G,,].

(2). (2) can be shown in the same way as (1). But we need a slightly long argument
for treating the inverse limit of p.o.’s. Instead we directly prove that P in the proof
of Theorem 3.5 is d-strategically closed. Recall that P is the p.o. of all IT-trees
ordered by inclusion. Let 7 be a winning strategy for Player II in the game Q5(P;).

Using 7, we give a winning strategy 7 for Player II in Q5(P).

Let £ be in 6 — {0} and (T}, | » € 6 — {0}) be a descending sequence in P. Let

$:=Ni Inee-o) 1

= {teS|Vket, t(k) € T({Sucr,(t) [n €€~ {0}))} € P
then let T((T | 7 € £ — {0})) be the above T. Otherwise let 7({T}, | n€ £ -{0}))
be an arbitrary element of IP.
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Let € be even and (T, | n € £ — {0}) be a descending chain in P. Let S,T be
as above. Note that if ¢ € T then Sucyp(t) = Sucg(t) N 7((Sucr, | n € € — {0})).
Now assume that, for each t € S, (Sucr, | 7 € £ — {0}) is a play in Qs(P/)
in which Player II plays according to 7. Then, because 7 is a winning strategy,
Suer(t) = 7({Suer, (t) | n € € — {0})) € I for each t € T. Note that () € T # 0.
So T €P,ie 7((T, | n€€—{0})) =T. Moreover T C S, i.e. T is below each T),.
By induction on &, we can see:

Assume £ is even and (T, | n € £ — {0}) is a play in which Player
II plays according to 7. Let S, T be as in the definition of 7. Then:
i). For each t € S, (Sucr, (t) | n € £ — {0}) is a play in Q5(P;) in
which Player II plays according to 7.
i), T = 7({T; | n € € — {0})) and T can be played at the {-th
stage. ,
In particular, ii) implies that 7 is a winning strategy for Player 1I in £ (P). O

Theorem 3.10. Let k be a regular uncountable cardinal and let I be a normal ideal
on K.

(1) Assume that § < k and I is 5-saturated. Let T' be (V, PR})-generic. Then
for each o, B < k and f € *BN VL], there is a function F € V such that
for every € € a, |F(€)|Y < & and f(€) € F(€). (We say that F < d-covers
7) |

(2) Assume that § > w and I is §-strategically closed. Then PR} does not add
any bounded subset of .

Proof. (1). Assume not. Let a, 3, f and (t,T) be such that o, 3 < x and {,T) €
PR} forces f € @3 and there is no F € V which < é-covers f. Let P, be the
direct limit of {P» [ n € w) as for the natural complete embeddings and let G., be
(V,P.)-generic. Let (My,jmn | m < n < w) be as in Theorem 3.3. Let M = M,,
§:=jow and K = (jon(k) | n € w).

We work in V[G,]. By Theorem 3.3 and Lemms 3.2, t " K is a PR;.‘( 1)-Sequence
over M. Let I'; be the (M, PR} I))-generic filter generated by t~ R and let f be

the interpretation of j(f) by I';. Note that j({t.T)) € I'; because j(t) = t and
RIn € j(T) for each n € w. So, because j is elementary and does not move «, /3
and 8, f € ®8 and there is no F' € M which é-covers f. On the other hand, because
P, has the é-c.c. and f € V|[G,], there is an F' € V which < é-covers f. We may
assume dom(F) = a and F(€) C 3 for each { < . Then F = j(F) € M. This is a
contradiction.

(2). We show (2) almost the same argument. Assume the contrary. Then there
is an a < 8, a PRf-name & and (t,T) € PR} such that (t,T) forces # C a
and # ¢ V. Let P, be the inverse limit of (P;» | n € w) as for the natural
projections and let G,, be a (V,P,)-generic filter such chat (T(,,)y | n € w) € G.,.
Let {Mn,jmmn | m < n < w) be as in Theorem 3.5. Let M = M, j := jo. and
R = (jo,n(K) | n € w).

Work in V[G,]. Let T'; be a (M, PRj( 1))-generic filter generated by ¢ K. Let x
be the interpretation of j(z) by I';. Then because (T, | n € w) € G, K[n € j(T)
for each n € w and so j({¢,T)) € I';. Then, by the elementarity of j, 2 C o and
z ¢ M. On the other hand, because P, is é-strategically closed, z € V. Because
rCa<k, c=j(z) € M. This is a contradiction. O



Next we discuss Ni-semiproperness of PR* and PRt. First we review N;i-semi-
properness of partial orderings. ‘

A p.o. P is called Ri-semiproper if there is a cardinal A > 92!*'® 2nd a club
C' C [H]“ such that for every N € C and p € PN N, there is a p* < p which forces
“N[G]NwY = NNwY?. Here G is the canonical name of a P-generic filter and, for
each (V,P)-generic filter G, N[G] := {&¢ | & is a P-name A £ € N}. We call the
above p* a semi master condition for N.

Theorem 3.11. Let k be a regular uncountable cardinal and I be a normal pre-
cipitous ideal on k. Let 0y p : Pym — Prn be the natural complete embedding and
Tnm i P — Prm be the natural projection for m < n € w.
(1) If the direct limit of (Prn, 0 | m < n € w) i8 Ry-semiproper then PR} is
N1 -semiproper.
(2) If the inverse limit of (Py»,wn,m | m < n € w) is Ny -semiproper then PR}
s Ny -semiproper.

Proof. (2) can be shown in the same way as (1). So we show only (1). Let P, be
the direct limit of (Pn,0pmn | m < n € w).

In V¥, let (Mp,jmn | m < n < w) be as in Theorem 3.5 and let M = M,
J = jow. For each t € <“g, let I'; be a P,-name for the (M, PR}( 1 ))—generic filter
generated by t” (jo,n(k) | n € w). Note that if # € V is a PR}-name then j(¢) € M
is a PR;( p-name. So there is a P,-name a € V such that

VP |k «g=3j (€)p, := the interpretation of j(z) by r,”
In V, let A be a cardinal such that
e x,I,P,, PR} € Hy,
o If ¢ € Hy is a PR}-name and t € <“k then there is a P,-name a € Hy
such that VP« E ¢4 = J(&)p, ™

Let F': Hyx — Hy be a function witnessing the second condition above, i.e. for each
PRj}-name & € M) and t € <“k, F(i,t) is a P,-name such that V? F “F(&,t) =
J(@)g,”

We show that if NV is a countable elementary submodel of (Hy, €, F,k, I, ...) and
(t,T) € N N PRj then there is a semi master condition for N below (t,T). Let
N and (t,T) be as above. Because PP, is Xi-semiproper, there is a semi master
condition p € P, for N. Let G, be a (V, P, )-generic filter containing p. In V[G,],
let j and M be as above. Note that w; is absolute among V', M and VIG.]

We work in V[G,]. Let I'; be the interpretation of I'; by G,,. Because N is
countable in V', j(N) = j[N]. Then, because t € N and N is closed under F,

J(N)[Ce) = {gr, | § € 5(N) A g is a PR} -name}
- ={j(#)r, | £ € NA#is a PR}-name}
= {F(&,t)g, | £ € N At is a PR}-name}
€ N[G.] .
So, because j [w1 = id and G, contains p,
FJ(NT)Nwi CN[G]Nwi1 = NNw; CH(N)Nw
and thus j(N)[I'Y) Nw; = j(N) Nw;. This implies that there is a semi master
condition for j(N) in I';y. Note that j({(¢,T)) € ;. Thus M, F “there is a semi
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master condition for j(IN) below j{{t,T}))”. So, by elementarity of j, V E“there is
a semi master condition for N below (t,T)”. O

Corollary 3.12. Let k be a regular uncountable cardinal and I be a normal ideal
on K.
(1) If I is wy-saturated then PR} is Ny -semiproper.
(2) If I is w + 1-strategically closed then PR}" is Ny -semiproper.
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