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Abstract

The saddle point is a fundamental concept and in mathematics, ec0-
nomics, and many fields of science. Especially it plays very important
roles in game theory, equilibrium theory, and mathematical program-
ming. However, we know that usual theorems of the existence of saddle
points, are required conditions with respect to compactness. In this
paper we define a notion of approximated saddle points and observe
existence of them without compactness.

1 Introduction and Preliminary
Let $X$ and $\mathrm{Y}$ be complete metric spaces, $f$ be a function from $X\cross \mathrm{Y}$ to R. If

$(x_{0}, y\mathrm{o})\in X\mathrm{x}\mathrm{Y}$ is a saddle point of $f$ if for all $(x, y)\in X\mathrm{x}\mathrm{Y}$ ,

$f(x_{0}, y)\leq f(x_{0}, y_{0})\leq f(x, y_{0})$ .

This is a fundamental concept in many fields of science, and it plays important roles
in, especially, game theory, equilibrium theory, and mathematical programming.
We know the following existence theorem, see [1].

Theorem 1.1 Let $X_{0}$ and $\mathrm{Y}_{0}$ be compact convex subsets of topological vector
spaces, and $f$ be a real-valued function on $X_{0}\mathrm{x}\mathrm{Y}_{0}$ . Assume that $f(\cdot, y)$ is lower
semicontinuous quasiconvex for each $y\in \mathrm{Y}_{0}$ and $f(x$ , $\cdot$ $)$ is upper semicontinuous
quasiconcave for each $x\in$ Xq. Then, there exists a saddle point of $f$ .

However, we know examples in which functions do not have any saddle points
when its domain is not compact.
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Example 1.1 f : [1,$\infty)$ $\cross \mathbb{R}$ $arrow \mathbb{R}$ defined by

$f(x, y)=( \frac{1}{x}-1)(y^{2}+1)$ ,

then there does not exist any saddle points of $f$ .

In this paper, we define a notion of approximated saddle points and observe
existence of them without assumption of compactness. To the purpose, we start
to remember usual approximation ideas for a minimization problem in the next
chapter.

2 Approximate saddle points like Ekeland’s method
Let $(Z, d)$ be a metric space. See the following minimization problem (P):

(P) minimize $g(z)$

subject to $z\in Z$

For this problem, we have two approximation ideas: for arbitrary $\epsilon>0,$

$\circ z_{0}\in Z$ is (typical) $\epsilon$-approximate if

$g(z_{0})\leq g(x)+\epsilon$ , $\forall z$ $\in Z$

$\circ z_{0}\in Z$ is Ekeland’s $\epsilon$-approximate if

$g(z_{0})\leq g(z)+\epsilon d(z, z_{0})$ , $\forall z\in Z.$

Remember the following Ekeland’s theorem; the theorem requires completeness
of the metric, but does not require any compactness, see [2].

Theorem 2.1 Let $g:Zarrow \mathbb{R}\cup\{+\infty\}$ be lower semicontinuous, and assume that
it is bounded from below. If metric $d$ is complete, then for each $\epsilon>0,$ there exists
$z_{0}\in Z$ such that

$g(z_{0})\leq g(z)+\epsilon d(z, z_{0})$ , $lz$ $\in Z$

Under the theorem assumptions, function $g(z)+\epsilon d(z, z_{0})$ attains its minimum at
$z_{0}$ , that is, there exists Ekeland’s approximate. Motivated the theorem, we define
the following approximate saddle point notion.
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Definition 2.1 Let $\epsilon>$ 0. $(x_{0}, y_{0})\in X\cross \mathrm{Y}$ is said to be an Ekeland’ $\mathrm{s}$ $\epsilon-$

approximate saddle point of $f$ if for all $(x, y)$ $\in X\mathrm{x}\mathrm{Y}$ , two inequalities

$f(x_{0}, y)-\epsilon d(y_{0}, y)$ $\leq f(x_{0}, y_{0})$ and $f(x_{0}, y_{0})\leq f(x, y_{0})+\epsilon d(x0, x)$

are satisfied.

Remark 2.1 Obviously, if $(x_{0}, y_{0})$ is a saddle point of $f$ , then it is an Ekeland’$\mathrm{s}$ $\epsilon-$

approximate saddle point of $f$ . Conversely, if $(x_{0}, y_{0})$ is an Ekeland ’s $\epsilon$-approximate
saddle point of $f$ , then it is a saddle point of the following modified function $f_{\epsilon}$ :

$f_{\epsilon}(x, y)$ $=f(x, y)$ $+\epsilon d(x_{0}, x)$ $-\epsilon d(y_{0}, y)$ .
Example 2.1 Consider the same function $f$ of Example 1.1, see

$/(x, y)=( \frac{1}{x}-1)(y^{2}+1)$ ,

then each element of the following set is an Ekeland’s $\epsilon$-approximate saddle point:

$\{(x, y)$ $|x2- \frac{y^{2}}{\epsilon}\geq\frac{1}{\epsilon}$ , $|y| \leq\frac{\epsilon}{2}\}I$

Let $\epsilon=\frac{1}{4}$ . For modified function $f_{\epsilon}$ : $[1, \infty]$ $\mathrm{x}$ $\mathbb{R}" \mathrm{p}$ $\mathbb{R}$ defined by

$7_{\epsilon}(x, y)=( \frac{1}{x}-1)(y^{2}+1)+\epsilon|x-4|-\epsilon|y|$

has the exact minimax point (4, 0).

3 Existence ofEkeland’s approximate saddle points
In this section, we show existence results for our approximate saddle point.

Theorem 3.1 If function $f$ is written by

$f(x, y)=g(x)-h(y)$ , $\forall(x, y)\in X\cross$ Y,

where $g:Xarrow \mathbb{R}$ is lower semicontinuous with bounded from below, and $h:\mathrm{Y}arrow$

$\mathbb{R}$ is upper semicontinuous with bounded from above. Then for each $\epsilon>0,$ there
exists an Ekeland’s $\epsilon$-approximate saddle point of $f$ .
Theorem 3.2 If function $f$ is written by

$f(x, y)=g(x)h(y)$ , $\forall(x, y)\in X\mathrm{x}\mathrm{Y}$,

where $g$ : $Xarrow(0, \infty)$ is lower semicontinuous, and $h$ : $\mathrm{Y}arrow(0, \infty)$ is upper
semicontinuous and bounded from above. Then for each $\epsilon>0,$ there exists a
Ekeland’s $\epsilon$-approximate saddle point of $f$ .
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The condition of $f$ in Theorem 3.2 is replaced by fractional type as follows:

Corollary 3.1 If function $f$ is written by

$f(x, y)=$ $g(x)/h(y)$ , $\forall(x, y)\in X\cross Y,$

where $g$ : $Xarrow(0, \infty)$ is lower semicontinuous, and $h$ : $\mathrm{Y}arrow$p $[c, \infty)$ is lower
semicontinuous and $c$ is a positive number. Then for each $\epsilon>0$ , there exists an
Ekeland’s $\epsilon$-approximate saddle point of $f$ .

Theorem 3.3 Assume that $f$ has an Ekeland’s $\epsilon$-approximate saddle point for
each $\epsilon>0.$ If a function $p:X\cross \mathrm{Y}arrow$p $\mathbb{R}$ satisfies $\eta$-Lipschitz condition on metric
space $(X\mathrm{x}\mathrm{Y}, \delta)$ where $\delta((x, y),$ $(x’, y’))=d(x, x’)+d(y, y’)$ , and $\eta<\epsilon$ for given
$\epsilon>0,$ then there exists an Ekeland’s $\epsilon$-approximate saddle point of $f+p.$

Corollary 3.2 If function $f$ is written by

$f(x, y)=$ $g(x)-h(y)$ $+p(x, y)$ , $\forall(x, y)\in X\cross$ Y,

where $g$ and $h$ satisfy the same condition in Theorem 3.1, and $p$ satisfies the
same condition in Theorem 3.3 for given $\epsilon>0,$ then there exists an Ekeland’s
$\epsilon$-approximate saddle point of $f$ .

By using Theorem 3.3, we can derive similar results concerned with Theorem 3.2
and Corollary 3.1, respectively.
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