oboo0ooooOooO 13640 20040 182-190

182

A Note on Essential Self-adjointness of
Dirac Operator with a Monopole
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Abstract

The purpose of this paper is to analyse the essential self-adjointness of
Dirac operator H = Ho +V = ca - (—iV +iA) + fmoc® + V, where A is the
vector potential induced by a monopole. The potential V' is assumed to be
spherically symmetric and of the form V = u(r)Iy + v(r)8 + iw(r)B(a - e,).
It is shown that H is essentially self-adjoint under some conditions on the
behavior of u,v and w in a neighbourhood of the origin.
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§1 Introduction

Since 1976 several authors have investigated the Schrédinger operator with a
magnetic field induced by a magnetic monopole (simply called a monopole) (7, 8,
15, 17]. It seems worth-while to throw light upon Dirac operator in such a case
[15, 17].

Mathematically, a wave function is described as a section of a vector bundle [3]
and a vector potential is represented by a connection form of the principal fibre
bundle associated with the vector bundle. In this paper we construct the Hilbert
space on which Dirac operator H with a monopole operates and study the essential
self-adjointness of H. In the sequel, we use the quantity ¢ :== %T) (e: electric charge,

g: magnetic charge) as a monopole parameter on the basis of Dirac’s quantization
condition 2¢ should be an integer [1].

In §2 we build up a line bundle D@ over R?\ {0} and another one E? over the
sphere S? with the same structure group U(1). Then we make the Hilbert space
T(R® \ {0}, D9)* on which H operates and the corresponding one I'(S?, E@)*.
Subsequently we define the vector potential A explicitly. Since we assume that the
potential V' in H is spherically symmetric, we rewrite the unperturbed part Hy of H
so that it may contain radial terms and a generalized spin-orbit coupling operator
K (Eq.(2.11)).
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In §3, using Wu-Yang’s monopole harmonic sections Y,:’m (8, ) [7] which form an
orthonormal basis for I'(S2, @), we decompose I'(S2, E@)4 into the direct sum of
the simultaneous eigenspaces &%, , of J?,J3 and K*. The restriction of H to the
partial wave subspace L?((0, c0), dr)@ﬁg-‘,’,)n,k, hjm k. is represented on L?((0, c0), dr)?
by radial terms.

In §4 we show under what condition the total Hamiltonian H is essentially self-
adjoint on I'P(R3? \ {0}, D@)* (As for ['$(R3\ {0}, D?9), see the lower half part of
this page.). Arnold-Kalf-Schneider’s theorems [16] are useful for the essental self-
adjointness of h;,, x. Then we obtain the three main results, Theorems 4.2, 4.3, 4.4
by setting some reasonable assumptions on the behavior of V' = u(r)Iy + v(r)8 +
iw(r)B(a - e,) in a neighbourhood of the origin.

§2 Formulation of Dirac operator with a monopole

We first construct two line bundles. Let {Wy, Ws} be an open covering of a
base space S? as follows:

WN=={(0,<p);0<0<g+5,0<<p<27r}, (0<5<g) (2.1)
Ws = {(9,(,0);%—5<0<7r,0<<p<27r}. (2.2)

A transition function 7ys of Wy N Wy into the unitary group U(1) is defined by
ns(8, p) = ¥ (2.3)

Using these quantities, we build up a complex line bundle E9. Subsequently, let
D) be the pull-back of E( by the smooth mapping f of R3\ {0} onto S? defined

as f(zx) = ﬁ The open covering {{r; r > 0} x Wy, {r; r > 0} x Wg} of R®\ {0}
is chosen and ‘the transition function tyg(r,6, ) of D@ is essentially the same as
that of E@): tys(r,8, p) = e?4¢.

Furthermore, let T(R3 \ {0}, D'9) denote the set of all C*™-class global sec-
tions of D@ with compact support and I'°(S?, E(@) the set of all C*-class global

sections of E(@. They are complex linear spaces. We equip I'°(R? \ {0}, D@) and
(52, E9) with an inner product as follows:

(m,€) = / n(r, 6,)*€(r, 6, )r* sin 0 drdfdyp, (2.4)
R3\{0}

(2, 0) = / 26, 0)* (6, ) sin 8 dBdep. @)
S2

$J: total angular momentum operator. See (2.11).
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Then we obtain the two Hilbert spaces by completing I's*(R®\{0}, D) and I'*(S?, E@).
We denote them by I'(R? \ {0}, D9) and I['(S?, E@), respectively.
Obviously we get

I (R?\ {0}, D)) = C5°(0, 00) ® T(S?, E@) (2.6)
and ’
T(R® \ {0}, D@) = L2((0, 00), dr)®T(S?, E@). (2.7)

Since any wave function satisfying Dirac equation has 4 components, the next de-
composition provides a starting point

T(R3\ {0}, D9)* = L2((0, o0), dr)®T(S?, E@)*. (2.8)

We have now reached the stage of construction of the vector potential in a free
Hamiltonian Hy. It must be described with a connection form of the principal fibre
bundle associated to D@. Since the magnetic field induced by a monopole g is a
curvature form of the connection form, we choose Wu-Yang’s connection form A
[13] and take the vector potential A to be the dual of .A:

g(1 — : .
Ay = ig(1 — cosf) e, on {r; r >0} x Wy,

'r('sin0 ) (2.9)
_ —ig(1 + cos )
Ag = —sng e, on{r; r>0} x Ws.
With the help of A we can define Hy as
Hy = ca - (—iV + iA) + fmoc? V. (2.10)

We shall here assume that the perturbed potential V is spherically symmetric
and that V(r) is 4x 4 Hermitian matrix composing of continuous functions on (0, 00).
The total Hamiltonian H = Hp + V operates on I'(R® \ {0}, D@)*. We take the
domain Dom(H) to be I'{(R? \ {0}, D@)* for the present.

To decompose H into the direct sum of radial terms on the basis of (2.8), we
rewrite Hy by four new operators L, S,J and K.

1/ 0O
L=M-gqer, S=314g o) (2.11)

J=LI,+8, K=p@2S -M+1I),

- 9e, = (sinf cos p,sinfsin p, cosf), eg == (cos § cos @, cos § sin p, — sin §),
es = (—sin, cos 9, 0). B
1)aj (G =1,2,3),8 = ap are 4 x 4 constant Hermitian matrices satisfying the anti-commutation
relations ook + akorj = 205k ls.
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where M is the auxiliary operator in I'(R3 \ {0}, D@) given by
M = o A (=iV +iA). (2.12)

Then L is a symmetric operator defined on I'$°(R3 \ {0}, D@) and 8,J,K are
symmetric operators defined on I'(R3 \ {0}, D\?). The operators J and K are
called the total angular momentum operator and the generalized spin-orbit coupling
one, respectively. Theses operators enable us to deduce

o 1

Hy = —ic(a - e,) (5; +o - %ﬂK) + fmgc®. (2.13)

§3 Decomposition of Dirac operator

We first decompose ['(S?, E@)# into the direct sum of simultaneous eigenspaces
of J?,J; and K. We here put

{Iql——|q|+ ol + 3, } (qz:t%,:tl,:t—z-,...), (3.1)

K = \/V(J' + %)2 - (j€&) - (3.2)

There exists an orthonormal basis

{Q.Nnk l J € E‘J’m = _jv _j + 1:" "j - 1’j7k = :tn;(lq)} (33)

of f(Sz, E@)* whose elements satisfy the following simultaneous eigenequations of
J?,J; and K, according to Y. Kazama et al [8].

J2 ;hmk —.7(]+1) 5m,k>

Js(p]mk mq)gm,k’ m_—j _J+1 ---’j—]-’j, (34)
* = 9 L@
All <I>;tm » are constructed with Wu-Yang’s monopole harmonic sections Y;7, [7].

The above consideration leads us to the following decomposition theorem.

Theorem 3.1. When setting R(q « = span{®}, ., &7 .} we obtain

(%, B9yt = B @ P 2. (3.5)

G—-q m=—1 k"ﬁ:N(Q)

owing to [7] and [8].
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Combination of Eqs.(2.8) and (3.5) yields the relation

I(R®\ {0}, D9Y* = é ) (L%(O,oo),dr)@ﬁ;‘f,)n’k). (3.6)

§€8q M= fminl®

Each subspace L?((0, c0), dr)@ﬁﬁ-:’,zm,k is called a partial wave subspace and isomor-
phic to L2((0, 00), dr)?.
Assume that V has the form of

V(r) = u(r)ly + v(r)B + iw(r)B(a - e,), (3.7)

where u,v and w are real-valued C'-class functions on (0,00). Since ﬂ@fm,k =

+8;,, , and —i(a - e.)®7,,, = £®F ., we obtain the following fundamental theo-
rem.

Theorem 3.2. Let hjmy denote the restriction of the total Hamiltonian H to the
partial wave subspace. Then we have

j
H2@d P D hims (3.8)
€8 m==] j—rp(0)

and hjm is represented by

moc? + u(r) + v(r) c{—% + g} + w(r)

hjmk = (k=+&)  (3.9)
c {i + é} +w(r) —moc® + u(r) — u(r)

dr
on C$°(0, 00)2.

The operator h;m  is called a radial Dirac operator.

§4 Essential self-adjointness of Dirac operator

We are now in a position to state a sufficient condition that Dirac operator be
essentially self-adjoint. The following theorem serves well for the purpose.

Theorem 4.1. Let u,v € C!(0,00) and fi = u=+v. Suppose h’_% rfi(r) exist. Put

1 1
ly = Eli_%r fe(r). Iflyl_ < (ngq))2 -7 then hjmy is essentially self-adjoint on
C(0,00)? for all j € Ey.

The proof is easily given owing to V. Arnold, H. Kalf, and A. Schneider [16].
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Theorem 4.2. Let g € C(0,00). If li_x)n% g(r) exists and |g(+0)| > %, then the total
cg(r)

Hamiltonian H = Hy + B is essentially self-adjoint on TP(R3 \ {0}, D@)* for

all |g| > % (u =w= O,UT: -Cg_fr—))

Proof. 1t is sufficient to prove the essential self-adjointness of the radial Dirac oper-
ator Ajm « for each j € E,. The constants +moc? in the diagonal part of hj, x may
be omitted in discussion of essential self-adjointness. Then we have

1
~g(+0)” < (5%) ~ 5

for all j € Z,. Hence hjm is essentially self-adjoint on C§°(0, 00)? for all j € E,.

This implies that H is essentially self-adjoint on I'(R? \ {0}, D@)%. O
Theorem 4.3. Let |q] > —;- If the inequalities % < |b] < 2lg[+1 —% hold,
then the total Hamiltonian H = Hy + i—c;-)ﬂ(a - e,) is essentially self-adjoint on
I'e(R3\ {0}, D)4, (u _ v=0,w= E})

Proof. The constants £mgc? in the diagonal part may be omitted in argument on
the essential self-adjointness of h;n, k.
1 .1 1
Case L. j > |q| + 3 Assume the inequalities 5 < b< 2ql+1- 3 hold. In

the case of k = mg-"), we have

(b+k)2——£_2b2—i—>0.
In the case of k = —n;q), we have
1 1 1
2 _ - _(p_k@D () B
(® +'k) 1 (b KV + 2) (b K; 2) . (%)

Since nﬁ-‘” > /2|q] + 1, we get b— rs;.") < —% and the right-hand side of Eq.(*) is
non-negative. Hence it follows from Theorem 4.1 that h; .« is essentially self-adjoint
on C3(0,00)?%. Likewise in the case of b < 0, we can obtain the assertion.

Case II. j = |q| - —;—: In this case, we have 0 < b? — % (lcg-'n =0), and 80 hjmk
is essentially self-adjoint.

As a consequence, hj ., is essentially self-adjoint on Cg°(0, o0)? for all j € E,.
This means that H is essentially self-adjoint on T'$°(R3 \ {0}, D@)*. 0O
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1
Theorem 4.4. Let |g| > 3 Assume that u is a C*-class function on (0,00) and

1
po = — hm ru'(r) ezists. If the inequalities % < |poA| < /2|l +1— 3 hold, then
the total Hamzltonzan H = Hy +u(r)ly + i) (r)B(a - e,) is essentially self- adyomt
on TP(R3\ {0}, D). (v =0,w = M/(r))V
Proof. The constants +mgc? in the diagonal part may be omitted.

1 1
Casel. j > |q| + 3 Assume the inequalities 3 < PoA < 4/2|g| +1— § hold. In
a similar way to the proof of Theorem 4.3 we get

(k+po)\)2—i>0

for k = :}:n(q) Likewise in the case of ppA < 0 we obtain the above inequality. Hence
it follows from Corollary 2 of Theorem 3 of Ref.[16] that h;mx is in the limit-point
case at the origin. Consequently, h; . is essentially self—ad]omt

Case II. j = |q| — l In this case, we have 0 < (poA)? — (n(q) = 0).
The both cases 1mp1y that H is essentially self-adjoint on I‘°° (R3\ {0}, D)%, O

§5 Discussion

In §4 we have proved the essential self-adjointness of H by the limit-point case
at the origin of every radial Dirac operator h;mk (Theorem 4.1, [16]) and the de-
composition theorem (Theorem 3.1 and 3.2). In our case (a monopole exists), it is
an interesting fact that although the unperturbed operator

d

©) moc2 —-C-&;
hjm e = d

CE; —moc

for j = |q| — 1/2 (ng.q) = 0) is not essentially self-adjoint, h;mx becomes essentially
self-adjoint if H has a special-type potential.

The investigation of the essential self-adjointness the usual n-dimensional Dirac
operator was treated by Kalf and Yamada [19]. Under the assumption that m and
V are spherically symmetric, they reduced the problem to that of every radial Dirac
operator h with k € £{Ng + (n — 1)/2}. Their method**) is the same as ours. But
since k = +4/(j +1/2)2 — ¢? and j € E, in our case, it is more difficult to study
the essential self-adjointness of h;m k.

DBehncke and Thaller already discussed this case for the usual Dirac operator (No monopole)
(10, 14]. ¢f. Corollaries 2 and 3 of Theorem 3 in [16].
**)Kalf and Yamada’s varying mass term m(r) corresponds to moc? + v(r) in our case.
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