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On Commutative Semigroup Rings

FAH M (Rylki Matsuda)
TR K FHEES (Faculty of Science, Ibaraki University)

I am now making a book on commutative semigroup rings. It will
appear before long. This is an introduction to the book.

Thus let G be an abelian additive group which is torsion-free. A sub-
semigroup S of (¢ which contains 0 is called a grading monoid (or a
g-monoid). Let R be a commutative ring, and let R[X;S] = {3 gnie
a; X% | a; € R,s; € S} be the semigroup ring of S over R. Let II be
a ring-theoretical property. We will determine conditions for R[X;S] to
have property II. For the present, within my knowledge and within my
interest, there are 71 Theorems and 38 Propositions on R[X;S] by a
number of authors. We confer a number of references. The following is
a part of them:
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Now we will note some theorems on commutative semigroup rings.
Let GG be a non-zero torsion-free abelian additive group, S be a non-zero
grading monoid, R be a commutative ring, and D be an integral domain.

Let q(S) = {a — b ]| a,b € S}. Then it is called the quotient group of



S.

Let a € q(S). If na € S for some positive integer n, then a is called
integral over S. If each integral element of q(.S) belongs to S, then S is
called integrally closed.

Theorem 1 The followings are equivalent.
(1) D[X;S] is integrally closed.
(2) D is integrally closed, and S is integrally closed.

Let o € ¢(S). Then « is called almost integral over S, if there exists s €
S such that s+na € S for each positive integer n. If each almost integral
element belongs to S, then S is called completely integrally closed.

Theorem 2 The followings are equivalent.

(1) D[X;S] is completely integrally closed.

(2) D is completely integrally closed, and S is completely integrally
closed.

A non-zerc divisor of R is also called a regular element. An ideal of R
which coutaius regular elements is called a regular ideal.

The total quotient ring of R is denoted by q(R).

If each finitely generated regular ideal of R is invertible, then R is
called a Priifer ring.

If each finitely generated ideal of R is principal, then R is called a
Bezout ring.

If, for each a € R, there exists b € R such that a = a2b, then R is
called a von Neumann regular ring.

Theorem 3 Let Qg be the non-negative rational numbers. The
followings are equivalent.

(1) R[X;S] is a Priifer ring.

(2) R is a von Neumann regular ring, and S is isomorphic onto either
a subgroup of Q or a subsemigroup S’ of Qg such that q(§') NQ, = S'.

(3) R[X;S] is a Bezout ring.
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If G satisfies ascending chain condition on cyclic subgroups, then G is
said to satisfy ACCC.

Theorem 4 Let G = q(S). The followings are equivalent.

(1) D|X; S] is a unique factorization ring.

(2) D is a unique factorization ring, S is a unique factorization semi-
group, and G satisfies ACCC.

If R satisfies ascending chain condition on regular ideals, then R is
called an r-Noetherian ring.

Theorem 5 The followings are equivalent.

(1) R[X;S] is a Noetherian ring.

(2) R[X;S] is an r-Noetherian ring.

(3) R is a Noetherian ring, and S is a finitely generated g-monoid.

Let / be a non-empty subset of q(R). Weset ™! = {z € q(R) |zl C
R}. Weset I = (I7%)~1.

Let I be a fractional ideal of R. If I = I, then [ is called divisorial.

If each divisorial ideal of D is principal, then D is called a pseudo-
principal ring.
- If each divisorial ideal of S is principal, then S is called a pseudo-
principal semigroup.

Theorem 6 Let G = q(S). The followings are equivalent.

(1) D[X; S] is a pseudo-principal ring.

(2) D is a pseudo-principal ring, S is a pseudo-principal semigroup,
and G satisfies ACCC.

Let I be an ideal of R such that I**1 =0 fdr some positive integer k.
We set d(I*/I**') = min {| X || X is a set of generators of the R-module
I*/ T} for each i (d(0)= 0). Weset v(I) = d(I/I?)+-- -+ d(I*1/I*)+
d(r%).



If each finitely generated ideal of R is generated by n-elements, then
R is said to have n-generator property.

Let S be a finitely generated subsemigroup of Qq, and let q(S) = Zr
(r € Q). Then min {(1/r)S — {0}} is called the order of S, and is
denoted by o(S).

Theorem 7 Let N be the nil radical of R. The followings are
equivalent,

(1) R[X;S] has the n-generator property.

(2) One of the followings holds.

(i) S is isomorphic onto a subgroup of Q, and dim (R) = 0. If I is
a finitely generated ideal contained in N, there exists a decomposition
R = Re, & - - ® Rep, such that v(le;) < n for each j.

(ii) S is isomorphic onto a subsemigroup of Qg, o(S) < oo, and dim
(R) = 0. If I is a finitely generated ideal contained in N, there exists a
decomposition R = Re; @ - -- @ Rep, such that (v(Ie;) + 1)o(S) < n for
each j.

If each finitely generated regular ideal is generated by n-elements, then
R is said to have r-n-generator property.

If, for each regular non-unit a of R, R/(a) has n-generator property,
then R is said to have r-n(1/2)-generator property.

If, for each non-zero and non-unit e of R, R/(a) has n-generator prop-
erty, then R is said to have n(1/2)-generator property.

Theorem 8 The followings are equivalent.
(1) R[X; S| has n(1/2)-generator property.
(2) R[X;S] has n-generator property.

(3) R|X;S] has r-n(1/2)-generator property.
{4) R[X; S| has r-n-generator property.

If each ideal of R is generated by n-elements, then R is said to have
rank n.
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Theorem 9 Let Zg be the non-negative integers. The followings are
equivalent.

(1) R[X;S] has rank n.

(2) One of the followings holds.

(i) S is isomorphic onto Z, and there exists a decomposition R =
R; @ --- ® R, which satisfieds the following condition: If N; is the nil
radical of R;, then »(N;) < n, and R; is a Noetherian local ring with
maximal ideal N; for each i. _

(ii) S is isomorphic onto a subsemigroup of Zg, and there exists a
decomposition R = R; @ - - ® R), which satisfies the following condition:
If N; is the nil radical of R;, then (V(N;) + 1)o(S) < n, and R; is a
Noetherian local ring with maximal ideal Nj for each i.

Let K be a commutative ring with K = q(K), and let T be a totally
ordered abelian additive group. A mapping v of K onto I'U{co} is called
a valuation on K if v(z + y) > inf (v(z),v(y)), and v(zy) = v(z) + v(y)
for all z,y € K. The subring V = {z € K | v(z) > 0} of K is called a
valuation ring on K. t.fr. (T) is called the rank of v (or of V'), where
t.fr. (T) = max {| X || X is a subset of I' which is linearly independent
over Z}. , ~ .

If there exists a family {V\ | A} of valuation rings on q(R) which
satisfies the following conditions, then R is called a Krull ring: R = MyVA,
each V) is rank 1 and discrete, and each regular element of R is a unit of
VA for almost all A. '

Let I' be a totally ordered abelian additive group. A mapping v of
G onto T is called a valuation on G, if v(z + y) = v(z) + v(y) for all
z,y € G. The subsemigroup V = {z € G | v(z) > 0} of G is called a
valuation semigroup on G. t.f.r. (T') is called the rank of v (or of V).

Theorem 10 Let G = g(S). The followings are equivalent.
(1) D[X; 8] is a Krull ring.
(2) D is a Krull ring, S is a Krull semigroup, and G satisfies ACCC.

Let L be an abelian additive group, and let p be a prime number. The



subgroup {z € L | p"z = 0 for some positive integer n } is called the
p-pritnary component of L.

If Ry is a Noetherian ring for each maximal ideal M of R, then R is
called a locally Noetherian ring.

Theorem i1 Let H be the unit group of S, and let F' be a free
subgroup of H such that H/F is torsion. Let () be the set of prime
numbers p such that pl g is a non-unit of R. The followings are equivalent.

(1) R[X;S] is a locally Noetherian ring.

(2) t.f.r. (H) < 00, R is locally Noetherian, S is of the form H+Zgs;+
-+« 4+ Z¢Sn, and the p-primary component of H/ F is finite for each p € 2.

Theorem 12  Assume that D[X;S] is a Krull ring. Then
C(D[X; 8 = C(D)® C(S),

where C( ) denotes the divisor class group.

R is called a v-ring, if it satisfies the following condition: If I, Jy, J;
are finitely generated ideals of R with I regular, and (IJ;)* C (1),
then Ji C .J;.

We may naturally define v-semigroup.

Theorem 13  The followings are equivalent.
(1) D|X;S] is a v-ring.
(2) D is a v-ring, aud S is a v-semigroup.

Theorem 14  Assume that D is integrally closed, and S is integrally
closed. The followings are equivalent.

(1) For each finite number of finitely generated non-zero ideals I3, -+ , I,
of D[X;S], wehave (IhN---NL)’ =IfN---NI;.

(2) For each finite number of finitely generated non-zero ideals I, - -« , I,
of D, we have (hLN---N1L)" =1 N---N1I;, and for each finite number
of finitely generated ideals Iy,--- , I, of S, we have (I; N--- N I,)" =
nn.---ni,.

(3) DIX;S] is a v-ring.
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If, for each finitely generated regular ideal I of R, there exists a finitely
generated regular fractional ideal J such that (IJ)” = R, then R is called
a Priifer v-multiplication ring.

Theorem 15 The followings are equivalent.

(1) D|X;S] is a Priifer v-multiplication ring. -

(2) D is a Priifer v-multiplication ring, and S is a Priifer v-multiplication
semigroup.

Let I be a non-zero fractional ideal of R. Weset I' = U{J* | J is a
finitely generated {ractional ideal contained in I}.

Theorem 16  Assume that D is integrally closed, and S is integrally
closed. The followings are equivalent.

(1) For each finite number of non-zero ideals Iy, - - - , I, of D[X;S], we
have (ILN---NL)=1LN---NI.

(2) For each finite number of non-zero ideals I,- - - , I, of D, we have
(IiN---N1L)* = I'N- . -N1E, and for each finite number of ideals I, -- - , I,
of S, we have (LN---NIp)t=IiNn---N1IL.

(3) D[X; S] is a Priifer v-multiplication ring.

If R satisfies the following condition, then R is called a root closed
ring: If z € q(R) and z™ € R for some positive integer n, then z € R.

Theorem 17  The followings are equivalent.
(1) D[X;S] is a root closed ring.
(2) D is a root closed ring, and S is an integrally closed semigroup.

If R satisfies the following condition, then R is called a seminormal
ring: If z € q(R) and 22,2® € R, then = € R.

If S satisfies the following condition, then S is calld a seminormal
semigroup: If z € q(S) and 22,3z € S, then s € S.



Theorem 18 The followings are equivalent.
(1) D[X;S] is seminormal.

(2) D is seminormal, and S is seminormal.

R is called a u-closed ring, if it satisfies the following condition: If z €
a(R),and 22 —z € R, z° —2? € R, then z € R.

Theorem 19 If D is u-closed, then D[X;S] is u-closed.

An ideal of R (resp. S) is also called an integral ideal.

If D satisfies the ascending chain condition on divisorial integral ideals
of D, then D is called a Mori-ring.

If D is a Mori-ring, and if, for all a,b € D — {0}, the ideal (a,b) is
divisorial, then D is called an M-ring.

We may naturally define Mori-semigroup and M-semigroup.

Theorem 20  The followings are egiovalent.
(1) D[X;S] is an M-ring.
(2) D is afield, and S is isomorphic onto an M-subsemigroup of Z.

Let F(R) be the set of non-zero fractinal ideals of R. A mapping * of
F(R) to F(R) is called a star operation on R, if, for regular a € q(R) and
I,.J € F(R),

(@) = (a).

(a)* = al*.

I1cr.

If I cJ,then I* C J*.

(') =1r.

The mapping 7 — I” = (I7!)"! is a star operation called v-operation.

Assume that R is integrally closed, and let {VA | A} be the set of
valuation overrings of R. The mapping I +—— I® = NyIV, is a star
operation called b-operation.

A star operation * is called an e.a.b., if it satisfies the following condi-
tion: If I,.J1,.J; are finitely generated non-zero ideals of R with I regular,
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and (I.);)* € (IJ2)*, then J{ C Jj.

Let F'(R) be the set of non-zero R-submodules of q(R). A mapping *
of F/(R) to F/(R) is called a semistar operation on R, if it satisfies the
following condition: For regular a € q(R) and I, J € F'(R),

(al)* = al*.

Icr.
Ifrc.J,then I C J*.
(Ar*)* = 1?*.

A semistar operation * of R is called e.a.b., if it satisfies the following
condition: If 1, Jy, J; are non-zero finitely generated ideals with I regular,
and (I.J1)" C (1J2)*, then J; C J3.

The mapping I —— I' of F/(R) is a semistar operation called v'-
operation.

Let {VA | A} be the set of valuation overrings of R. The mapping
[ — I¥ = NyIV), of F'(R) is a semistar operation called b-operation.

If each finitely generated regular ideal is principal, then R is called an
r-Bezout ring.

Let f = 5 a; X%, where each a; # 0, and s; # s; for ¢ # j. We set
> Ra; = c(f). _

If each regular ideal of R is generated by regular elements, then R is
calied a Marot ring. If R satisfies the following condition, then R is said
to have Property (A): If f is a regular element of R[X], then c(f) is a
regular ideal of R.

A denotes a Marot ring with Property (A).

Theorem 21  Let x be an e.a.b. star operation on A.

Set A, = {f/g € a(A[X;8]) | f,g9 € AlX;S] — {0}, g is regular, and
c(f)* Cclg)*}U{0}. Then,

(1) A, is an overring of A[X;S], and A, ﬂK A, where K = q(A).

(2) A. is an r-Bezout ring.

(3) If I is a finitely generated regular ideal of A, then IA, K = I*
and [A, = I*A,.

A multiplicative subset T" of R is called a regular multiplicative subset,



if each element of T is regular.

Theorem 22  Assume that A is integrrly closed. Let T' = {f €
A[X; 3] | c(f) = A}. The followings are equivalent.

(1) A is a Priifer ring.

(2) A[X;S)r = As.

(3) A[X; Slr is a Priifer ring,

(4) Ap is a quotient ring of A[X; S| with respect to a regular multi-
plicative subset.

(5) Each prime ideal of A[X; S]y is the contraction of a prime ideal of
Ap.

(5) Each regular prime ideal of A[X; S]r is the contraction of a prime
ideal of A,.

(6) Each regular prime ideal of A[X;S|r is the extension of a prime
ideal of A.

If each regular ideal is the product of prime ideals, then R is called a
Dedekind ring.

If each regular ideal of R is principal, then R is called an r-principal
ideal ring. ’

Theorem 23  Assume that A is integrally closed. Let T = {f €
A[X;S] | e(f) = A}. The followings are equivalent.

(1) A is a Dedekind ring.

(2) A[X; S]r is a Dedekind ring.

(3) A is a Dedekind ring.

(4) A is an r-Noetherian ring.

(5) Ap is a Krull ring. .

(6) As is an r-principal ideal ring.

Let x be a star operation on R. If, for each finitely generated regular
ideal I of R, there exixts a finitely generated regular fractional ideal J
such that (I.J)* = R, then R is called a Priifer *-mltiplication ring.

Let P be a prime ideal of R. Then we set Rjpy = {z € q(R) | st € R
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for some s € R — P}.

Theorem 24 Let  be an e.a.b. star operation on A. Let N = {g €
A[X;S] | g is regular, and c(g)* = A}. The followings are equivalent.

(1) A is a Priifer *-multiplication ring.

(2) A, is a quotient ring of A[X;S] with respect to a regular multi-
plicative subset.

(3) If V is a valuation overring of A,, there exists a prime ideal P of
A which satisfies the following condition: Ap; is a valuation overring of
A, and V = A[X; Sjipaix;sy-

(4) A, is a flav A[X;S}-module.

(5) A[X; S]n is a Priifer ring.

Let f = Y a;X%. where each a; # 0 and s; # s; for i # j. We set
e(f) = U(S + %),

Theorem 25 Let x be an e.a.b. star operation on S, G = q(S), and
let K be a fieidd. Weset S, = {f/g | f,9 € K[X;S]— {0}, e(f)* C
e(g)*}u {0}.

(1) 8, is an overring of K[X; S|, and S,(\G = S.

(2) S, is a Bezout ring.

(3) If I is a finitely generated ideal of S, then (IS,)(G = I*, and
IS, =TI'S..

For an e.a.b. semiatar operation * on A (or on S), we may naturally
define Kronecker function ring A, (or S.). Moreover, we may show the
similar results to those for star operations.



