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Abstract

This article is the summary of our work on the order of some hyperelliptic
Jacobian groups. Computing the order of the Jacobian group of a hyperelliptic curve
over a finite field is very important to construct a hyperelliptic curve cryptosystem
(HCC), because to construct secure HCC, we need Jacobian groups of order in the
form [ - ¢ where [ is a prime greater than about 2% and c is a very small integer.
But even in the case of genus two, known algorithms to compute the order of a
Jacobian group for a general curve need a very-long running time over a large
prime field. In the case of genus three, only a few examples of suitable curves for
HCC are known. In the case of genus four, we do not know any example over a
large prime field. In this note, we give explicit formulae of the order of Jacobian
groups for certain hyperelliptic curves of genus three and four, which allows us to
search suitable curves for HCC of genus greater than two. By using these formulae,
we can find many suitable curves for HCC of genus four. In this article, we have
contained the results for the case genus greater than two, which are obtained after
the conference.

1 Introduction

Let C be a hyperelliptic curve of genus g over F,, Jo the Jacobian variety of C and Jo(F,)
the Jacobian group of C' which is the set of F -rational points of Jo. Then Jg(F,) is a
’ finite abelian group and we can construct a public-key-cryptosystem with it. It is said
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that |Jo(F,)| = ¢+l where [ is a prime greater than about 2'%° and c is a very small integer
is suitable for HCC. We call a hyperelliptic curve “suitable for HCC” if its Jacobian group
has such a suitable order. The advantage of this system to an elliptic curve cryptosystem
(ECC) is that we can construct a cryptosystem at the same security level as an elliptic
one by using a smaller defining field. More precisely, we need a 160-bit field to construct
a secure ECC, but for a hyperelliptic curve cryptosystem (HCC) of genus g(> 2), we only
need about (160/g)-bit field. This comes from the fact that the order of the Jacobian
group of a hyperelliptic curve defined over an N-bit field is about (Ng)-bit. We should
remark that due to Gaudry [9], it is recommended that the genus should be taken less
than five to construct a secure HCC.

As in the case of ECC, to get a fast algorithm for adding points on the Jacobian
group and to get a fast algorithm for computing the order of the Jacobian group are very
important to construct HCC.

For the first problem, we already have many good results. See [12]{16][17] for genus
two, [15] for genus three and [21] for genus four.

For the second problem, there are only a few results even for the genus two case. Here
we review known results for genus two, three and four. In the case of genus two, there is a
point counting algorithm for any randomly given curve [10] [18], but it needs a very long
time over 80-bit prime fields, e.g. a week or longer for each curve. And this algorithm
has not been generalized to the case of genus three or four.

For a hyperelliptic curve with complex multiplication, there is a known algorithm
to construct a curve with its Jacobian group having a 160-bit prime factor. But this
algorithm is efficient only for genus two at this moment. For genus three, only a few .
examples are constructed by this method [25]. For genus four, we do not know any
example. '

For special curves, it is possible to obtain a fast point counting algorithm. Buhler-
Koblitz [2] obtained such algorithm for a special curve of type y* + y = z" over a prime
field I, where n is an odd prime such that p =1 (mod n). It produces suitable curves of
genus two and three, but cannot produce suitable curves of genus four.

At SCIS2003 and SAC2003, we proposed a point counting algorithm for another special
curve defined by y? = 2% + ax and found many examples of suitable curves for HCC of
genus two[7]. In this article, we give explicit formulae giving the order of Jacobian groups
of curves defined by y? = z°+az, y? = 27+az and y? = z%9+az. Note that the second curve
is of genus three and the last one is of genus four. We show that a family of hyperelliptic
curves defined by 4> =27 +az, a € F,, cannot produce suitable curves for any a and p,
but a family of hyperelliptic curves defined by y? = 2°+ azx produces suitable curves when
p = 1 (mod 16). In particular, we show some examples of hyperelliptic curves suitable
for HCC of genus four obtained by using our formulae. As far as we know, these are the
first examples of suitable curves for HCC of genus four over prime fields.
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2 The characteristic polynomial and the order of the
Jacobian group

Let p be an odd prime, F, a finite field of order ¢ = p” and C a hyperelliptic curve of
genus g defined over F,. Then the defining equation of C is given as y* = f(x) where
f(z) is a polynomial in Fy[z] of degree 2g + 1.

Let Jo be the Jacobian variety of a hyperelliptic curve C. We denote the group of
F,-rational points on J¢ by Jo(F,) and call it the Jacobian group of C. Let x,(t) be the
characteristic polynomial of g-th power Frobenius endomorphism of C. We call x,(t) for
C the characteristic polynomial of C' and denote it by x(t) for the convenience. Then, it
is well-known that the order |Jo(F,)| is given by

[Jo(Fg)| = x4(1)- .

Due to Mumford [19], every point on Jo(F,) can be represented by a pair (u(x), v(z))
where u(z) and v(z) are polynomials in F,[z] with degv(z) < degu(z) < g such that u(z)
divides f(x) — v(z)?. The identity element of the addition law is represented -by (1,0).
By using this representation of points on J¢(F,), we obtain an algorithm for adding two
points on Jo(F,). This algorithm was firstly given by Cantor [3] in general and has been
improved for genus 2, 3 and 4 by many people [10][12][16][17][21].

In the following, for a generator g of F}, we denote Ind,a = k when a = g, k=
0,1,...,p— 1L

3 Jacobstahl sum and the key theorem

For two characters x, % of F, the Jacobi sum J,(x,) is defined by
06w =Y x(Ow( - 1).
tG]Fpr

For the convenience we use the following notation.

K:(x) = x(4)J(x X)-

When r = 1, we drop the subscript J, and K,. For properties of Jacobi sums, see {1].
- Let k be a positive integer and p a prime such that p = 1 (mod 2k). Let x2 be a
character of order 2 on a finite field F,». For an element a in [,

Prr(a) = D xa(z**! + az)
z€Fpr

is called a “Jacobstahl sum”. It is easy to see that for a hyperelliptic curve defined by an
equation y? = z**! + az over F,, -

|C(Fpr)| ="+ 1+ ¢rr(a)

where |C(F,-)| denotes the number of rational points of C over Fy-.
Under the above notation, we have the following theorem. This is the key theorem in
our results.
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Theorem 3.1. Let p be a prime such that p = 1 (mod 2k) for some positive integer k.
For a € Fp,

’ k-1
(,bk,r(a) = (...1)"_15&(_1)>Zk+1(a Z 2] K(X2J+1)r
j=0

where x is a character of Y of order 2k and X is a character of F, of order 2k.

Proof. We proceed as in the proof of Theorem 6.1.14 [1]. Since x* = 2,
drrla) = D K@) (* + )

z€F -

= Y x(@)Xk(E* + a).

z€Fpyr
By the equality
Zl (a {0 R2(z) # 1
pes kE Pz)=1
and the fact each fiber of the map z — z* has k elements, we have

k~—1
$rr(@) = Y (@)@ +a) Y %Y ().
z€F,r =0

By the change of variable x — —x and z — —az,

Brs(a) = R(-1)2(a) Y x(@)R*(1 —@Zx”(am

:EEFpr
= R(-1)%*(a) Z (@) Y ()R (1 - 2)
J=0 T€F,r

= %=1 @) L (R, 2%)
where J,(11,;) is the Jacobi sum over F,- defined by
= Jo(t, %) = D th(@)es(l — ).
:L‘EFpr

Since
Jr()22j+1,)2k) 23+1(4)J ( 2j+1 ~2_1+1) =K ( 2]+1),

we get the formula _ ‘
Frr(@) = R(=1)X () K, (X¥).
It follows from the Hasse-Davenport relation that

K (¢) = (1) Ky ()"

Hence our Theorem. O
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Combining this theorem with the following fact, we get the formula of x(t) for the
curve C : y? = zF*t! + az.

Theorem 3.2. Let C be a hyperelliptic curve of genus g over F,. Assume x(t) for C is
decomposed as

x® =[]t - ).

i=1

Then )
g
ICE) =p"+1=) af.

=1

4 Explicit Formula for 3* = z° + az

Let p be an odd prime and C a hyperelliptic curve defined by an equation 32 = z° + az
over Fp. In [7], we determined the explicit formulae of the order of Jo(Fy) for all cases
except for the only one case p = 1 (mod 8) with (%) = —1. Here we show the explicit

formula for the remaining case.

Theorem 4.1. Let p be a prime such that p = 1 (mod 8) and C a hyperelliptic curve
defined by an equation y* = z° + ax over F,. Put f = (p—1)/8. Write p as p = ¢ + 2d?
where c =1 (mod 4) and 2d = —(af +a*)c (mmod p). Then the characteristic polynomial
of p-th power Frobenius map for C is given by the following formula:

x(t) = t* + (—1)74dt® — 8% + (—1)Tadpt + p*.

In particular,
|Jo(Fp)| = 1+ (—1)f4d — 84% + (—1)T4dp + p*.

Proof. This follows from Theorem 3.1, Theorem 3.2 and the formula for K(x). (See
[1])- O

Remark 4.2. All formulae for x(t) in this paper are obtained in the same way. Since we
have not enough space, we omit the proofs for the formulae.
5 Explicit Formula for y? = 27 + az

Let p be an odd prime and C a hyperelliptic curve defined by an equation y? = z7 + az
over F,. _
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5.1 The case of p=1 (mod 12)

Let p be a prime such that p = 1 (mod 12) and C a hyperelliptic curve defined by an
equation y?> = 27 + az over F,. Put f = (p — 1)/12. All theorems in this section follow
from Theorem 3.1, Theorem 3.2 and the formula for K(x). (For the formula of K(x), see
(1]). We omit the proofs. We fix a generator g of FX and write p as p = ¢® + d* where
¢ =1 (mod 4) and d = cg®V/* (mod p). Then for the characteristic polynomial of C,
we have the following two theorems.

Theorem 5.1. Letp, ¢, d, C, a be as above. When ¢ =0 (mod 3), we have the following
formula:

1. IfIndja=3+1,9F1 (mod 12), then
x(t) = (2 F 2ct + p)(t* F 2¢t® + (4¢® — p)t* F 2cpt + p?),
2. if Indga =3 £3 (mod 12), then x(t) = (t* & 2ct + p)(t® F 2ct + p)?,
3. ifIndga =6 F3 (mod 12), then x(t) = (¢ & 2dt + p)3,
4. ifIndja=4+3,8+3 (mod 12), then
x(t) = (£ £ 2dt + p)(t* ¥ 2dt3 + (4d? — p)t? F 2dpt + p?).

Theorem 5.2. Let p, ¢, d, C, a be as above. Whend =0 (mod 3), we have the following
formula:

1. IfIndja=3+1,9F1 (mod 12), then
x(t) = (£ F 2ct + p)(t* & 2ct3 + (4¢* — p)t? & 2ept + p?),

2. ifIndga =3+3 (mod 12), then x(t) = (t* + 2ct + p)3,
3. if Indga = 6 F 3 (mod 12), then x(t) = (t? + 2dt + p)(¢* F 2dt + p)?,

4. ifIndga=4+3,8+3 (mod 12), then
x(t) = (t* £ 2dt + p)(t* & 2dt® + (4d® — p)t2 + 2dpt + p?).

5.2 The case of p =5 (mod 12)

Let p be a prime such that p =5 (mod 12). Let C, g, ¢, d be as in the previous section.
Then for the characteristic polynomial of C, we have the following theorem.

Theorem 5.3. Let p, ¢, d, C, a be as above. Then, we have the following formula:

1. IfIndge =1,5,9 (mod 12), then
x(t) = (£ — 2dt + p)(t* — 2ct + p)(£* + 2ct + p),

2. if Indga = 3,7,11 (mod 12), then
x(t) = (12 + 2dt + p)(t? — 2ct + p)(2 + 2t + p),

3. ifIndga = 2,6,10 (mod 12), then
x(t) = (8 + 2ct + p)(t2 — 2dt + p)(£2 + 2dt + p),

4. ifIndga = 0,4,8 (mod 12), then
x(t) = (t* — 2ct + p)(t2 — 2dt + p)(£* + 2dt + p).
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5.3 The case of p=7,11 (mod 12)
For the case of p = 7,11 (mod 12), we have the following result.

Theorem 5.4. Let C be a hyperelliptic curve defined by y*> = 27 + az over F,. Then, we
have the following formula:

1. If p="7 (mod 12) and a is cubic, then x(t) = (t* +p)?,
2. if p="7 (mod 12) and a is not cubic, then x(t) = (2 + p)(vt4 —pt? + p?),
3. if p=11 (mod 12), then x(t) = (¢ + p)*.

5.4 Conclusion for the genus three case

From Theorem 5.1, 5.2, 5.3 and 5.4, we obtain the conclusion that any hyperelliptic curve
of type y> = z7 + ax is not suitable for HCC because the order of its Jacobian group
cannot have a large prime factor.

6 Explicit Formula for 3> = z° + az

Let p be an odd prime and C a hyperelliptic curve defined by an equation V¥=1°+azx
over I

6.1 The case of p=1 (mod 16)

Let p be a prime such that p = 1 (mod 16). We fix a generator g of F\. Put f = (p—1)/16
and a = g#~1/16_ Then there exist integers z,u, v, w such that

p= 1%+ 2(u? + v? +v?)

z=1 (mod 8)

2zv = u? — 2uw — w? (1)
r+ula+a’)+v(e? —of)+w@d+a®)=0 (modp)

0% — 22 = —(u? + 2uw — v?)(0® - 0®) (mod p).

It is known that the above z,u,v, w are uniquely determined. ‘
Let x(8) = t8 — 517 + 8518 — 535t° + s4t* — s3pt® + s9p?t% — s17°t + p* be the characteristic
polynomial of C. Then by using the above notation, we have the following theorems.




Theorem 6.1. sy, 52,53 and s4 are given by the following tables.

Ind,; a (mod 16) 51
1,7 (=1)78w
9,15 1) 8w
3,5 (—1)7+8u
11,13 (—1)78u
2,14 (1) 8w
6,10 (=1)780
8 (—1)/ 18z
0 (—1)/8z
4,12 0
Ind, a (mod 16) 82
1,7,9,15 32w? + 16zv
3,5,11,13 32u? — 16zv
2,6,10,14 3507
0,8 4p + 24z° — 16v*
4,12 —4p + 8z% + 1602
Indga 83

(mod 16)

1,7 (=1)/*8(pu — 4(u® + v + vPw — 3uw?))
9,15 (—1)78(pu — 4(x® + w® + v?w — 3uw?))

3,5 (=1)7*18(pw + 4(u® — w® + 3ulw + uw?))
11,13 (—1)8(pw + 4(u® — w® + 3u’w + uw?))

2,14 (D)7 (8pv + 64v° — 322%0)
6,10 (—1)7(8pv + 64v° — 322%v)
8 (=1 (24pz + 32z° — 64z0%)
0 (—=1)7(24pz + 321° — 64zv?)
112 _ 0
Ind; a (mod 16) 84

1,7,9,15 32u* + 32w* + 64uw? — 64puw + 128udw — 128uw®

3,5,11,13 32u® + 32u* + 64uw? + 6dpuw + 128udw — 128uw?

2,6,10,14 2p* + 16z* + 64v* — 16pr? — 64z + 32p0°

0,8 6p* + 16z + 64v* + 48px? — 64120 — 32pv?

4,12 6p® + 1627 + 64vT — 16pz? — 642202 — 32p0°

Corollary 6.2. If a is octic, the characteristic polynomial of C is given by

x(t) = (t* — s183/2 + (s2/2 — 52/8)t — s,pt/2 +p2)2.

In particular, if a is octic, it is not suitable for HCC.

109
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. -1 e -
We look at the case when a is not octic. Since { — } = 1, if a is square, then there

is an element b € F, such that b> = —a. Then z° + aa:pfactors into z(z* + b)(z* — b) and
we have that |Jo(F,)| is divided by at least 4. So in this case, the best possible order is
in the form 4/ where [ is prime.

If o is not square, it is possible to obtain a Jacobian group whose order is in the form
2l where [ is prime.

6.2 The case of p=7 (mod 16)
Let p be a prime such that p = 7 (mod 16). Then there exist integers z,u, v, w such that

p = 2%+ 2(u® + v? + uw?)
z=1 (mod 8)

2zv = u? — 2uw — w?,
yu=v=w=1 (mod?2).

(2)

Let x(t) = t8 — 517 4 5515 — 53t° + s4t* — 83pt® + s9p?t? — 513 + p* be the characteristic
polynomial of C. Then, for a fixed generator g of IF;,‘, we have the following theorem.

Theorem 6.3. The charucteristic polynomial of C is determined by the following formula.
1. 57, =583=0,
2. 8y = (—1)dea(4p — 822 — 160%),
3. 84 = 6p® + 162* + 64v* — 16pz? — 642%v? — 32pv?.

Remark 6.4. There is some ambiguity with respect to u, w and the sign of v. But it does
not affect to determine the characteristic polynomial of C.

Corollary 6.5. If a is square, the characteristic polynomial of C is given by
x(t) =(t* + 42t® + (2p + 42 — 80%)¢% + 4zpt + p°)
(t* — 42t + (2p + 42® — 8v*) — 4zpt + p?).
In particular, if a is square, it is not suitable for HCC. |
We look at the case when a is not square. From Theorem 6.3, we have that |J¢(F))|
is divided by at least 2.
6.3 The case of p # 1,7 (mod 16)

Theorem 6.6. If p = 3,11 (mod 16), then the characteristic polynomial of C is given by
x(t) = (t* + (=1)de2p?).

Theorem 6.7. Assume that p = 5,13 (mod 16). Then the characteristic polynomial of
C is given by the following formula.
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1. IfIndga # 0 (mod 2), then x(t) = & + p*,
2. ifInd,a = 0 (mod 4), then x(t) = (t* + p?)?,
3. if Indga =2 (mod 4), then x(t) = (£ — p)*(? +p)*.

Theorem 6.8. Assume that p =9 (mod 16). Then the characteristic polynomial of C is
given by the following formula.

1. IfIndga # 0 (mod 2), then x(t) = & + p*,

2. if Indga =2 (mod 4), then x(t) = (t* + p?)?,
3. ifIndja =4 (mod 8), then x(t) = (1% — p)4,
4. if Indga =0 (mod 8), then x(t) = (t2 + p)*.

Theorem 6.9. If p = 15 (mod 16), then the characteristic polynomial of C is given by
x(t) = (£ + p)*.

‘ In particular, for p # 1,7 (mod 16), C is a supersingular curve which is not recom-
mended to use for HCC.

‘ 7 Examples of suitable curves for HCC of genus 4

In this section, we describe how to search suitable curves for HCC of genus four of type
| y? = 7° + az and show the result of search. Here we only describe the case of p = 1
(mod 16).

7.1 LLL algorithm

Let p be a prime such that p = 1 (mod 16). For a fixed generator g of F), we consider
a hyperelliptic curve C defined by y? = 2° + g*2 where k = 0,1,2,...,p — 1. We show
the algorithm to determine |J¢(F,)|. For a given p, if we obtain z,u,v,w in (1), we can
determine the order of Jo(F,) and check its suitability. So the main part of the algorithm
is determining x, u,v,w in (1). To determine z,u, v, w, we use the LLL algorithm.

Let o4, i = 1,2,...,7 be positive integers such that 0 < o; < p and o; = glp~1)¥/16
(mod p). Let ¢ € C be a primitive 16th root of unity and P a prime ideal over (p) in the
integer ring Ok of K = Q(¢ + (7). A Z-basis {by, by, ba, b3} of P is given by

bo = p,
bh=C+({ - —ay,
by=C*— (" —az+as,
bs=C"+ ¢ — a3 —as.

®)
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For this basis, any entry of the Gram matrix with respect to an inner product (u, v) =

Try/q(ud) is an integer. Put ¢; = —a1 — a7, o = —2 + a6, €3 = —03 — 5. Then each
entry of the Gram matrix is given as follows.
(b07 b0> = 4272:

(bo, bs) = 4pe; (1 < i< 3),
(bs, bj) = deic; (1<i#j<3),
(bi, bi) =8 +4c (1<i<3)

Then the LLL algorithm for the Gram matrix works and we can obtain (1) by using the
following algorithm. (For the details on the LLL algorithm, see [4] for example.)

Algorithm

Input p: a prime (p =1 (mod 16))

Output z,u,v,w satisfying (1)

(Step 1-5: Finding 3 € Ok, Nk/o(8) =p.)

Step1 g « a generator of F;.

Step2 b= (bo,b1, bs, b3) +— a Z-basis (3)Of Ok.

Step 3 G + the Gram matrix for b.

Step 4 H = (hi;) < a transformation matrix obtained by the LLL

' algorithm for G. '

Step 5 ﬁ — E?:O b,-ho,f

Step 6 Determine z,u,v,w by Br(8) = z +u(¢ +{7) +v(¢2 - ¢8) +
w(¢3 + ¢5) and (1) where 7 is an automorphism of Q(¢ + (")
given by ¢ — (3. :

Step 7 Return z,u,v,w.

This algorithm can be easily implemented and we can compute |Jo(Fp)| of C defined
by y? = 2° + ax in a very short time.

7.2 Examples of suitable curves

Trying many p and many a = g*, we can obtain many suitable curves for HCC.

Table 1: Search results

search range the number time
(r, ) of curves s.t. [sec]
forr <p<s ||Jo(Fp)| = 2-(prime)
(2%, 241 1+ 10%) 12 2.824
(2%,2% + 10°) 79 26.548
(241 281 4+ 10°) 714 267.054

Here we show some examples of suitable curves for HCC obtained by our algorithm.




Table 2: Examples of suitable curves of genus 4

EAN SIS

51
82
83
S4

Time

[Jo(Fp)|

1759218504481 (41-bit)

29

1

4722688

14617568463136
209894897984637227312
46358542553945186095112704
2-4789034620376653463540859489797
855263219497047089(162-bit)
0.01[sec]

p
g
k
81
S92
53

S4
| Jc (Fp)|

Time

2199023315233 (41-bit)

5

9

5185024

13708576868352
26252697890967218048
42229265708937781717303296
2-11691986799636433497742258013292
719544703684675777(163-bit)

0.01[sec]

All computation were done on a system with Pentium 4 1.6GHz.

7.3 Notes on security

113

All examples in Table 2 are not weak against Frey-Riick attack[6]. To see this, one can eas-

ily check that a large prime factor of |Jo(F,)| does not divide p"—1,r = 1, 2,.

.,4%log?p|.

From the result of Duursma, Gaudry and Morain [5], an automorphism of large order
can be exploited to accelerate the Pollard’s rho algorithm. If there is an automorphism of
order m, we can get a speed up of y/m. The order of any automorphism of y? = z° + az
is at most 16. So the Pollard’s rho algorithm for these curves can be improved only by a

factor 4.
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