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Abstract

The method in the title has been introduced by Stevo Todorgevié. In
this note, we give one application of this method, i.e. we show that it is
consistent that Martin’s Axiom holds and there exist (¢, ¢)-gaps but no

(w1, ¢)-gaps.

1 Introductipn

Proper forcing notions have been introduced by Saharon Shelah. These are very
useful forcing notions to lead consistency results. Forcing notions in the title
is one of types of proper forcing notions which has been introduced by Stevo
Todorévié ([19]). A condition of a forcing notion of this type consists of two
parts: a working part D and a side part N which is a finite €-chain of countable
elementary submodels of some large enough structure H(#). To define such a
forcing notion, we always require that N separates D, i.e.

Vz # y € DIN € N({z,y} N N has exactly one element).

(See also [10].) Todoréevié used the method to show that the conjecture (S)
is true under the Proper Forcing Axiom. Zapletal also applied it to study a
strongly almost disjoint family ([24]).

The topic of this note is gaps in P(w)/fin, in particular specific types of
gaps in P(w)/fin, namely (w1, c)-gaps and (c, c)-gaps (where c is the size of the
continuum). The subject of gaps in P(w)/fin has been investigated by many
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mathematicians for a long time. We already know many ZFC results and many
consistency results about gaps. It is one of the classical results that there exist
some types of gaps: (w1,w1)-gaps and (w, b)-gaps (where b is the (un)bounding
number). (These are due to Hausdorff [7] and Rothberger [14], see also [15].)
Concerning the existence of (k, \)-gaps, we know that it is consistent with ZFC
that if there exists a (x, A\)-gap where x and A are regular cardinals with <A
then either (x = w and A = ¢) or k = A = w;. In this paper, we give one result
of the existence of (k, \)-gaps under Martin’s Aziom (MA) for regular cardinals
x and A. This subject has also been studied in the past.

It is one of the classical results that any (w,w)-pregap is separated. And if
x and A are regular cardinals so that x or A is not w;, then for any (k, A)-gap
(A, B) there is a ccc forcing notion which forces that (A, B) is separated (see
(13], [15]). (So any such gap is not indestructible.) Therefore under MA if
(A, B) is an (k,))-gap, then kK = A = w, or (k = ¢V A =) holds. In fact, we
know that there is a (w, b)-gap (see also [15], [20]), so under MA there always
exists an (w,c)-gap. In [7], Hausdorff has proved that there always exists an
(w1,w1)-gap. In particular, his proof gives that there exists an indestructible
(w1,w1)-gap, hence under MA, there exists an (w1, w1)-gap. (In fact under MA,
every (wi,w;)-gap is indestructible.) So the remaining problems are about the
existence of (w1, c)-gaps and (c, ¢)-gaps under MA.

In [11], Kunen has proved that the following statements are consistent with
ZFC:

1. MA +3(c, ¢)-gaps + (w1, c)-gaps, and
2. MA +-3(¢, ¢)-gaps + ~3(wy, c)-gaps.

In this note, we see the outline of a proof of the following theorem, which
answers a problem addressed in [15], using forcing notions with models as side
conditions. For the detail proof, see [23].

Theorem 1.1 ([23], Theorem 1.2). If PFA is consistent, then it is also
consistent that MA holds and there ezist (c, ¢)-gaps but no (wy, ¢)-gaps.

Following definitions are needed to explain the above theorem and its proof.

Definition and Notation 1.2. Let a and b be elements of P(w), and A and
B subsets of P(w).

1. a L b denotes that aNb is finite.

2. a C* b denotes that a \ b is finite.

8. At :={cCw;Vac Ala Lc)}.

4. (A, B) is called a pregap if for any a € A and b € B,alb, ie BC AL

5 A pregap (A, B) is separated if there is ¢ € AL such that b C* ¢ for all
beB.
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10.

11.

12.

1.1

A pregap (A, B) is countably separated if there is a sequence (cn;n € w) of
elements of P(w) such that for all (a,b) € A x B there is an n € w with
alc, andbC* cp.

(A, B) is called a gap if it is a pregap and not separated.

If ot(A,C*) = k and ot(B,C*) = A, then (A, B) is called a (k, \)-pregap
(or a (k,\)-gap) if it is a pregap (or gap).

An (w1,w;)-gap (A, B) is called indestructible if for every forcing extension
in which cardinalities are preserved, (A, B) is still a gap.

For a collection P of forcing notions and a cardinal k < ¢, MA,(P) means
that for every P € P and k many dense sets {Dqo; a < K}, there ezists a
filter G in P which meets all D,,.

Martin’s Aziom (MA) is the statement MA <(ccc).
The Proper Forcing Aziom (PFA) is the statement MAy, (proper).

For a collection P of forcing notions, we denote by m(P) the least cardinal
Kk so0 that MA.(P) fails. If P is a singleton {P}, then m(P) is denoted by
m(P).

Preparation

Definition 1.8. Let A and B be subsets of P(w).

1.
2.
3.

Bt :={cCw;3be B(cC*b)}.
A® B :={(a,b) € Ax B;anb = 0}.
(Todoré&evié [19]) Coloring: [A® B]?> = Ko U K1, where

{(a,b),(a',b)} € Ko : <= (anb)U(a’ Nb) #0.

For X,)Y C AQ B, we write X xY := {{z,y} € [A® B>z € X &y¢€
Y & z # y}.
For X CA®@Bandi=0orl, X is called K;-homogeneous if X x X C K;.

P(w) is identified with the Cantor space. Now we fix a linear order <p(,) in
P(w) and then we identify [A® B]? with the topological space {(a,b) € P(w) x
P(w);a <p(y) b}. Then we notice that [A® B]?> = (A x BUB x A) N {{a,b) €
P(w) x P(w);a <p(w) b} and Ky is open in this topology. For A C P(w), A is
called o-directed if for every countable subset X of A, there is a € A so that
for all z € X, x C* a. The following propositions are -well-known.

Proposition 1.4. (Folklore, [5]) If both A and B are o-directed, (A, B) is sep-
arated iff (A, B) is countably separated.
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Proposition 1.5. (Folklore, [5]) Let (A, B) is a pregap. Then AQB™ is a union
of countably many Ki-homogeneous subsets iff (A, B) is countably separated.

Proposition 1.6. (Kunen [11], see also [15], [19] or [20]) Let (A,B) is an
(w1, w1)-pregap. Suppose that {aa;a < w1} C A, {ba;a < w1} € B, agNba =0
for all o < w1 and {{au,bs);a < w1} is Ko-homogeneous. Then ({aq;o <
w1}, {baj@ < w1}) forms a gap and is indestructible, i.e. still forms a gap in
any ertension with a forcing doesn’t collapse Ny.

2 A proof of the theorem

Suppose that PFA holds in the ground model V. Then ¢ = Ny and there is a
decreasing sequence (X, ;a < ws) of elements of P(w) which is a generator of
an ultrafilter, i.e.

1. Va< B < wz(Xg c* Xa)
2. VY Cwda<wi(Xa C*YV X, C*w\Y)

Let U be the ultrafilter generated by (X,; @ < ws), and U* the dual ideal of U.
We define a forcing notion P(U)(= P) := Ux ey~ 2%, for conditions f,g in P
f<pgiff gC* f. And we let P'(U/)(=P) := UXeu* 2% be Grigorieff forcing
([6]), i.e. for conditions f,g in P/, f <p g iff g C f. (P and P’ have the same
underlying set. The only difference is the ordering, but 1(= @) is the strongest
condition in both P and P’.) We must note that P'(U/) is proper if U is a fat
p-filter (by Shelah, see [16]). Now, since U satisfies the properties of fat-ness
and p-filter, P ({f) is a proper forcing notion.
The following proposition is very similar to [21] and [22].

Proposition 2.1. P is o-closed, ws-Baire and adds an (we,wz)-gap (under
PFA).

Proof. For the first two statements, see [21]. (Since the length of the generating
sequence of U is we, if m(P’) = Ny, then it follows that P is wo-Baire.)
For the last statement, let G be a P-generic filter over V. Then we may take a
condition fo € GN2Xe for every o < wo, and let aq := {n € Xa; fo(n) = 0} and
= {n € Xq; fo(n) = 1}. Then it is trivial that ({aq; @ < (..«Jg} {ba;a < wa})
is an (wz, wq)-gap by the genericity. O

Therefore in the extension with P over V, there are no new reals and MA
holds. So to finish the proof, we have only to show that P adds no (w;, w2)-gaps
(under PFA). To prove this, we will use the method in the title.

2.1 A proof of non-existence of (wi,w;)-gaps in the exten-
sion with P over V

Assume that in the extension with IP, there exists an (w1, wz)-gap, whose P-name
is (A, B), i.e o
IFp“ (A, B) is an (w1, ws)-gap”.
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Since P is wy-Baire in 'V, there are A € V and f € P such that f IHp“ A=
A ”. So by the homogeneity of P, without loss of generality, we may assume

that IFp“ A=A ".
We recall that

Ikp“ BY = {c C w;3b € B(c C* b)} .

Then X b
IFp* (A, BY) also forms a gap ”.

In V, for all feP let BY(f) = {b C w;3g <p fg IFp” be Bt "} Ttis
trivial that for conditions f,g in P, f IFp* B+( fl2 B+ ” and if f <p g, then
B*(f) € B*(g). The next proposition is used to show Lemma 2.6.

Proposition 2.2 ([23], Proposition 2.7). For every f € P, A®B *(f) is not
a union of countably many K;-homogeneous subsets.

We will find f € P and X C A® B+ (1) such that
1. X is uncountable and Kj-homogeneous, and
9. for all (a,b) € X, fIFp“ b€ B 7,
which completes the proof, because then
FIFp“ X forms an (wy,w: )-indestructible gap in (A, BY) ”
which is a contradiction. |

In fact we can get an uncountable Kp-homogeneous subset of A ® Bt (1)
applying OCA. But now we need the condition f as above to get a contradiction.
To get the desired objects, we consider the extension by the following forcing
notion Q(A, B,U). This is an example of a forcing notion with models as side
conditions.

2.2 An example of proper forcings with models as side
conditions

Definition 2.3. A condition of Q(A, B,U) is a triple p = (fp, Xp, Np) satisfying

the following statements:

(a) £, is a member of Uxeys 2%

(b) Xpisa finite Kop- homogeneous subset of A® Bt(1),

b

(c) ‘ﬁp is a finite €-chain of countable elementary submodels of H(ct)(= H (Ng))
containing everything we need for our discussion, e.g. A, B, U, etc -
(i.e. M, can be enumerated by {N;;i < n} such that for all 1 < n —1,
N; € Nz+1 and N; is an elementary submodel of Niy1 (say N; < Niy1)),
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(d) for any z (= (ax,bz)) € Xp, fp IFp“by € BT 7,

(e) for any z,y € X, with x # y there exists N € Ny so that I[N N{z,y}| =1,
(define x <y : <= IN e N,(z € N& y &€ N)),

(f) for all N € My, fp is (N,P')-generic, and
(g) for every z € X, and N € M, withz & N,

folFp “YY e N[G(Y CA®B+(1) & YxY C K1 = & ¢ Y).

For conditions p,q € Q(A, B,U),
P<quasu) 1= o2 [ (ie. fo<p fo) & X, 2 Xy & M, DN,

We note that 9, is an element of H(N3) because every element of 91, is
a countable subset of H(N3) and M, is finite. We must show that Q(A, B,)
is proper and adds desired objects. To apply the PFA, we need to show the
following lemma. »

Lemma 2.4. For A, B and U, Q(A, B,U) is proper.

Proof. Let 6 be a large enough regular cardinal, M < H (6) a countable elemen-
tary submodel containing everything needed for our discussion, e.g. A, B, U,
H(R3) etc, and p = (fy, X, M) € M a condition of Q(A, B,U)(= Q).

Since I is proper, we can choose an extension Jfo <p' fp such that f, is
(M N H(N3),P')-generic. (We note that M N H(R3) is an elementary submodel
of H(R3).) Then let g := (f,, X,, M, U {M N H(X3)}), which is a condition of
Q. (We note that 9, C M N H(R3), in fact M, € M N H(X3) holds since
p € M and N, € H(X3).) Show that g is (M, Q)-generic, i.e. for every dense
open subset D € M in Q and an extension r € Q of ¢ there exists a condition
s € DN M such that r and s are compatible in Q (i.e. DN M is predense in Q
below q).

Taking such D € M and r <g g, without loss of generality, we may assume
that r is in D. Let X, \ M = {z;;i < n} where z; < z;;; for i < n and
Ny := M N H(X3), and pick N; € N, such that z;_; € N; but z; ¢ N; for
1 <4 < n. We choose rational open intervals U; C A ® B*(1) such that

o ;€U fori < n,
e U;NU; =P and U; xU; C K, for every i,j < n with i # j.

(We recall that Ko is open, so this can be done.) We note that all rational
open intervals are in any model of ZFC because those codes consists of finite
elements. Let G be P-generic over H(f) with f, € G.

Claim 2.5. In H(0)[G], there are rational open intervals V2, V! C U; and
v €VANYV fori<n andse DNV such that
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1. z; € VP for alli < n,
VONV=0 and V2« V2 C Ko for alli < n,
fS GG}

Xo = (X, NM)U{y;;i <n} and for any x € X, N M and i < j <n, and
T <Y QYj,

™

5. M, is an end extension of N, N M.

Proof. By induction on i < n, we construct rational open intervals V;?_;, Vl_; C
Up—i, yo=l e V1NV for j <iand s,—; € DNV such that

n—j
1’ zp_; € V,?_,-,

2. Vo .NVi,=0and V2 ;«V]>_; C Ky,
3. fs._; €G,

4" Xsn—-'i, = (X

ANn—)U{y"~%;j < i} and for any z € X,,_, N Nn—; and
j<k<n zayrZf<y,”], and

Spn—i n—1i°

5. M is an end extension of N, _; , N Np_;.

Sn—d

Construction Assume that we have already constructed VO_,, V.1, y7"7, sn_;

for all j < 4.
Let

Yooi={z€UpiNV; 3z, €VINV.--32l_, ,eV], 1 NVIseDNVsit,
* /s€G
o Xy=(Xop_sys N Nu—i) U{z} U {2n-j;J < i}
o V2 € Xs, ;s N NpoiVj <k <i(2<9% Q2n—k < 2n—j)
e 91, is an end extension of N, _,,, " Np—; }.

Then Y,_; € Np—;[G] and z,—; € Yp—i by 3’, 4’ and 5" Since Tp—i € Yn—i,
by (g), Yn—: is not Kj-homogeneous. Let Y,_; := {z € Y,_i;3y € Yn_i\
{z}({z,y} € Ko)}. Then Yp_;\ Yn_; is in N,_;[G] and K;-homogeneous,
hence z,_; belongs to Y,_; by (g) again. Therefore there exists y—; € Yn_; \
{Zn_i} such that {z,—;,y7"%} is in Ko. Then we take rational open intervals
VO . V1 . CU,_;suchthat z,—; € VO_,, VO .NV} . =0and V) V. _; C Ko.

n—i? 'n—1 n—i
By 4! € Y,_;, there are y7_; € V1NV, .-, y7= ! € V! ., NV and
sn—i € DNV satisfying 8’, 4’ and 5’, which completes a construction. Put
y; .=y} for ¢ <m and s := sg, then these are as desired. -

Since M is an elementary submodel of H(6), M[G] is an elementary sub-
model of H(6)[G]. So by the previous claim, there are y; € V;} N M[G]N'V for
i <nand s € DNM[G]NV satisfying 3, 4 and 5 of the claim. Then we take a
condition g € G which decides all values of V.2, V1, y; for all i < n and s. By the




separability of P, g is an extension of f, in /. We may assume that g <p fr
because both g and f, are in a filter G. Then we note that g is also a common
extension of f. and fs; in P. By the construction, (g, X, UX,,M, UDN,) is a
condition of Q and a common extension of r and s. O

2.3 The end of the proof of the theorem

To get f and &, we take any countable elementary submodel M of H(8) con-
taining A, B, U, H(R3), etc. Let My := M N H(N3) and pick a (Mp, P')-generic
condition f € P'. We notice that P(w) N My = P(w) N M. Now we have the
following lemma.:

Lemma 2.6 ([23], Lemma 2.9). Under m(P') = ¢ = Ny (in particular under
PFA ),

ke “ A® B+(1) is not a union of countably many Ki-homogeneous subsets ”.

More ezplicitly, for any P'-names X,, for K, -homogeneous subsets, n € w and
f €, there exist f' <p f and (a,b) € A® B+(1) such that

flflF“be Bt & (a,b) ¢ X,, for everyn e w”
Therefore, there are x € A® BT (1) and g <ps f such that
glbe“ & & | {Y € My[G;Y C A®B+(1) & Y xY C K;} & b, € B+.

Let p := (g,{z}, {Mo}) which is a condition of Q and we can show that p
is (M, Q)-generic by the same argument as in the proof of Lemma 2.4. The
following lemma indicates the density argument of Q.

Lemma 2.7.
plro“ X = U{Xq; g € G} is uncountable Ko-homogeneous ”

Proof. Tt is trivial that IFg“ X is Ko-homogeneous ”. From now on we show
that IF@“ X is uncountable ”.

Assume not, then there is g <q@ p so that ¢ kg ¢ X is countable ”. Now
qlFQ“# € X 7. Since IFQ“ G € My[G] 7, IFg© 2’3 € Mo[GJ ». Since q IFg“ X is
countable 7, ¢ H—Q“ X C MO[G] 7. Sogq }-Q“ a'c € X C Mo[G]”. Now qis (M,Q)-
generic, g IFg“ M[GINV = M, so Mo[G] N Pw)NV = M[G] NPw)NV =
MNPw) =MyNPw)” . Thus qlFQ“ & & My[G) ”, because of z ¢ My, which

is a contradiction. , |

Applying PFA to Q, we can get a filter G C Q such that X’ = U{Xp;p € G}
is uncountable and Kop-homogeneous. Let {z,;a < w;} list X’. For each o < wy,
we choose p, € G with 2, € X,,_. Then we take a fusion f of ( Jpar 0 <wi),
i.e. take X € U*, a natural number n and an uncountable subset A of w;
such that dom(f,,) € X Un for all & € A and take a condition f € 2XYn of
P with f 2 Uaca fpa- Then f is an extension of fpo in P for all & € A, so
flFp“ by, € BY”. Put X = {z4;a € A}, then these are as desired so we finish
the proof of the theorem. .
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3 Appendix: An iteration of the method of mod-
els as side conditions

3.1 Redefinition of the freezing forcing

In this section, we prove the following theorem, i.e. we can eliminate any large
cardinal property of Theorem 1.1.

Theorem 3.1. It is consistent with ZFC that Martin’s Aziom holds and there
are (¢, ¢)-gaps but no (wi, c)-gaps.

The key-point of the proof of Theorem 3.1 is same as the proof of Theorem
1.1. To prove Theorem 3.1, we use a countable support iteration instead of PFA.
The problem is that in general Q(A, B,U) collapses N, so we cannot force by
an iteration of Q(A, B,U). To overcome this problem, we redefine the freezing
forcing using the following objects:

Definition 3.2. 1. For a model N of ZFC (i.e. a model of sufficiently large
fragments of ZFC), denote the transitive collapse of N by N and denote
the unique isomorphism from N onto N by my, i.e. forx € N, nn(z) :=
{mn(y);y € N & y € z}. (This is defined by the €-recursion.)

2. For A, B and U, let

T(A, B,U) = {TV—;N < H(c*) & N is countable & A,B,U € N}.

3. For A, B, U and M € (A, B,U), let
My = {N < H(c%); N is countable & ABUeN&N = M}

We note that
e for z € P(w)NN, nn(x) =z, 50 Pw)NN =Pw)NN,

e for N,N' € My, N and N’ are isomorphic and 7n»~! o wy is an isomor-
phism from N onto N”,

e for a countable elementary submodel N of H(c¢*), N is an element of
H(ct), so My C H(ch) for each M € (A, B,U).

The following partial order Q'(A, B,U, f) is the new freezing forcing notion
designed for the iteration with countable support. This is similar to the forcing
notion due to Todoréevié ([18]).

Definition 3.3. For A, B, U and f € Uycy- 2%, define (A, B,U, f) whose
conditions p are triples (fp, Xp, Np) such that

(%) fp is a member of Uy ey 2% with fp, 2 f,
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(b) X, is a finite Ko-homogeneous subset of AR BT (1), 3
(recall that for f € P(U), BT (f) = {b C w;3g <pw) f(g Fpey “b €

B+ ")})

(c’) N, is a function so that

(c1) dom(N,) is a finite €-chain of elements of T(A, B,U),
(c2) for each M € dom(Ny), Np(M) is a finite subset of Mg,

(c3) for all M, M' € dom(N,) with M € M’ and N € N,(M), there
exists N' € N(M') with N € N’ and N < N',

(d) for any = (= (az,b:)) € Xp, fp IFp@) “bs € BT 7,

(e’) for any z,y € X, withz # y there exists M € dom(N,) so that |M N

{x,y}l =1,
(define x <y : <> IM € dom(N,)(z € M& y ¢ M)),

(£°) for all N € ran(N,), fp is (N,P')-generic, and
(g) for everyz € X,, M € dom(N,) withz € M and N € Np(M),
folbpan“VY e N[G(Y CA®BH(1) & Y+«Y CK; = 2 ¢ Y)".

For conditions p,q € Q(A, B,U),
D SQ'(A,B,U) q: < fP :_) fq (7;.6. fp S]PI fq) & Xp 2 Xq & dom(Np) 2
dom(N,) & YM € dom(N,)(Ng (M) C Np(M)).

By an argument similar to the one of Lemma 2.4, we show the following
lemma.

Lemma 3.4. For A, B, U and f € Uxeu- 2%, Q'(A4, B,U, f) is proper.

Proof. Let 0 be a large enough regular cardinal, H < H(6) a countable elemen-
tary submodel containing all relevant objects, e.g. A, B, U, H(c*) etc, and
P = (fp, Xp, Np) € H a condition of Q' (A4, B,U, f)(= Q).

Since P'(U)(= ') is proper, there is an extension f; <p/ f, such that f, is

(H N H(c),P)-generic. Let My := H N H(cF) and
q:= (fo, Xp, Np U {{ Mo, (HN H(cH)})}).

Then q is a condition of Q'. We show that g is (H,Q’)-generic.

Let D € H be dense open in  and r <¢r ¢ We may assume that r is
in D. Let X, \ H = {z;;¢ < n} where z; < z;41 for i < n and take rational
open intervals U; C A ® B*(1) such that z; € U; for i < n, U; NU; = @ and
Ui xU; C Ky for every i,j < n with 7 # j. Let M; € dom(N,.) for 1 <i < n be
such that z;_1 € M; and z; € M;. And let No := H'N H(¢") and recursively
pick N; € N;(M;) with N;_; € N; for 1 < i < n. Let G be P'-generic over H(#)
with f, € G. By the same argument as in the proof of claim 2.5, it is proved
that in H()[G], there are rational open intervals V.0, V! C U;, y; € VI NV for
1 <nands € DNV such that




98

T; EViO for all 2 < n,

VONV=0and V2« V! C Ko for all i < m,

fs €G,

X, = (X, "H)U {yi;i <n} and for any z € X, N H and ¢ < j < n, and
z <4Y; 1Y,

5. dom(N;) is an end extension of dom(N;)NH and forall M € dom(N,)NH,
N-(M) N H CN,(M).

By H < H(0) and the genericity of f, we can find g € G which decides all
values of VO,V CUs, ys € VAN H fori <nand s € DN H and is a common
extension of f, and fs in P’. It’s enough to find a common extension of r and s.
To find it, let {Li;i < I} enumerate N;(Mp) with Lo := HN H(c*) = No
and ; 1= 7y, ! for i < I. We notice that for each M € dom(N;) \ dom(N;),

o ©;(M) € L; (because M € HN H(ct) = My),
o ¢;(M) = M (because M is transitive), and

o ©;(M) < H(c*) (because ¢;(M) and N are isomorphic and N < H (ct)
for N € N;(M)).

We define a function N’ with domain dom(N;) U dom(N;) by:

L

N-(MYUN:(M) if M € dom(\N,.) N H
N' (M) := { Ns(M)YU {pi(M);i< 1} if M € dom(N5) \ dom(N;)
Ny (M) if M € dom(N;.) \ H

for every M € dom(N"). Then it can be checked that (g, X;- U X, N} is a com-
mon extension of r and s if it is a condition of Q’. To check (g, X, U X4, N') €
@', the only non-trivial requirement is that N satisfies (c3), in particular the
case that M € dom(N;) N H, M' € dom(N) \ dom(N;) with M € M’ and
N € N,;(M)\ H. Then we can find L; € N.(Mp) with N € L;, because of
r € Q and M € My. Then N is in ¢;(M’) and an elementary submodel of
@i(M'), since M < M’ < Mp and @; | M =mp~t C o™ = @i | M. O

If lbpr ) “ A®B*(1) is not countably separated ”, (by the argument similar
to Lemma 2.7) X = [J{Xp;p € G} is uncountable. The biggest difference
between Q(A,B,U) and Q'(A,B,U, f) is that Q'(A, B,U, f) has a good chain
condition. The following lemma says that it preserves cardinalities under CH.

Lemma 3.5. For A, B, U and f € Uxew~ 2%, Q' (A,B,U, f) has the ct-c.c.

Proof. For conditions p and ¢ in Q'(A,B,U, f), if f, = f4 Xp = X, and
dom(N,) = dom(Ng), then (fy, Xp, N') is a common extension of p and g,
where N’ has the domain dom(N,) and N (M) = Np(M)UN,(M). Therefore
peQ;f,=1& X, =X & dom(N,) = 91} is centered for every f € P,
X € [A® B(1)]<“ and a finite €-chain N of countable transitive elementary
submodels. O



3.2 Proof of Theorem 3.1

To prove Theorem 3.1, we assume that the ground model V is L. Let Sy and
S1 be stationary on wy with Sy NSy = @ and Sy U S; = Cof(w;) Nwy, where
Cof(w1) = {@ € On; cf(a) = w;}. Then V satisfies Quwz (S1). Let {Dy; 0 € 81}
be a diamond sequence, i.e. for any subsét E of we, {a € S;;ENa = D} is

stationary. We define a countable support iteration <1P’a, Qu;a < w2> (and pick
a Py-generic filter G [a over V for a < ws recursively) as follows:

Stage 2a with 20 ¢ Cof(w;) Construct an ultrafilter base (X,; o < wa) (e.g.
using a o-centered Mathias forcing).

Stage 2a 4 1 Construct to force MA by a book-keeping argument.

Stage a € Sp Let Qq := P'(U((X¢; € < @))), where U((Xe; € < a)) is the ul-
trafilter generated by (X¢; ¢ < ). (We notice that

lbp, “ U((Xe; € < @)) is an ultrafilter ”
if @ < wy has the cofinality w1.)
Stage o € S; If D, codes some < f, A, B>, where

e fis a P,-name for a condition of PU((Xe; € < a))),
e Aisa Po-name for a family of infinite subsets of w, and
o BisalP,*PU( (Xe; € < o)))-name for a family of infinite subsets of

w,

such that

VIG o] E fIG o] bpui(xee<ap)y (AIG 1o, BIG [ o))

forms an (w;,a)-gap ” ”,

then let Qq := Q'(A[G [ ], BG o), U((Xe; € < @), fIG [a]). Otherwise,
let Qq := {1}.

We write G [ws by G.

We note that P, is proper because proper-ness is closed under countable
support iterations. So the following lemma indicates that it does not collapse
cardinals. To show it, we use the following definition (see [16], [17] or [18)).

Definition 3.6. (Shelah) For a forcing notion X, X satisfies the N2 -properness
isomorphism condition (Ro-pic) if for all (some) large enough regular cardinal
0, o < B < wy, countable elementary submodels N, Ng of H(6) and a function
7 : No — Ng satisfying that
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e o€ N,, ﬂGNg, Ny Nws C G, NaﬂazNgﬂ,@, XENamNﬁ,
o 7 is an isomorphism, m(a) = 7(B), and 7 [ (Na N Np) is identity,

if p € XN N,, then there exists an (Nu,X)-generic condition q which is a
common extension of p and w(p) such that

glFx“n"(GNN,)=GNNs”.
Lemma 3.7. P, has the Na-c.c.

Proof. Shelah has shown the following facts about the Rg-pic (see [17]):

e Under CH, any R,-pic forcing notion has the Np-chain condition and pre-
serves N;.

e Under CH, R,-pic-ness is closed under countable support iterations.
e If a forcing notion is proper and has size < Nj, it has the Na-pic.

Therefore it suffices to show that all Q' (A, B,U, f) have the Ny-pic. (I refer to
the proof of Lemma 6 in [18] for the argument below.)

Let 6 be a large enough regular cardinal, and @ < 8 < ws, countable
elementary submodels Ny, Ng of H(f) and a function = : N, — Npg sat-
isfy the assumptions of Np-pic. And let p € Q'(A, B,U, f) N N,. Because of
No NP(w) = Ng NP(w) and N, = Ng, it is proved that 7(p) is a condition
of Q’(.A B u,f) fp = fw(p), = Agr(p) and dorn(N) = dom(Nﬂ’(P))' So
(fp, Xp,N') is & common extensmn of p and n(p), where dom(N”’) = dom(N})
and for M € dom(Ny), N (M) = Np(M) U Ny (M). We put

g:= <f,,,X,,,N’ u {<m¥7 {NaNH(c), NsN H(c+)}>}> .

As. before, we can prove that g is also a condition of Q'(A,B,U, f) and an
(N, Q' (A, B,U, f))-generic. So it is true that g g (ABUF) “7"(G NN, o) =
G N Ng ” because the compatibility in Q'(A, B,U) is simply decided by oy X

and dom(A;,) for any p € Q'(A, B,U). O

In V]G], ¢ = Xy and MA holds. By the standard Léwenheim-Skolem argu-
ment (see also [9]), since we iterate P (U((X¢; € < a))) stationary many times, it
follows that m(P' (U((Xa; & < wa)))) = Ny in V[G], hence PU((Xo; @ < wp))) is
wg-Baire. So it suffices to show that P(U((X,; a < wa))) adds no (wi,ws)-gaps.

Assume not, i.e. in V there are P,,,-names f, A and a P, SPU((Xo; a < wg)))-
name B such that f[G](= f) € PU({Xa; o < wa))), A[G](= A) C P(w) and

F (X asa<wa)) (A, BIG]) forms an (w1,wz)-gap .
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We may consider B[G] as a P(U((Xq; @ < wa)))-name for a function from wo

into P(w), i.e
f b ey Ve < B < wa(B[G)(a) €* BIG)(8))
& Va € AVa < wy(a L B[G)()) ”

We note that P(U((Xa; @ < ws))) does not add new reals.
Claim 3.8. C (A, B,U ((Xa;a < w2>) ,f) = {a € Cof(w1) Nwy;

VIGla] =" fePU((Xe;€ < a))),
ACV[Glal], and

f Fpucxe<an) “ (A, BIG] @) forms an (w1, 0)-gap " " }
18 wi-club.
Proof. “ VG o] =“ f e PU({X¢; € < a))) & AC V[Ga]” ” is upward closed
with respect to ¢, and w;-closed-ness is trivial because for a € Cof(w;) N ws,
ViGren2v = | J VIGTegn2.
€<a

So we check that it is unbounded. :
We note that in V[G] for all z € 4+ and ¢ <p(u((xma<w2))) £, there are
Yo,g € P(w), Tz, SPU((Xaja<ws))) 9 @0d &z ¢ < Bg,g < wo such that

¢z g Yz,9,
® Yzg € VIG[Pq,q), and

® Tz, IFPU((Xai0<ws))) B[G] (5;,9) =Yz,

‘Taking a < wa, we recursively construct (y;¢& < wy) C Cof(w;) Nwsy such
that

o o < and 7 <, for § <n < wy,

® V[G[Yeq1] B Vo € AX N VG []Vg € PU(X¢;¢ < 7)) with
9 Spu((xcic<re))) f (Ta,g € PUUAXe; ¢ < Ye1))) & €zg < Ye+1 ”, and

e if n is limit, then let v, := sup,, 7.
Then sup, ., Ye isin C (/i, B,U (<Xa;a < w2>) ,f) O

Since m(P'(U((Xqa; @ < wq)))) = Ny, by Lemma 2.6, in V[G]

< . A\
FIFp (X asa<wa))) “ A® (B[G]+(f))
is not a union of countably many K;-homogeneous subsets ”.
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By Proposition 1.5, this is equivalent to
- . \4
f IFprua((Xosa<wa))) (.A, (B[G]"’( f)) ) is not countably separated ”

(in V]G)), i.e. for all P/(U({Xa; < wa)))-names &= (épn <w) € (A+)¥ and
9 SP'(U(<Xaia<w2))) f’ there are Ye,g5 %89 € P(w)7 TEg SP’(L{((XQ;a<w2))) g and
€24 < Bzg < we such that

o (229,s,) € A®B[GI*(f) N V[G [ fz,], and

¢ Tzg IFIP’(M((XO,;a<wz)))“ B[G](ga,q) = Igc‘,g & Vn < w(z'c‘,g l énvgé‘,g g* én) "
So by an argument similar to the one of the previous claim,

o4 (.A, B,U (<Xa; o< wz>) ,f) = {a € Cof(w1) Nwy;

V[Gla] =“ f e PU((Xe; € < a))),
ACV[Gla], and

flbe @ xee<a” (A, (((3 la)[G fa])+(f)) V) |

is not countably separated ” ”}

is wi-club. Thus by the diamond sequence; there exists

ael (A, B,U (<Xa;a < w2>) ,f) ne' (A,B,L( (<Xa;a < w2>) ,f)

such that D, codes <f,A,B Ta>. So Qo = Q'(A, (Bl a)[G o], U((Xe; € < a)), f)
and G(c) is Qq-generic over V(G [a]. Then X’ := [ J{Xp;p € G(c)} is uncount-
able Ko-homogeneous. We note that for allp € G(e), fp is in P(U((Xa; o < w2))).
So by the same argument at the end of the proof of Main Lemma 77, there are a
fusion f of (f,;p € G(a)) and uncountable Kq-homogeneous X C AQB[G]H(f)
such that f IFp@U((X aia<wa))) b € B+ ” for all {a, b) € X, which is a contradiction
and completes the proof of Theorem 3.1.
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