A Note on Essential Self-adjointness of Dirac Operator with a Monopole

東京理科大学理工学部 生田 正 (Tadashi Ikuta *))
Department of Mathematics, Faculty of Science and Technology
Tokyo University of Science

Abstract

The purpose of this paper is to analyse the essential self-adjointness of Dirac operator $H = H_0 + V = c\alpha \cdot (-i\nabla + iA) + \beta m_0 c^2 + V$, where A is the vector potential induced by a monopole. The potential V is assumed to be spherically symmetric and of the form $V = u(r)I_4 + v(r)\beta + iw(r)\beta(\alpha \cdot e_r)$. It is shown that H is essentially self-adjoint under some conditions on the behavior of u, v and w in a neighbourhood of the origin.

Key words. Dirac operator, essential self-adjointness, monopole, complex line bundle, section

§1 Introduction

Since 1976 several authors have investigated the Schrödinger operator with a magnetic field induced by a magnetic monopole (simply called a monopole) [7, 8, 15, 17]. It seems worth-while to throw light upon Dirac operator in such a case [15, 17].

Mathematically, a wave function is described as a section of a vector bundle [3] and a vector potential is represented by a connection form of the principal fibre bundle associated with the vector bundle. In this paper we construct the Hilbert space on which Dirac operator H with a monopole operates and study the essential self-adjointness of H. In the sequel, we use the quantity $q := \frac{eg}{c\hbar}$; (e: electric charge, g: magnetic charge) as a monopole parameter on the basis of Dirac's quantization condition 2q should be an integer [1].

In §2 we build up a line bundle $D^{(q)}$ over $\mathbb{R}^3 \setminus \{0\}$ and another one $E^{(q)}$ over the sphere S^2 with the same structure group U(1). Then we make the Hilbert space $\widetilde{\Gamma}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})^4$ on which H operates and the corresponding one $\widetilde{\Gamma}(S^2, E^{(q)})^4$. Subsequently we define the vector potential A explicitly. Since we assume that the potential V in H is spherically symmetric, we rewrite the unperturbed part H_0 of H so that it may contain radial terms and a generalized spin-orbit coupling operator K (Eq.(2.11)).

^{*)}Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan, E-mail: ikuta_tadashi@ma.noda.tus.ac.jp

 $^{^{\}dagger)}c$ is the speed of light and \hbar is the Planck constant.

In §3, using Wu-Yang's monopole harmonic sections $Y_{l,m}^q(\theta,\varphi)$ [7] which form an orthonormal basis for $\widetilde{\Gamma}(S^2,E^{(q)})$, we decompose $\widetilde{\Gamma}(S^2,E^{(q)})^4$ into the direct sum of the simultaneous eigenspaces $\mathfrak{K}_{j,m,k}^{(q)}$ of J^2 , J_3 and K^{\ddagger}). The restriction of H to the partial wave subspace $L^2((0,\infty),dr)\widehat{\otimes}\mathfrak{K}_{j,m,k}^{(q)}$, $h_{j,m,k}$, is represented on $L^2((0,\infty),dr)^2$ by radial terms.

In §4 we show under what condition the total Hamiltonian H is essentially self-adjoint on $\Gamma_0^{\infty}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})^4$ (As for $\Gamma_0^{\infty}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})$), see the lower half part of this page.). Arnold-Kalf-Schneider's theorems [16] are useful for the essential self-adjointness of $h_{j,m,k}$. Then we obtain the three main results, Theorems 4.2, 4.3, 4.4 by setting some reasonable assumptions on the behavior of $V = u(r)I_4 + v(r)\beta + iw(r)\beta(\alpha \cdot e_r)$ in a neighbourhood of the origin.

§2 Formulation of Dirac operator with a monopole

We first construct two line bundles. Let $\{W_N, W_S\}$ be an open covering of a base space S^2 as follows:

$$W_N := \left\{ (\theta, \varphi); \ 0 < \theta < \frac{\pi}{2} + \delta, 0 < \varphi < 2\pi \right\}, \quad \left(0 < \delta < \frac{\pi}{2} \right)$$
 (2.1)

$$W_S := \left\{ (\theta, \varphi); \ \frac{\pi}{2} - \delta < \theta < \pi, 0 < \varphi < 2\pi \right\}. \tag{2.2}$$

A transition function τ_{NS} of $W_N \cap W_S$ into the unitary group U(1) is defined by

$$au_{NS}(heta, arphi) \coloneqq e^{2iqarphi}.$$
 (2.3)

Using these quantities, we build up a complex line bundle $E^{(q)}$. Subsequently, let $D^{(q)}$ be the pull-back of $E^{(q)}$ by the smooth mapping f of $\mathbb{R}^3 \setminus \{0\}$ onto S^2 defined as $f(\boldsymbol{x}) := \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}$. The open covering $\{\{r; r > 0\} \times W_N, \{r; r > 0\} \times W_S\}$ of $\mathbb{R}^3 \setminus \{0\}$ is chosen and the transition function $t_{NS}(r, \theta, \varphi)$ of $D^{(q)}$ is essentially the same as that of $E^{(q)}$: $t_{NS}(r, \theta, \varphi) = e^{2iq\varphi}$.

Furthermore, let $\Gamma_0^{\infty}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})$ denote the set of all C^{∞} -class global sections of $D^{(q)}$ with compact support and $\Gamma^{\infty}(S^2, E^{(q)})$ the set of all C^{∞} -class global sections of $E^{(q)}$. They are complex linear spaces. We equip $\Gamma_0^{\infty}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})$ and $\Gamma^{\infty}(S^2, E^{(q)})$ with an inner product as follows:

$$\langle \eta, \xi \rangle = \int_{\mathbb{R}^3 \setminus \{0\}} \eta(r, \theta, \varphi)^* \xi(r, \theta, \varphi) r^2 \sin \theta \, dr d\theta d\varphi, \tag{2.4}$$

$$\langle \Xi, \Psi \rangle = \int_{S^2} \Xi(\theta, \varphi)^* \Psi(\theta, \varphi) \sin \theta \, d\theta d\varphi. \tag{2.5}$$

 $^{^{\}dagger)}J$: total angular momentum operator. See (2.11).

Then we obtain the two Hilbert spaces by completing $\Gamma_0^{\infty}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})$ and $\Gamma^{\infty}(S^2, E^{(q)})$. We denote them by $\widetilde{\Gamma}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})$ and $\widetilde{\Gamma}(S^2, E^{(q)})$, respectively.

Obviously we get

$$\Gamma_0^{\infty}(\mathbb{R}^3 \setminus \{0\}, D^{(q)}) \cong C_0^{\infty}(0, \infty) \otimes \Gamma^{\infty}(S^2, E^{(q)})$$
(2.6)

and

$$\widetilde{\Gamma}(\mathbb{R}^3 \setminus \{0\}, D^{(q)}) \cong L^2((0, \infty), dr) \widehat{\otimes} \widetilde{\Gamma}(S^2, E^{(q)}). \tag{2.7}$$

Since any wave function satisfying Dirac equation has 4 components, the next decomposition provides a starting point

$$\widetilde{\Gamma}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})^4 \cong L^2((0, \infty), dr) \widehat{\otimes} \widetilde{\Gamma}(S^2, E^{(q)})^4. \tag{2.8}$$

We have now reached the stage of construction of the vector potential in a free Hamiltonian H_0 . It must be described with a connection form of the principal fibre bundle associated to $D^{(q)}$. Since the magnetic field induced by a monopole q is a curvature form of the connection form, we choose Wu-Yang's connection form \mathcal{A} [13] and take the vector potential \mathbf{A} to be the dual of \mathcal{A} :

$$\begin{cases}
\mathbf{A}_{N} = \frac{iq(1-\cos\theta)}{r\sin\theta} \mathbf{e}_{\varphi}^{\S)} & \text{on } \{r; \ r > 0\} \times W_{N}, \\
\mathbf{A}_{S} = \frac{-iq(1+\cos\theta)}{r\sin\theta} \mathbf{e}_{\varphi} & \text{on } \{r; \ r > 0\} \times W_{S}.
\end{cases}$$
(2.9)

With the help of A we can define H_0 as

$$H_0 := c\boldsymbol{\alpha} \cdot (-i\nabla + i\boldsymbol{A}) + \beta m_0 c^{2\P}. \tag{2.10}$$

We shall here assume that the perturbed potential V is spherically symmetric and that V(r) is 4×4 Hermitian matrix composing of continuous functions on $(0,\infty)$. The total Hamiltonian $H:=H_0+V$ operates on $\widetilde{\Gamma}(\mathbb{R}^3\setminus\{0\},D^{(q)})^4$. We take the domain $\mathrm{Dom}(H)$ to be $\Gamma_0^\infty(\mathbb{R}^3\setminus\{0\},D^{(q)})^4$ for the present.

To decompose H into the direct sum of radial terms on the basis of (2.8), we rewrite H_0 by four new operators L, S, J and K.

$$L := M - qe_r, \quad S := \frac{1}{2} \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix},$$

$$J := LI_4 + S, \quad K := \beta(2S \cdot M + I_4),$$
(2.11)

 $[\]widehat{\boldsymbol{s}} \boldsymbol{e}_{r} = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta), \, \boldsymbol{e}_{\theta} = (\cos \theta \cos \varphi, \cos \theta \sin \varphi, -\sin \theta), \\
\widehat{\boldsymbol{e}}_{\theta} = (-\sin \varphi, \cos \varphi, 0).$

 $e_{\phi} = (-\sin\varphi, \cos\varphi, 0).$ $\P^{0}\alpha_{j} (j=1,2,3), \beta = \alpha_{0} \text{ are } 4 \times 4 \text{ constant Hermitian matrices satisfying the anti-commutation relations } \alpha_{j}\alpha_{k} + \alpha_{k}\alpha_{j} = 2\delta_{jk}I_{4}.$

where M is the auxiliary operator in $\Gamma_0^{\infty}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})$ given by

$$\mathbf{M} \coloneqq \mathbf{x} \wedge (-i\nabla + i\mathbf{A}). \tag{2.12}$$

Then L is a symmetric operator defined on $\Gamma_0^{\infty}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})$ and S, J, K are symmetric operators defined on $\Gamma_0^{\infty}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})^4$. The operators J and K are called the total angular momentum operator and the generalized spin-orbit coupling one, respectively. Theses operators enable us to deduce

$$H_0 = -ic(\boldsymbol{\alpha} \cdot \boldsymbol{e_r}) \left(\frac{\partial}{\partial r} + \frac{1}{r} - \frac{1}{r} \beta K \right) + \beta m_0 c^2.$$
 (2.13)

§3 Decomposition of Dirac operator

We first decompose $\widetilde{\Gamma}(S^2, E^{(q)})^4$ into the direct sum of simultaneous eigenspaces of J^2, J_3 and K. We here put

$$\Xi_q := \left\{ |q| - \frac{1}{2}, |q| + \frac{1}{2}, |q| + \frac{3}{2}, \dots \right\} \quad \left(q = \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \dots \right), \tag{3.1}$$

$$\kappa_j^{(q)} := \sqrt{\left(j + \frac{1}{2}\right)^2 - q^2} \quad (j \in \Xi_q). \tag{3.2}$$

There exists an orthonormal basis

$$\{\Phi_{j,m,k}^{\pm} \mid j \in \Xi_q, m = -j, -j+1, \dots, j-1, j, k = \pm \kappa_j^{(q)}\}$$
 (3.3)

of $\widetilde{\Gamma}(S^2, E^{(q)})^4$ whose elements satisfy the following simultaneous eigenequations of J^2 , J_3 and K, according to Y. Kazama *et al* [8].

$$\begin{cases}
J^{2}\Phi_{j,m,k}^{\pm} = j(j+1)\Phi_{j,m,k}^{\pm}, \\
J_{3}\Phi_{j,m,k}^{\pm} = m\Phi_{j,m,k}^{\pm}, & m = -j, -j+1, \dots, j-1, j, \\
K\Phi_{j,m,k}^{\pm} = -k\Phi_{j,m,k}^{\pm}, & k = -\kappa_{j}^{(q)}, \kappa_{j}^{(q)}.
\end{cases}$$
(3.4)

All $\Phi_{j,m,k}^{\pm}$ are constructed with Wu-Yang's monopole harmonic sections $Y_{l,m}^q$ [7]. The above consideration leads us to the following decomposition theorem.

Theorem 3.1. When setting $\mathfrak{K}_{j,m,k}^{(q)} := \operatorname{span}\{\Phi_{j,m,k}^+, \Phi_{j,m,k}^-\}$ we obtain

$$\widetilde{\Gamma}(S^2, E^{(q)})^4 \cong \bigoplus_{j \in \Xi_q} \bigoplus_{m=-j}^j \bigoplus_{k=\pm \kappa_j^{(q)}} \mathfrak{K}_{j,m,k}^{(q)}$$
(3.5)

owing to [7] and [8].

Combination of Eqs.(2.8) and (3.5) yields the relation

$$\widetilde{\Gamma}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})^4 \cong \bigoplus_{j \in \Xi_q} \bigoplus_{m=-j}^j \bigoplus_{k=\pm \kappa_j^{(q)}} \left(L^2((0, \infty), dr) \widehat{\otimes} \mathfrak{K}_{j,m,k}^{(q)} \right). \tag{3.6}$$

Each subspace $L^2((0,\infty), dr) \widehat{\otimes} \mathfrak{K}^{(q)}_{j,m,k}$ is called a partial wave subspace and isomorphic to $L^2((0,\infty), dr)^2$.

Assume that V has the form of

$$V(r) = u(r)I_4 + v(r)\beta + iw(r)\beta(\boldsymbol{\alpha} \cdot \boldsymbol{e_r}), \tag{3.7}$$

where u, v and w are real-valued C^1 -class functions on $(0, \infty)$. Since $\beta \Phi_{j,m,k}^{\pm} = \pm \Phi_{j,m,k}^{\pm}$ and $-i(\alpha \cdot e_r)\Phi_{j,m,k}^{\pm} = \pm \Phi_{j,m,k}^{\mp}$, we obtain the following fundamental theorem.

Theorem 3.2. Let $h_{j,m,k}$ denote the restriction of the total Hamiltonian H to the partial wave subspace. Then we have

$$H \cong \bigoplus_{j \in \Xi_q} \bigoplus_{m=-j}^j \bigoplus_{k=\pm \kappa_j^{(q)}} h_{j,m,k} \tag{3.8}$$

and $h_{j,m,k}$ is represented by

$$h_{j,m,k} = \begin{pmatrix} m_0 c^2 + u(r) + v(r) & c \left\{ -\frac{d}{dr} + \frac{k}{r} \right\} + w(r) \\ c \left\{ \frac{d}{dr} + \frac{k}{r} \right\} + w(r) & -m_0 c^2 + u(r) - v(r) \end{pmatrix} \quad (k = \pm \kappa_j^{(q)}) \quad (3.9)$$

on $C_0^{\infty}(0,\infty)^2$.

The operator $h_{j,m,k}$ is called a radial Dirac operator.

§4 Essential self-adjointness of Dirac operator

We are now in a position to state a sufficient condition that Dirac operator be essentially self-adjoint. The following theorem serves well for the purpose.

Theorem 4.1. Let $u, v \in C^1(0, \infty)$ and $f_{\pm} := u \pm v$. Suppose $\lim_{r \to 0} r f_{\pm}(r)$ exist. Put $l_{\pm} := \frac{1}{c} \lim_{r \to 0} r f_{\pm}(r)$. If $l_{+}l_{-} < (\kappa_{j}^{(q)})^2 - \frac{1}{4}$, then $h_{j,m,k}$ is essentially self-adjoint on $C_0^{\infty}(0, \infty)^2$ for all $j \in \Xi_q$.

The proof is easily given owing to V. Arnold, H. Kalf, and A. Schneider [16].

Theorem 4.2. Let $g \in C^1(0,\infty)$. If $\lim_{r\to 0} g(r)$ exists and $|g(+0)| > \frac{1}{2}$, then the total Hamiltonian $H = H_0 + \frac{cg(r)}{r}\beta$ is essentially self-adjoint on $\Gamma_0^\infty(\mathbb{R}^3 \setminus \{0\}, D^{(q)})^4$ for all $|q| \geq \frac{1}{2}$. $\left(u = w = 0, v = \frac{cg(r)}{r}\right)$

Proof. It is sufficient to prove the essential self-adjointness of the radial Dirac operator $h_{j,m,k}$ for each $j \in \Xi_q$. The constants $\pm m_0 c^2$ in the diagonal part of $h_{j,m,k}$ may be omitted in discussion of essential self-adjointness. Then we have

$$-g(+0)^2 < (\kappa_j^{(q)}) - \frac{1}{4}$$

for all $j \in \Xi_q$. Hence $h_{j,m,k}$ is essentially self-adjoint on $C_0^{\infty}(0,\infty)^2$ for all $j \in \Xi_q$. This implies that H is essentially self-adjoint on $\Gamma_0^{\infty}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})^4$.

Theorem 4.3. Let $|q| \geq \frac{1}{2}$. If the inequalities $\frac{1}{2} < |b| < \sqrt{2|q|+1} - \frac{1}{2}$ hold, then the total Hamiltonian $H = H_0 + i\frac{cb}{r}\beta(\boldsymbol{\alpha} \cdot \boldsymbol{e}_r)$ is essentially self-adjoint on $\Gamma_0^{\infty}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})^4$. $\left(u = v = 0, w = \frac{cb}{r}\right)$

Proof. The constants $\pm m_0 c^2$ in the diagonal part may be omitted in argument on the essential self-adjointness of $h_{j,m,k}$.

Case I. $j \ge |q| + \frac{1}{2}$: Assume the inequalities $\frac{1}{2} < b < \sqrt{2|q|+1} - \frac{1}{2}$ hold. In the case of $k = \kappa_j^{(q)}$, we have

$$(b+k)^2 - \frac{1}{4} \ge b^2 - \frac{1}{4} > 0.$$

In the case of $k = -\kappa_j^{(q)}$, we have

$$(b+k)^2 - \frac{1}{4} = \left(b - \kappa_j^{(q)} + \frac{1}{2}\right) \left(b - \kappa_j^{(q)} - \frac{1}{2}\right). \tag{*}$$

Since $\kappa_j^{(q)} \geq \sqrt{2|q|+1}$, we get $b - \kappa_j^{(q)} \leq -\frac{1}{2}$ and the right-hand side of Eq.(*) is non-negative. Hence it follows from Theorem 4.1 that $h_{j,m,k}$ is essentially self-adjoint on $C_0^{\infty}(0,\infty)^2$. Likewise in the case of b < 0, we can obtain the assertion.

Case II. $j = |q| - \frac{1}{2}$: In this case, we have $0 < b^2 - \frac{1}{4}$ ($\kappa_j^{(q)} = 0$), and so $h_{j,m,k}$ is essentially self-adjoint.

As a consequence, $h_{j,m,k}$ is essentially self-adjoint on $C_0^{\infty}(0,\infty)^2$ for all $j \in \Xi_q$. This means that H is essentially self-adjoint on $\Gamma_0^{\infty}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})^4$.

Theorem 4.4. Let $|q| \geq \frac{1}{2}$. Assume that u is a C^1 -class function on $(0, \infty)$ and $p_0 \coloneqq \frac{1}{c} \lim_{r \to 0} ru'(r)$ exists. If the inequalities $\frac{1}{2} < |p_0\lambda| < \sqrt{2|q|+1} - \frac{1}{2}$ hold, then the total Hamiltonian $H = H_0 + u(r)I_4 + i\lambda u'(r)\beta(\boldsymbol{\alpha} \cdot \boldsymbol{e_r})$ is essentially self-adjoint on $\Gamma_0^{\infty}(\mathbb{R}^3 \setminus \{0\}, D^{(q)})^4$. $(v = 0, w = \lambda u'(r))^{\parallel}$

Proof. The constants $\pm m_0c^2$ in the diagonal part may be omitted. Case I. $j \geq |q| + \frac{1}{2}$: Assume the inequalities $\frac{1}{2} < p_0\lambda < \sqrt{2|q|+1} - \frac{1}{2}$ hold. In a similar way to the proof of Theorem 4.3 we get

$$(k+p_0\lambda)^2-\frac{1}{4}>0$$

for $k=\pm\kappa_j^{(q)}$. Likewise in the case of $p_0\lambda<0$ we obtain the above inequality. Hence it follows from Corollary 2 of Theorem 3 of Ref.[16] that $h_{j,m,k}$ is in the limit-point case at the origin. Consequently, $h_{j,m,k}$ is essentially self-adjoint.

Case II. $j = |q| - \frac{1}{2}$: In this case, we have $0 < (p_0 \lambda)^2 - \frac{1}{4} (\kappa_j^{(q)} = 0)$. The both cases imply that H is essentially self-adjoint on $\Gamma_0^{\infty}(\mathbb{R}^3\setminus\{0\},D^{(q)})^4$.

§5 Discussion

In $\S4$ we have proved the essential self-adjointness of H by the limit-point case at the origin of every radial Dirac operator $h_{j,m,k}$ (Theorem 4.1, [16]) and the decomposition theorem (Theorem 3.1 and 3.2). In our case (a monopole exists), it is an interesting fact that although the unperturbed operator

$$h_{oldsymbol{j,m,k}}^{(0)} = egin{pmatrix} m_0c^2 & -crac{d}{dr} \ crac{d}{dr} & -m_0c^2 \end{pmatrix}$$

for $j = |q| - 1/2 (\kappa_j^{(q)} = 0)$ is not essentially self-adjoint, $h_{j,m,k}$ becomes essentially self-adjoint if H has a special-type potential.

The investigation of the essential self-adjointness the usual n-dimensional Dirac operator was treated by Kalf and Yamada [19]. Under the assumption that m and V are spherically symmetric, they reduced the problem to that of every radial Dirac operator h with $k \in \pm \{N_0 + (n-1)/2\}$. Their method**) is the same as ours. But since $k = \pm \sqrt{(j+1/2)^2 - q^2}$ and $j \in \Xi_q$ in our case, it is more difficult to study the essential self-adjointness of $h_{j,m,k}$.

¹⁾ Behncke and Thaller already discussed this case for the usual Dirac operator (No monopole) [10, 14]. cf. Corollaries 2 and 3 of Theorem 3 in [16].

^{**)} Kalf and Yamada's varying mass term m(r) corresponds to $m_0c^2 + v(r)$ in our case.

Acknowledgements

I should like to express my sincere gratitude to Professor K. Shima for his guidance and help in preparing this manuscript. A debt of thanks is also due to Professor K. Furutani, Professor N. Otsuki and Professor O. Yamada for various valuable comments and some useful discussions.

References

- [1] P. A. M. Dirac. Quantised singularities in the electromagnetic field. *Proc. Roy. Soc. London. Ser. A.*, 133, 60–72, 1931.
- [2] S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol I. John Wiley & Sons, New York-London, 1963.
- [3] S. S. Chern. Complex manifolds without potential theory. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967.
- [4] J. Weidmann. Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen. Math. Z., 119:349-373, 1971.
- [5] M. Arai, On essential Self-Adjointness of Dirac Operators, RIMS Kokyuroku, 242 (1975), 10–21.
- [6] H. Kalf, U.-W. Schmincke, J. Walter, R. Wüst, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, Proc. Symposium Dundee 1974. Lecture Notes in Math., 448 (1975), 182–226
- [7] T. T. Wu and C. N. Yang. Dirac monopole without strings: monopole harmonics. *Nucl. Phys. B*, 107(3):365–380, 1976.
- [8] Y. Kazama, C. N. Yang, and A. S. Goldhaber, Scattering of a Dirac particle with charge Ze by a fixed magnetic monopole. Phys. Rev. D, 15 (1977), 2287– 2299.
- [9] P. Chernoff, Schrödinger and Dirac operators with singular potentials and hyperbolic equations, *Pacific J. Math.*, **72** (1977), no. 2, 361–382.
- [10] H. Behncke, The Dirac equation with an anomalous magnetic moment. Math. Z. 174 (1980), 213-225.
- [11] M. Arai and O. Yamada, Essential Self-adjointness and Invariance of the Essential Spectrum for Dirac Operators, Publ. RIMS 18 (1982), 973–985.
- [12] H. Yamagishi. Fermion-monopole system reexamined. Phys. Rev. D, 27(10):2383–2396, 1983.

- [13] M. Nakahara. Geometry, topology and physics. Adam Hilger Ltd., Bristol, 1990.
- [14] B. Thaller. The Dirac equation. Springer-Verlag, Berlin, 1992.
- [15] F. Bloore and P. A. Horváthy. Helicity-supersymmetry of dyons. J. Math. Phys., 33(5):1869–1877, 1992.
- [16] V. Arnold, H. Kalf, and A. Schneider. Separated Dirac operators and asymptotically constant linear systems. *Math. Proc. Cambridge Philos. Soc.*, 121(1):141–146, 1997.
- [17] P. A. Horváthy, A. J. Macfarlane, and J. W. van Holten. Monopole supersymmetries and the Biedenharn operator. *Phys. Lett. B*, 486(3-4):346–352, 2000.
- [18] H. Kalf and O. Yamada. Essential Self-adjointness of Dirac Operators with a Variable Mass Term. *Proc. Japan Acad*, 76A:13–15, 2000.
- [19] _____, Essential self-adjointness of n-dimensional Dirac operators with a variable mass term. $J.\ Math.\ Phys.,\ 42(6):2667-2676,\ 2001.$