
83

Sparseness Theorems and
Sparse Representation of Signals

PANDO GEORGIEV and ANDRZEJ CICHOCKI

Brain Science Institute, RIKEN
Lab. for Advanced Brain Signal Processing

2-1, Hirosawa, Wako shi
Saitama, 351-0198, Japan

{georgiev, $\mathrm{c}\mathrm{i}\mathrm{a}$} $\emptyset \mathrm{b}\mathrm{s}\mathrm{p}$ .brain.riken.go . jp
Abstract

We present general sparseness theorems showing that the solutions of various types
least square and absolute value optimization problems (linear with respect to $l_{2}$ and $l_{1}$

norm, non-linear ones) possess sparse solutions. These theorems have direct application
to the problem of identification (up to scaling and permutation) of the source signals
$\mathrm{S}\in \mathrm{R}^{n\mathrm{x}N}$ a $\mathrm{d}$ the mixing matrix A $\in 1\mathrm{R}^{m\cross n}$ , $m\leq$ n, knowing only their mixture
$\mathrm{X}=$ AS – this is so called underdetermined sparse component analysis (SCA). We
present two new algorithms: for matrix identification (when the sources are very sparse),
and for source recovery, improving in such a way the standard basis pursuit method of S.
Chen, D. Donoho and M. Sounders (applied when the mixing matrix is known or correctly
estimated). We illustrate our algorithms with examples.

1 Introduction

One of the fundamental questions in data analysis, signal processing, neuroscience, etc. is
how to represent huge amount of data $\mathrm{X}$ (given in form of a matrix $(m\mathrm{x}N)$ ), for different
tasks. A simple idea is a linear matrix factorization:

$\mathrm{X}=\mathrm{A}\mathrm{S}$ , $\mathrm{A}\in \mathrm{R}_{\ovalbox{\tt\small REJECT}}^{m\mathrm{x}n}\mathrm{S}\in 1\mathrm{R}^{n\mathrm{x}N}$ . (1)

where the unknown matrices A $\in \mathrm{R}^{m\mathrm{x}n}$ (dictionary) and $\mathrm{S}\in \mathrm{R}^{n\mathrm{x}N}$ (signals) have some
specific properties, for instance:

1) the rows of $\mathrm{S}$ are statistically independent as much as possible $\cdot$ . this is Independent
Component Analysis (ICA) problem;

2) $\mathrm{S}$ contains as many zeros as possible $\cdot$ . this is sparse representation problem or Sparse
Component Analysis (SCA) problem;

3) the elements of $\mathrm{X}$ , A and $\mathrm{S}$ are nonnegative .. this is nonnegative matrix factorization
(NMF), with several potential applications including decomposition of objects into “natural”
components, learning the parts of the objects (e.g. learns ffom set of faces the parts a face
consists of, i.e. eyes, nose, mouth, etc.), redundancy and dimensionality reduction, micrO-
array data mining, enhancement of images in nuclear medicine, etc. (see [14]).
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There is a large amount of papers devoted to ICA problems (see for instance [7], [11] and
references therein) but mostly in the complete case (when the number of sources is equal to
the number of sensors). We refer to [12], [4], [13], [2] and reference therein for some recent
papers on SCA and underdetermined ICA.

A slightly different problem is so called Blind Source Separation (BSS) problem, in which
we know a priory that such a representation like (1) exists and the task is to recover the
sources and the mixing matrix as correctly as possible. A fundamental property of BSS
problem (which makes it so attractive) under assumptions in 1) and non-Gaussianity of the
sources, is that such recovering is possible up to permutation and scaling of the sources.

In this paper we present general sparseness theorems and apply some of them for sparse
representation of signals for the underdetermined case (more sources than sensors). So, we
consider the BSS problem in the underdetermined case, as additional information compen-
sating the lack of sources is sparseness. We describe conditions under which it is possible to
estimate the unknown sources $\mathrm{S}$ and the mixing matrix A uniquely (up to permutation and
scaling of the sources, which is usual condition in the complete BSS problems).

We present a new algorithm for identification of the mixing matrix, which works correctly
under some conditions (see conditions (i) and (ii) of Theorem 7).

We develop also an improvement of the basis pursuit method of Chen, Donoho and Saun-
ders [8], (which in fact is $l_{1}$ norm minimization problem), when the mixing matrix is known
or estimated. This improvement is also reduced to a linear programming problem, but we are
able to find the sparsest solution of a linear underdetermined system. We present examples
which illustrate our methods.

We introduce an optimization problem with nonnegativity constraints with respect to $l_{1}$

norm (see Section 4). It appears that it gives also sparse representations and is suitable for
large scale problems, since it can be converted to a linear programming problem.

We present several computer simulation examples which confirm the good performance
of our algorithms.

2 Nonlinear sparseness theorem

Our first theorem gives even an idea for nonlinear sparse codding. The key idea is ffom a
night sky theorem (see Byrne [5]).

Consider the nonlinear least square problem with nonnegativity constraints:

nnrurmze $l(\mathrm{x})=|\}F(\mathrm{x})$ $-\mathrm{b}||_{2}^{2}$ , (2)
subject to $x:\geq 0,$ (3)

where $F$ : $1\mathrm{R}^{n}arrow \mathrm{R}^{m},m\leq n$ is a differentiate mapping such that

$\det$ ( $\frac{\partial F_{i}(\mathrm{x})}{\partial x_{j}}|0_{1,j\in S})\neq 0$ (4)

for every subset $S$ of the set $\{$ 1, $\ldots$ , $n\}$ with $m$ elements.

Theorem 1 (Nonlinear sparseness theorem) Assume that $l_{m\dot{l}n}>0$ (Le. the equation
$F(\mathrm{x})=\mathrm{b}$ has no nonnegative solution). Then for any solution $\hat{\mathrm{x}}$ of (2), (3) with conditions
(4), the subset $S_{\hat{\mathrm{x}}}=\{j\in\{1, \ldots,m\} : \hat{x}_{j}>0\}$ has at most m-l-k elements, where $k$ is the
number of indesces $i$ such that $F_{\dot{\iota}}(\hat{\mathrm{x}})-b_{\dot{\mathrm{t}}}=0.$
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Proof. By the Fritz John theorem [3] there exist Lagrange multipliers $\mu_{i}\geq 0,$ such that

2 $i \sum_{=1}^{m}[F_{i}(\hat{\mathrm{x}})-b_{i}]\frac{\partial F_{i}(\hat{\mathrm{x}})}{\partial x_{i}}+\mu j=0,$
$\forall j=1,$

$\ldots$ , $n$ , (5)

$\mu_{j}\hat{x}_{j}=0,$ $\forall j$ . (6)

Assume that $|S_{\mathrm{x}}\wedge|\geq m-k.$ By (6) it follows that $\mu_{j}=0$ for $j\in S_{\hat{\mathrm{x}}}$ and by (5), using
the non-degeneracy condition (4), we obtain that $F(\hat{\mathrm{x}})=$ b, a contradiction. Therefore
$|S_{\hat{\mathrm{x}}}|\leq$ m-k-l. 1

3 The linear case
In the linear case the mapping $F$ is represented by a matrix A $\in \mathrm{R}^{m\mathrm{x}n}$ . In this case the
theorem is known (see [5]) and uniqueness of the solution is guaranteed.

Consider the linear least square problem with non-negativity constraints:

minimize $l(\mathrm{x})=||\mathrm{A}’-\mathrm{b}||_{2}^{2}$ , (7)

subject to $x_{i}\geq 0,$ $i=1,$ $\ldots$ , $n$ , (8)

where A $\in \mathrm{I}\mathrm{R}^{m\mathrm{x}N}$ , $m<N$ is a matrix such that any submatrix $(m\mathrm{x} m)$ of it has full rank.

Theorem 2 (Night Sky theorem [5]) Assume that $l_{\min}>0$ (i.e. the equation Ax $=\mathrm{b}$

has no nonnegative solution). Then the solution of (7), (8) is unique, say $\hat{\mathrm{x}}$, and contains at
most m-l-k non-zero elements, where $k$ is the number of indexes $i$ such that $\sum_{j=1}^{n}\hat{x}j=b:.$

In order to apply it we need to verify the condition that the system of linear equations
Ax $=\mathrm{b}$ has no solutions. This condition is equivalent to the condition that $\mathrm{b}\not\in \mathrm{A}(\mathrm{K}1)$ ,
where $\mathrm{K}_{1}$ means the first octant:

$\mathrm{b}\not\in\{\mathrm{y}\in \mathrm{R}^{m} : \mathrm{y}=\sum_{\dot{|}=1}^{n}\alpha_{\dot{l}}\Re. : \alpha_{\dot{l}}\geq 0\}$ , (9)

i.e. this condition says that $\mathrm{b}$ does not belong to the cone generated by the columns of A.
This condition can be violated easily with enlarging the dimension of the problem, as we
proceed below.

Let $\mathrm{e}$ be a unit length vector and $\hat{\mathrm{x}}_{\mathrm{e}}$ be a solution of the minimization problem

minimize $\mathrm{e}^{T}\mathrm{x}$ under constraint Ax $=\mathrm{b},\mathrm{x}\geq 0.$ (10)

The following theorem is direct consequence from Theorem 2.

Theorem 3 For almost all unit length nonnegative vectors $\mathrm{e}$ (in measure sense) the solution
$\hat{\mathrm{x}}_{\mathrm{e}}$ of (10) is unique and sparse ($i.e$. contains at most $m$ $cone$$m$ elements), and

$\hat{\mathrm{x}}_{\mathrm{e}}=\lim_{\epsilonarrow 0_{+}}\mathrm{x}_{\epsilon}$
,

where $\mathrm{x}_{\epsilon}$ is the unique solution of the problem

i.e. this condition says that $\mathrm{b}$ doae not belong to the cone generated by the columns of A.
This condition can be violated easily with enlarging the dimension of the problem, as we
proceed below.

Let $\mathrm{e}$ be aunit length vector and $\mathrm{x}\wedge \mathrm{e}$ be asolution of the minimization problem

minimize $\mathrm{e}^{T}\mathrm{x}$ under constraint $\mathrm{A}\mathrm{x}=\mathrm{b},\mathrm{x}\geq 0.$ (10)

The following theorem is direct consequence from Theorem 2.

Theorem 3For almost all unit length nonnegative vectors $\mathrm{e}$ (in measure sense) the solution
$\hat{\mathrm{x}}_{\mathrm{e}}$ of (10) is unique and sparse ($i.e$. contains at most $m$ nonzero elements), and

$\hat{\mathrm{x}}_{\mathrm{e}}=\lim_{\epsilonarrow 0_{+}}\mathrm{x}_{\epsilon}$
,

where $\mathrm{x}_{\epsilon}$ is the unique solution of the problem

minimize $||$ $(\begin{array}{l}\mathrm{A}-\epsilon \mathrm{e}^{T}\end{array})$ $\mathrm{x}$ -
$\{\begin{array}{l}\mathrm{b}0\end{array}\}$ $||$: (11)

under constraints $\mathrm{x}\geq 0.$ (12)
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Basic question: how to find $\mathrm{e}$ such that the solution of (10) (equivalent$1\mathrm{y}$ the solution
of (11), (12) is the sparsest possible?

The basis pursuit method of Chen, Donoho and Sounders $[8]\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{s}$ to answer to this
question (without constraints on $\mathrm{x}$). It consists of minimization of the $l_{1}$ norm of $\mathrm{x}$ under
constraint Ax $=$ b.

In case of nonnegativity constraints, this is a particular case of the minimization problem
(10), when all components of the vector $\mathrm{e}$ are equal to one.

Theorem 4 (Donoho, Elad [10]) The vector $\mathrm{x}_{0}$ is the unique sparsest solution ofAx $=\mathrm{b}$

$if||\mathrm{x}_{0}||<$ Spark(A)/2.

Spark(A) is the minimum number of columns of A which are linearly dependent.
Observation: For almost all matrices $m\cross n$ (in measure sense),

Spark(A)$)=m+1.$

We are interested in the case, when the sparsest solution has less than $(m+1)/2$ nonzero
elements.

We propose the following solution of the basic question: solve (10) $n$ times, after setting
consequently the coef ficients $e_{i}=0,$ $i=1,$ ..., $n$ . If no solution has less than $(m+1)/2$ nonzero
components, set couple of coefficients $e_{i}=0$ , $e_{j}=0,$ solve (10) and so on, until obtaining the
solution with less than $(m+1)/2$ nonzero components.

The following theorem describes conditions under which the $l_{1}$ -minimization gives the
sparsest solution, but in practical problems these conditions are rarely satisfied (as we will
see in the sequel).

Theorem 5 (Donoho, Elad [10]) Suppose that the off-diagonal elements of the matrix
$\mathrm{A}^{T}\mathrm{A}$ are bounded by M. If Axo $=\mathrm{b}$ and $||\mathrm{x}_{0}||0$ $<(1+1/M)/2$ , then $\mathrm{x}_{0}$ is the unique
sparsest solution of Ax $=\mathrm{b}$ and is the unique solution of $l_{l}$ -nom minimization problem:
minimize $||\mathrm{x}||1$ subject to Ax $=$ b.

4 Optimization with respect to $l_{1}$ norm
Consider the least square problem with nonnegativity constraints with respect to $l_{1}$ norm:

minimize $l(\mathrm{x})=||$ Ax-b$|\mathrm{h}$

$= \sum_{\dot{|}=1}^{m}|\sum_{j=1}^{n}a_{ij}x_{j}-b_{\dot{1}}|$ , (13)

subject to $x_{j}\mathit{2}$ $0$ , $j=1$ , $\ldots$ , $n$ , (14)

where A $\in \mathrm{I}\mathrm{R}^{m\mathrm{x}n}$ is a matrix, $m<n,$ with the following properties:
(PI) if we remove any $k$ columns, where $k\geq n-m,$ then the remaining submatrix $\mathrm{A}_{k}$ is

of full column rank;
(P2) if we take n-k-l rows of $\mathrm{A}_{k}$ , then their linear hull does not contain any sum of

the remaining rows multiplied with coefficients $\pm 1$ .
It can be proved that most of the matrices (in the measure sense) in $\mathrm{R}^{m\mathrm{x}n}$ have these

properties.
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Theorem 6 ($l_{1}$ -norm sparseness theorem) Assume that $l_{\min}>0(i.e$ . the equation
Ax $=\mathrm{b}$ has no nonnegative solutions). Then for any solution $\hat{\mathrm{x}}$ of (13), (14) the set $S_{\hat{\mathrm{x}}}=$

$\{j\in\{1, \ldots, m\} : \hat{x}_{j}>0\}$ has the properties:
(i) $S_{\hat{\mathrm{x}}}$ has at most $m-1$ elements;
(ii) the number of the elements of $S_{\hat{\mathrm{x}}}$ is less than or equal to the number of indexes $i$ for

which $\sum_{j=1}^{n}$ aijXj $-b_{i}=0.$

Proof, (i) By the necessary conditions for optimality, applied for the problem (13), (14)
(see for instance, [6]) there exist Lagrange multipliers $\mu_{i}\geq 0,$ such that

2 $\sum_{i=1}^{m}c_{i}a_{ij}+\mu_{j}=0$ $\forall j=1$ , $\ldots$ , $n$ (15)

$\mu_{j}\hat{x}_{j}=0$ $\forall j=1$ , $\ldots$ , $n$ , (16)

where $c_{t}\in\partial|$ $\mathrm{C}3=1$ $a_{ij}\hat{x}_{j}-b_{i}|$ , and $\partial|\sum 7=1$ $a_{ij}\hat{x}_{j}-b_{i}|$ means the subdifferential of the function
$|$ . $|$ at the point $j_{j=1}^{n}aijXj-b_{i}$ . Assume that $|$ $5_{\mathrm{x}}\wedge|\geq m.$ By (16) it follows that $\mu_{j}=0$ for

$j\in S_{\hat{\mathrm{x}}}$ and by (15), using the non-degeneracy condition (PI), we obtain that $c_{i}=0$ for every
$i=1,$ ..., $m$ . Now we use the following property of the subdifferential:

$\partial|t|=\{$

[-1, 1] if $t=0$

+1 if $t>0$

-1 if $t<0.$

Applying this property for $t_{i}= \sum_{j=1}^{n}a_{ij}\hat{x}_{j}-b_{i}$ , having in mind that $0\in\partial|t_{i}|$ , we obtain
$t_{i}=0$ for every $i=1$ , ..., $m$ , a contradiction with the assumption that the system Ax $=\mathrm{b}$

has no nonnegative solution.
(ii) Let the number of the nonzero elements of $S_{\hat{\mathrm{x}}}$ be $k$ . Again by (15), using now the

non-degeneracy condition (P2), we obtain that $c_{i}\in(0,1)$ for every $i$ from an index set
$I\subset\{1$ , ..., $m\}$ with $k$ elements, which implies that $\mathrm{j}\mathrm{L}3=1$ $a_{ij}\hat{x}_{j}-b_{i}=0$ for $i\in I$ . .

We can reduce the optimization problem considered in the previous section to a linear
programming problem, by two ways.

(I) minimize $\sum_{i=1}^{m}u_{i}$

under constraints

$u_{\dot{l}} \geq\sum_{j=1}^{n}a_{ij}x_{j}-b_{i}$ (17)

$u_{t} \geq-\sum_{j=1}^{n}a_{ij}x_{j}-b_{i}$ (18)

$x_{j}\geq 0.$ (19)

(II) minimize $\sum_{i=1}^{m}u;+u_{i}^{-}$

under constraints

$u^{+} \dot{.}-u_{i}^{-}=\sum_{j=1}^{n}a_{ij}x_{j}-b_{i}$ (20)

$u_{i}^{+}\geq 0,$ $u_{i}^{-}\geq 0,$ $x_{j}\geq 0.$ (21)
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5 Matrix identification
In this section we describe conditions under which we can identify the mixing matrix in a
sparse BSS problem.

Theorem 7 (Identifiability conditions - locally very sparse representation) Assume
that the number of sources is unknown and

(i) for each index $i=1,$ ..., $n$ there are at least two columns of $\mathrm{S}$, $\mathrm{S}($:, $j_{1})$ , $\mathrm{S}($ :, $j_{2})$ which
have nonzero elements only in position $i$ (so each source is uniquely present at least twice),
and

(ii) $\mathrm{X}($ :, $k)\neq c\mathrm{X}(:,q)$ for any $c\in$ R, any $k=1$ , $\ldots$ , $N$ and any $q=1$ , $\ldots$ , $N$, $k\mathrm{g}$ $q$ for
which $\mathrm{S}($ :, $k)$ has more that one nonzero element.

Then the number of sources and the matrix A are identifiable uniquely up to pemutation
and scaling.

Proof. We cluster in groups all nonzero normalized column vectors of $\mathrm{X}$ such that each
group consists of vectors which differ only by sign. Rom conditions (i) and (ii) it follows
that the number of the groups containing more that one element is precisely the number of
sources $n$ , and that each such group will represent a normalized column of A (up to sign). $\blacksquare$

Below we include an algorithm for identification of the mixing matrix in the case of
Theorem 7.

Algorithm for identification of the mixing matrix
1) Remove all zero columns of $\mathrm{X}$ (if any) and obtain a matrix $\mathrm{X}_{1}\in \mathrm{I}\mathrm{R}^{m\mathrm{x}N_{1}}$ .
2) Normalize the columns $\mathrm{x}_{i},i=1,$ . . . , $N_{1}$ of $\mathrm{X}_{1}$ : $\mathrm{y}_{i}=\mathrm{x}_{i}’||\mathrm{x}_{t}||$ and put $i=1,j=2$, $k=$

$1$ .
3) if either $lli$ $=$ !lj or $y_{i}=-lj$ , then put $a_{k}=y_{\dot{l}}$ , increase $i$ , $k$ with 1, put $j=i+1$ and

if $i<N_{1}$ , repeat 3) (otherwise stop). Otherwise: if $j<N_{1}$ , increase $j$ by 1 and repeat 3). If
$j=N_{1}$ , increase $i$ by 1, put $j=i+1$ and repeat 3). Stop when $i=/$ $1+1.$

In a similar way, as Theorem 1, we can prove the following its generalization.

Theorem 8 Assume that
(i) for each source $s_{i}:=\mathrm{S}(i$ , . $)$ , $i=1,$ ..., $n$ there are $k_{i}\geq 2$ time instances when all of the

source signals are zero except $s_{i}$ (so each source is uniquely present $k_{:}$ times), and
(ii) the set {$j\in\{1$ , $\ldots$ , $N\}$ : X(., $p)=c\mathrm{X}($ ., $j)$ for some $c\in \mathrm{R}$}, contains less than

$\min_{1\leq i\leq m}k_{i}$ elements for any $p\in\{1, \ldots, N\}$ for which $\mathrm{S}($ ., $p)$ has more than one nonzero
element.

Then the matrix A is identifiable up to permutation and scaling.

6 Identification of sources
Improved basis pursuit (BP) method

The famous basis pursuit method (BP) of $\mathrm{S}.\mathrm{S}$ . Chen, D. Donoho and M. Sounders [8] is
rather a principle than an algorithm for decomposing a signal into an “optimal” superposition
of dictionary elements, where optimal means having the smallest $l_{1}$ norm of coefficients among
all such decompositions. So, it consists of finding a minimum $l_{1}$-norm solution of a linear
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underdetermined system. Such minimality of the $l_{1}$ norm ensures sparseness of the coefficients
of the solution. Namely, if A $\in \mathrm{I}\mathrm{R}^{m}\cross n$ , $m<n,$ then the minimum $l_{1}$ -norm solution of the
system As $=\mathrm{x}$ has at most $m$ nonzero elements for almost all $\mathrm{x}\in \mathrm{I}\mathrm{R}^{m}$ - a well know fact (see
[10] for instance). This problem can be reduced to a linear programming problem as follows:

$n$

minimize $\sum u_{i}$

$i=1$

subject to:

$\mathrm{L}1\mathrm{Z}_{4}$
$\geq s_{i}$ , $u_{i}\geq-s_{i}$ , As $=$ x. (22)

A disadvantage of this method is that it not always finds the sparsest solution. For a
comprehensive discussion of this topic see [10].

Simple Example. Let $\mathrm{s}_{*}=(0,2, -3,0,0,0,0,0,0,0,0,0)^{T}$ b$\mathrm{e}$ a solution of the system
As $=$ x, where A $\in \mathrm{E}\mathrm{t}^{5\mathrm{x}12}$ i $\mathrm{s}$ randomly generated. In large number of cases, when we
generate random matrix $\mathrm{A}$ , the BP method doesn’t find the sparsest solution $\mathrm{s}_{*}$ .

$\mathrm{A}=(0.29740.04920.69320.65010.98300.55270.40010.19880.62520.73340.41990.00990.37590.75370.79390.84470.36780.92000.62080.731300000^{\cdot}....63185692904823441939$
$0.65550.33520.93160.64880.39190.41360.39720.69910.62730.6552$ $00000^{\cdot}...$

.

$4253\mathrm{S}716837669475657$ $0.77640.51130.71650.48930.1859$ $0.\tau 0360.80660.7\mathrm{m}\epsilon 0.98270.4860$ $0.14000.36540.66490.11460.5668$ $099940.8230005890673909616)$

Solution by $\mathrm{B}\mathrm{P}$ :
$($ -0.9977 0.0000 -0.9640 0.8411 $0.0\mathrm{M}0$ -0.0000 0.0000 0.0000 -0.0000 0.0000 0.4042 -0.2228$)$”

Improved basis pursuit method: BP with zeros
We assume that the matrix A is known (or estimated correctly) and any $m\mathrm{x}$ $m$ submatrix

of it is nonsingular. Assume that the sparsest solution has no more than $m/2$ nonzero
components. Recall that in this case (see Theorem 4 and Observation) the sparsest solution
is unique and has no more than $m/2$ nonzero co mponents, so this is criterion for finding it
among all solutions. We propose the following modification of BP method, which we call
BP with zeros:

solve the following minimization problem, where $\mathrm{e}=$ $($ 1, 1, $\ldots$ , $1)^{T}\in \mathrm{R}^{n}$ , $n$ times (for
$j=1,$ ..., $n$) as in each time change the $i$ -th component of $\mathrm{e}$ with zero:

minimize $. \sum_{|=1,i\neq j}^{n}e_{i}u_{\dot{l}}$ , $j=1$ , $\ldots$ , $n$ (23)

subject to $u_{i}\geq s:,$ $u_{i}\geq-s_{\mathrm{j}}$ , As $=$ x. (24)

If the sparsest solution is not found (which has no more than $m/2$ nonzero components) , we
replace pairs of the coefficients $e_{\dot{\mathrm{s}}}$ in (23) with zeros and solve consecutively these problems
until obtaining the sparsest solution. If it is not found again, prooeed analogically with the
triples of zeros and so on. For small $m$ this procedure is effective up to level 2 (i.e. taking pars
of zeros in the coefficients of (23). This of course is combinatorial problem which increase
computational time but not so dramatic when the solution is very sparse.

The reason why our improvement works, is clear: suppose for instance that the sparsest
solution $s_{*}$ has 2 nonzero elements $s_{i}$ and $s_{j}$ . Putting $e_{\dot{*}}=e_{j}=0$ in some step of the
algorithm, it will find this solution, since the minimum of the cost function is zero and it



so

is obtained exactly at $s_{*}$ . In most cases the sparsest solution is obtained putting only one
coefficient $e_{i}$ equal to zero.

In case when the sources are nonnegative, a faster algorithm is proposed in Theorem 3.

7 Computer simulation examples

7.1 Complete case
In this example for the complete case $(m=n)$ of instantaneous mixtures, we demonstrate the
effectiveness of our algorithm for identification of the mixing matrix in the special case consid-
ered in Theorem 7. We mixed 3 images of landscapes (shown in Fig. 1) with a 3-dimensi0nal
Hilbert matrix A and transformed them by a2-D discrete Haar wavelet transform. As a re
sult, since this transformation is linear, the high frequency components of the source signals
become very sparse and they satisfy the conditions of Theorem 7. We use only one row (320
points) from the diagonal coefficients of the wavelet transformed mixture, which is enough
to recover very precisely the ill conditioned mixing matrix A. Fig. 3 shows the recovered
mixtures.

Figure 1: Original images

$\ulcorner i^{\mathrm{r}}x_{\dot{\overline{i}}6}^{\wedge\circ_{\mathrm{A}}\dot{*}r_{-:’}}.’.\cdot..\cdot..\cdot..\cdot.\simeq \mathrm{s}_{\wedge}:_{}^{1}\uparrow.\cdot.\mathrm{r}_{k}’.\cdotarrow\cdot,\cdot..\cdot.,\cdot.r’\wedge\backslash \tau_{\#}\mathit{1}-\overline{\mathrm{x}}_{\mathrm{a}}\dot{X}\grave{\backslash }\cdot \mathrm{r}.\cdot.\cdot-’\sim.\cdot.\cdot-\cdot.\cdot k\mathrm{g}_{\triangleleft_{44\check{s}_{\{^{-}}}}^{-}*\dot{\backslash }|_{\dot{\ovalbox{\tt\small REJECT}}_{-}\emptyset}J.\mathrm{f}..\cdot.,\cdot.\cdot,\cdot\cdot 1k^{\}}\cdot \mathrm{Y}’4\sim\wedge\zeta..\ovalbox{\tt\small REJECT}^{\mathrm{g}}.\psi,\dot{\ovalbox{\tt\small REJECT}}_{\sim}\mathrm{a}_{\ovalbox{\tt\small REJECT}}^{\vee\dot{\oint^{-\cdot\lrcorner}}}+\iota_{\mathfrak{B}^{\mathrm{p}}\dot{\mathrm{R}}}..\#^{\overline{\mathrm{t}}}\mathrm{f}\mathrm{b}\dot{.}.\cdot$

Figure 2: Mixed (observed) images

7.2 Underdetermined case
First example. We generated artificially sources, shown in Fig.4 (left). They have level
of sparseness 2 (at most two are nonzero at any time instant) and each source is uniquely
active (achieves nonzero value while at the same time the rest of the signals are zero) at only
10 time instants. For instance, S4(k) $=0$ for $k=211,$ ..., 220, as unique nonzero source in
this period is $s_{3}$ , but with very small amplitude. Nevertheless, our algorithm is capable to
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Figure 3: Estimated no rmalized images using the estimated matrix.

estimate precisely any randomly chosen matrix after tlle linear mixture of the sources. For
instance, we generated randomly a matrix A46 $\in 1\mathrm{R}^{4\cross 6}$ , and mixed the sources by it. The
mixed sources are shown in Fig. 4 (right). We run our algorithm for estimating the mixing
matrix (shown below as A) and run the original BP method - the results of separation are
shown in Fig. 5 (right). Our method basis pursuit with zeros gives excellent results
(shown in Fig. 5 (left)), much better than those obtained by the standard BP method.

Initial matrix:

$\mathrm{A}46=\{$

1.6777 0.3630 0.4840 -1.8402 0.1751 0.4269
1.9969 -0.5670 -0.1938 1.6282 0.2294 1.4548
0.6970 -1.0442 -0.3781 -1.1738 -1.2409 -0.5102

-1.3664 0.6971 -0.8864 -0.4154 0.7000 -0.0067

Normalized initial matrix: $\mathrm{A}46\mathrm{N}$

$\mathrm{A}46N=\{$

0.5545 0.2548 0.4418 -0.6681 0.1204 0.2668
0.6600 -0.3980 -0.1768 -0.5911 0.1578 0.9094
0.2303 -0.7329 -0.3451 -0.4261 -0.8536 -0.3189

-0.4516 0.4893 -0.8090 -0.1508 0.4815 -0.0042

Estimated matrix (normalized)

$\mathrm{A}$ $=(–\mathrm{H}.\cdot.\cdot$ H$0061$H: $-0-0-00$ ’.
$\cdot$

.
$48158536120415780000^{\cdot}..$

.

$4261668159111508$ $-0.44180.80900.17680.3451$ $-0-000$ ..$\cdot$

. $3980489325487329$ $-0000$

.
$4516230366005545)$

Second example. The original sources are shown in Fig. 6 (lest). In this case the level
of sparseness of the sources is 1, i.e. they are not overlapping or they are disjointly sparse.
They were mixed with a randomly generated matrix, which after normalization is

$\mathrm{A}24=(_{0.8005}^{0.5994}0.96930.24580.99520.09770.43350.9011)$

The mixed signals are shown in Fig 7.
The estimated (normalized) matrix by our algorithm is

$\mathrm{A}=$ ( $–\mathrm{O}.\cdot \mathrm{H}\mathrm{H}\mathrm{H}\mathrm{S}$ –o.$\cdot$3H77 $0.9\mathfrak{g}520.0977$ )
The estimated sources are shown in Fig. 6 (right). We should mention that in this

example the results by the standard BP method are almost the same (which is due to the
fact that the sources are not overlapping).
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Figure 4: Original sources (left) and mixed sources (right)

8 Conclusion

We presented general theorems guaranteeing sparse solutions of nonlinear least square prob
lems and of linear ones with respect to $l_{2}$-norm and least absolute value $l_{1}$-no. We consid-
ered underdetermined sparse component analysis in the case when the sources are very sparse
and presented two new algorithms: for matrix identification and for source recovery. When
the sources are nonnegative, we propose a faster algorithm, based on a sparseness theorem
for linear least square problems defined by $l_{2}$-norm. We presented several examples showing
good performance of our algorithms.
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Figure 6: Left: Original sources (second example). Right: Estimated sources

Figure 7: Mixed signals (second example)


