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ON A SUBCLASS OF ANALYTIC FUNCTIONS INVOLVING CERTAIN
FRACTIONAL CALCULUS OPERATORS

Jae Ho Choi

Abstract

Let A be the class of normalized analytic functions in the open unit disk U.
We consider a subclass A(e, 8,7) of A which is defined by using certain fractional
calculus operators. The main object of this paper is to investigate subordination
theorems, argument theorems and the Fekete-Szegd problem of maximizing |ag—pua3|

for functions belonging to the class A(e, 5, 7), where y is real. We also obtain certain
class-preserving integral operators for the class A(a, 8,7).

1. Introduction and Definitions

Let A denote the class of functions f () normalized by
o0
flz) = z+Zakz’“, (1.1)
k=2

which are analytic in the open unit disk U = {z : z € C and |z| < 1}. Also let S, §*(y) and
KC(7y) denote, respectively, the subclasses of A consisting of functions which are univalent,
starlike of order v and convex of order v in U (see, e.g., [15]). In particular, the classes

S§*(0) = 8* and K(0) = K are the familiar classes of starlike and convex functions in U,
respectively.

Given two functions f(z) and g(z), which are analytic in U with f(0) = g(0), f(z) is
said to be subordinate to g(z) if there exists an analytic function w(z) on U such that
w(0) =0, |w(z)] < 1 and f(z) = g(w(z)) for z € U. We denote this subordination by

f(z) <g(z) inU.

Note that if g(z) is univalent in U, then f(2) < g(z) if and only if f(0) = g(0) and
f(U) € ¢(U).
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Several essentially equivalent definitions of fractional calculus (that is, fractional inte-
gral and fractional derivative) have been studied in the literature (cf., e.g., [3], [11] and
(12, p.28 et seq.]). We state the following definitions due to Owa [8] which have been used
rather frequently in the theory of analytic functions (see also [10] and [14]).

Definition 1. The fractional integral of order A (A > 0) is defined, for a function

f(z), by

_ _ 1 Q)
D) = 15 [ g 2)
and the fractional derivative of order A (0 < A < 1) by -
—_ L1 d [ ¢
D?f(Z) T F(l _ A) dZA (Z I C),\dC: (13)

where f(z) is an analytic function in a simply-connected regioh of the 2-plane containing
the origin, and the multiplicity of (z — {)*~! involved in (1.2) (and that of (z — ¢{)~* in
(1.3)) is removed by requiring log(z — ¢) to be real when z — ¢ > 0.

Definition 2. Under the hypotheses of Definition 1, the fractional derivative of order
n+A(0<A<1;né€Ny:=NU{0}) is defined by

DI (e) = 2D (2). (1.4
dz"
With the aid of the above definitions, Owa and Srivastava [10] defined the fractional
calculus operator J (A € R; A #2,3,4,--+) by
T2 f(2) =T(2 - 02D} f(2) (1.5)

for functions (1.1) belonging to the class .A.

Recently, Choi et al. [2] investigated the subclass A(a, 8,7) of A fora < 2, 8 < 2
and v < 1, which was defined by

T2 f(2) .
Ala, B, :={f€A~:Re( z >vinUyp. (1.6)
) JLf(2)

We note that A(1,0,7) = S*(v) and A(A + 1,0,7) = 8*(1,A) (A < ;0 < v < 1)
which was studied by Owa and Shen [9]. Recently, Srivastava et al. [13] proved inclusion
and subordination properties of the class A(A+ 1,4, (o= A)/(1=1X)) =8x(p) (0 <A<
1,0<p<1).

In this paper, we investigate subordination theorems, argument theorems and the
upper bound of the quantity a3 — pa? for functions belonging to the class A(a, 8,7),
where p is real. We also consider certain class-preserving integral operators for the class

A(a, 8,7).
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2. Preliminary results

In order to prove our results, we need the following lammas.
Lemma 1. (Choi et al. [2]) Let A < 1 and f(2) € A. Then

2(TM ) = Q= NI () + AT f(2)  (2€), (2.1)

where the operator J) is given by (1.5).

Lemma 2. (Hallenbeck and Ruscheweyh [4]) Let g(z) be convezr univalent in U with
g(0) = 1. If Re(n) > 0 and f(2) is analytic in D with f(z) < g(z), then

1 [ 1 [
= )ttt < — / t)t7 dt. 2.2
= [ sormia< 2 [ o) 22)
Lemma 3. (Jack [5]) Let w(z) be analytic in U with w(0) = 0. Then if |w(z)| attains
its mazimum value on the circle |z| = r (r < 1) at a point 2, we can write
zow'(20) = kw(zp),

where k is real and k > 1.

Lemma 4. (Ma and Minda [7]) Let p(z) = 1+ ¢12 + c32> + - - - be analytic in U with
Re p(z) > 0 (2 € U). Then

-4v+2 ifv<0
leg —ve?| < 2 if0<v<1 (2.3)
4v — 2 ifv> 1

3. Subordination and argument theorems

First, by using Lemma 2, we prove
Theorem 1. Let a < 2, <2 and v < 1. If f(z) € A(a, B,7), then

L Y] 1=
z/o (Jff(t))dt*zfy 1 o log(1 — 2). (3.1)

Proof. Let f(2) € A(a, B,7) and set

S 14 (1-29)2

ey ="  (zev)
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which maps the unit disk U onto the half domain such that Re (w) > . Then, from the
definition of the class A(a, §,7) we have

JEf(2)
T f(2)

Furthermore, the function g(z) is convex univalent in U with 9(0) = 1. Hence, by applying
Lemma 2 with n = 1, we observe that

Lr (J;'f(t)) w<} [0,
z Jo Jff(t) z Jo 1-1
which yields (3.1).

Remark 1. If a = A+ 1 and § = 0 in Theorem 1, then it would immediately yield
the result of Owa and Shen [9, Theorem 2.1].

Corollary 1. Let A <1 and vy < 1. If f(2) € A(A+1,A,7), then

1 [* (7M@) L=
;/0 (W) dt <2) ~1+2(1-)) (7— . log(l—z))- (3.3)

14+ (1~29)z
1—-2 ’

< g(z) = (3.2)

Proof. Let f(z) € A(A+1,),v). Then, by using Lemma 1, it is easily verified that

2 (T f(z '
Re (—(‘7;\7]%(;)—))—) >(1=A)y+A (3.4)

Hence, by using the same techniques as in the proof of Theorem 1 with

I+ -7m1-XN-1)z
= B

9(2) ; (3.5)

we conclude that

1 (7 (t(Tf®) 1141 -y)(1=-))-1)¢
- ( T2F) )‘”*Z/o | -1 .

which evidently implies (3.3).
Putting v = 0 in Theorem 1, we obtain
Corollary 2. Let o < 2 and B < 2. If f(2) € A, 8,0), then
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Next, we derive the arguments for functions belonging to the class A(a, 3, 7).
Theorem 2. Leta <2, 8 <2 and v < 1. If f(2) € A, B,7), then

(s D2 | oot (20l |
g( ‘pfﬂz‘)) < sin (1+(1—2v)lz!2) (€ 0) (3.6)
and 1—(1-29)e] _|J2F(2)| _ 1+ (1—29)]|

- (1-29)|z 2 f(z —2v)|z

Tl P et R (z€0).

Proof. Since f(z) € A(a, 8,7), in view of (3.2), we can write
Tef(z) _ 1+ (1= 2y)u(z)
TV f(2) 1-w(z)
where w(z) is analytic in U with w(0) = 0 and |w(2)| < 1. We now consider the function
' 14 Aw(z)
Mz) = 1+ Bw(z)

It is well known that h(z), for —1 < B < 1, is the conformal map of the disk |w(z)| < |2|
onto the disk

(3.7)

(<1< B< A;z€ ).

1- AB|z|*| _ (A- B)|7|
)h(z) TIBE | S T B (3:8)

By virtue of (3.7) and (3.8), we have

Tpf(z) 1+ (1-29)[=P| _ 2(1— 1)l (3.9)

T2 f(2) 1-lz |7 1=’
which immediately yields the assertion (3.6).

Moreover, it follows from (3.9) that
1-(1-29)[e| | J2f(2)| 1+ (1=27)l2]
1+ 2] Pi(z)| —  1-|7]

This completes the proof of Theorem 2.
Corollary 3. Let A\ <1 andy<1. If f(z) € A(A+ 1, )\, %), then

2 (D) f(2)) o 20 =7) |
g(‘f‘fﬂ‘) <sn” (o) Cev

and
1-N1-1-29)2) _|zDF)] (-3 +1-27))

1+ 2| = (z € U).

D} f(2) |~ 1 -]
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Proof. In view of (3.4) and (3.5), we set
2(T2()  1+20-y)(1-2) —1)w(z)
Tr(z) 1 —w(z)

Here w(2) is analytic in U with w(0) = 0 and |w(2)| < 1. Then, by using same argument
of Theorem 2, we can easily verify Corollary 3, and so we omit it.

(z € U).

4. Coefficient bound and class-preserving integral operators
We begin by applying Lemma 4 to prove

Theorem 3. Let f<a<2,y<landpu€eR. Iff(z) =z+ a2 +azz3+--- €
A(a7 ﬂ,y)) then ’

'aa - p,ag I

a—p (@—p)(B-a)3-5)

2(3—-a)(3-5)
2-B)5-a-p)

. 23-a)3-p) 23— )3 B)2—B—-1(2-a)
N Ve hG-ap St 3@-ae-A1=7)G-a=F)

(6(1 —NC-a)2-f)-a-p) 2a-B+2(1-7)2- a))) K

( (2(a—ﬂ+2(1—7)(2—a)) 6(1—7)(2—01)(2—5)(5—61—@“)K

iquB(

@-BB-a)3-p "~ Py
L 283-a)(3-B)2-B—(2-a))
| YT i-G-a=-p) =P

where

k= 1-72-0)(2-5B-2)B3-5)

6a—H)G—a-p) 1)
Proof. If we set
Jof)
zﬁf(z) ! 2 ‘
p(z)=—i—_7—=1+clz+czz - (f e A), (4.2)

then p(z) is.analytic with p(0) = 1 and has a positive real part in U. In view of (4.2), a
simple calculation shows
(1-72-a)(2-5)

Qg = 2(Ol — ,3) C1 (43)
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aﬁd

-8 !
where K is given by (4.1). Therefore, using (4 3) and (4.4), we see that

a = K (Cz e )(2 2) 2) , (4.4)

las — pad| = K |ep — ve}l,

where 31 -)2-a)2-HE-a-F), G-7)e-a)
2a-P)3 -G P o

Hence, by applying Lemma 4, we obtain the desired result. We omit further details.

V=

Setting a = 8 + 1 in Theorem 3, we have
Corollary 4. Let 3<1,v<land p € R. If f(z) € A(B+1,8,7), then

|as — uaj|

(1-70-p)C-5) [6-8) (5- 36 +90-8)) - -1 - A=

if 32-Bp<3-p

1-70-82-HB-8)
- 6

34 (3-B)(1+ (-7~ )
3= ~*= 30-71-HE-P)

if

L-7-H2-)|0-1a- - - 6-5(5-36+11-0)]

| i BRI+ A—1-8) <3L-n- BB

Remark 2. If y = (p— 3)/(1 - 8) (0 < 8 < 1;0 < p < 1) in Corollary 4, then it
would immediately yields the result of Srivastava et al. [13, Theorem 4].

Next, we consider the generalized Bernardi-Libera-Livingston integral operator I, (¢ >
—1) defined by (cf. [1], [6] and [15])

L(f)() = <L

It follows from (4.5) that

L(f)(z) = c;1 /0 | (t%iaﬂtf‘*c—l) dt

n=2

/t*vwa (f e Aie> —1). (4.5)

oo

n=2
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Theorem 4. Let A < 1, vy < 1 and c > —XA — (1 — A)y. Suppose that f(z) €
AX+ 1, ), 7), where

arxeneyy 0N s

Yo = Yolc, 7, A) = . (4.7)

c+A+v(1-2X) .
BT YY) if A=AN{1-2y)—-A>c

Then I.(f)(z) € AA+1,A,7).
Proof. Making use of (1.5) and (4.6), we obtain

2 (-7;\Ic(f)(z))' _ .4 Z nic_:—nl I‘(;b(: _1’_))‘(3 I)/\) 2"

_ clc+1)\ Tn+1)TE-N)
= Z*;( c+n) Tntr—1)
= (c+1)T}f(2) — cTM(F)(2). ‘ (4.8)

Define the function w(z) by

2(TL()R) _1+(0- ><1 -\ - Du()
TM(f)(z) w(z)
Then w(z) is analytic in U with w(0) = 0 and w(z) # —1. Hence, by applymg the method

of the aforementioned of [2, Theorem 4] with (4.8) and (4.9), we can easily prove Theorem
4, and so we omit the details.

(z € V). : (4.9)

Finally, we state and prove

Theorem 5. Let ¢ >0, a < 2, § <1 and v < 1. Suppose that f(z) € Ale, 8,7)N
A(B+1,8,7), where

B(l —2¢c)—1 ,
W if 1<e¢
N =mnleh) = (4.10)
| ﬂ(;_;—f)[}-_;_c_ if 0<e<1.

Then I.(f)(z) € A(a, 8,7).

Proof. This proof is much akin to that of [9, Theorem 6.1}, so we shall omit some
details here. If we define the function w(z) by

TAL(f)(2) _ 1+ (1 - 2y)u(z)
JPL(f)(2) 1-w(z)

(y<1;z€U), (4.11)
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then w(z) is analytic in U with w(0) = 0 and w(z) # —1. We need to show that |w(z)| < 1
for all z € U. Thus, by using similar way as in the proof of [9, Theorem 6.1] with Lemma
3, and putting w(zg) = e, we observe that

Re (‘Z‘af(z°)) PO Chuuke) I ( ! ) (k> 1) (4.12)

/4 - 1 —cosf 20( TP L. (£)(20))'
2
' f(z0) L) T €

Since f(2) € A(B+1,8,m), in view of Theorem 4, we have
I(f)(z) e A (ﬂ +1L.8 -1 fﬂ) : (4.13)
Therefore, it follows from (2.1) and (4.13) that

1
e
(zo(JzBIc(f (z0) | C)
T Ie(f)(20)

_ TP L (f)(%0
— (1 ﬁ)Re ( I Ic(f)(zo) ) + B + ¢ > 0. (4'14)

20( T2 1e(f)(20))" )}2 [ (zo TEL(f)(z0)) )]2
[Re( Frne T¢)] T e TC

" (Fa) <7

which contradicts the hypothesis f(z) € A(a, 8,7). Hence |w(z)| < 1 for all z € U, and
by (4.11), we have the desired result.

Remark 3. Taking o = A+ 1 and § = 0 in Theorem 5, we see that
f(2) € 8* (1, N[ )AL, 0,7(c,0)) implies IL(f)(2) € $*(7, ),
where v, (c, 0) is given by (4.10). Since ~;(c, 0) <-0,
S§* = A(1,0,0) C A(1,0,7(c,0)).

Consequently, we obtain that

Hence Theorem 5 provides a improvement of the result due to Owa and Shen [9, Theorem
6.1]. ‘

Corollary 5. Letc > 0, 8 < 1 and v1 < v < 1, where v, is given by (4.10). If
f(z) € A(B+1,8,7), then I.(f)(z) € A(B+1,8,7).

Proof. Since v; < v < 1, in view of (1.6), we obtain

AB+1L,B8,7[AB+1,8,m) =AB+1,8,7).
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Hence, by virtue of Theorem 5, we conclude that

f(2) € AB+1,8,7) = L(f)(z) € A(B+1,8,7),

which completes the proof of Corollary 5.
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