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Free groups of the special orthogonal groups

SAaT6  Kenzi

ki R

In 1924, Banach and Tarski proved a surprise theorem which can enlarge subsets of the Euclidean
space. :

The Hausdorff-Banach-Tarski paradox. [BaT; W: Th.3.11]

n 2 3: integer, U, V S R": bdd, intU # 0. intV # @
= 3¢: positive integer,

30y, 3;...., 3Us—1 S U: pairwise disjoint,

W, M,.... WV, EV pairwise disjoint,

30, I .ot Fy21 € SG(R) such that

-1 -1

U=UU,-, V=UV; and %U)=V, for 1=0,1....¢-1,
=0 1=0

where SG,,(R) is the group of all orientation-preserving isometries of R™.

Remark. This paradox is proved by using the axiom of choice.
Let X be a non-empty set and G a group acting on X (denoted by G ™ X). It is essential for the
proof of such a paradax for X and G. to prove the existence of a free subgroup of rank 2 of G,

Fy = (a, B) = (the group generated by a and 3) = {w : reduced word in ™. 71, a. g}.
The group F, is partitioned into five disjoint subsets:
Fy = {id} UW4-s UW4-1 UW, U Wy,
where W), = {w € F; : w begius on the left with A}. Then. F, is constructed by two sets of above in two

ways:
F=aW,-1UW, and F; =Wy U W

The group F; enables us to duplicate subscts of a set on which it acts, so it is useful to prove the
Hausdorff-Banach-Tarski paradox. For a subgroup H € G. the action H ™ X is said to be

without fized points o Ywe H\ {id}, -z € X s.t. w(z) =,
qae:

locally commutative ﬁ (“w,w' € H\ {id}. Pz € X s.t. w(x) = ¢ = w'(z)) = ww' =w'w).
{3}

The motivation of considering the existence of a free group whose action is “without fixed points™ or
“locally commutative™ is the following.
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Proposition. [Dekl: W: Cor.4.12 & Th.4.5]
Let F5, © G be a free subgroup of rank 2. Then,

the action Fp, ™ X is locally commutative
= 34y, F4;. 74, 34, C X: pairwise disjoint.

3By, 3B, € X: pairwise disjoint,

3B, ,?B; C X: pairwise disjoint, such that

X=AUAUAUA3 =By UB, =B, UB3; and A,;zpaBilfor 1=0,1, 2, 3,

where K ~g L fe)fa'y € H s.t. v(K) = L. Moreover,

the action Fy ™ X is without fized points
= 3A. 3B, 3C € X: pairwise disjoint. such that

X=AUBUC and A=xp, Brp, Crp, AUBx~p, BUC =, CUA.

For example, for X = §"! = {# € R" : ||7]| = 1} and G = SO.(R) = {¢ € Mat(n.n,R) : *p =
¢~ 1,det ¢ = 1}. we have the following theorems.
Example A. (by Dekker [Dek2; W: Th.5.2], Deligne & Sullivan [DelSu), Borel [Bo])
n 2 4: even integer
= 3F, C SO.(R): a free subgroup such that the action F3 ™ S*™! is without fized poinis.
Example B. (by Swierczkowski [§: W: Th.2.1], Dekker [Dek2])
n 2 3: odd integer
= 3F, C SO.(R): a free subgroup such that the action Fo ™ S™! is locally commutative.
The rational versions for the group S0,(Q) = SO,(R) N Mat(n.n. Q) were conjectured by Mycielski:
Problem A.

n 2 4: even integer
= 3F, € 50,(Q): o free subgroup such that the action Fy © S*~! is without fized points.

Problem B.
n 2 3: odd integer
= 3F C S0,(Q): o free subgroup such that
the action Fy ™ S™1 is locally commutative and
the action F, © §""1NQ" = {# € Q" : ||#f]| = 1} is without fized points.
Problem B was generalized by the author.
Problem B°.
n 2 3: odd integer, g€ Q, ¢ 2 0
= 3F, € 50,(Q): a free subgroup such that
the action F, ™ /gS"~! = {# € R™: ||5]| = \/q} is locally commutative and
the action F» ™ ({/gS*1)nQ™ = {# € Q" : ||7|| = /a} is without fized points.

Remark. The motivation of the rational sphere version is to expect to prove the following:

o stronger results than the complete sphere version,
o the Hausdorfi-Banach-Tarski paradax without the axiom of choice.
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It is enough to prove them for n = 3. 4. 5 and 6. becausc Problem A for even n + n' is proved by

((g (?,) . (g 3, )) if Problem A for even n and even n’ are proved by (. 3) and (<. ') respectively,

and Problem B’ for odd n +n’ is proved by ((3 ((3,) . (g /?, )) if Problem A for even n and Problem

B’ for odd n' are proved by {w.p3) and (@', ') respectively. We already proved them partly.
VI€Q Vi ¢ Q

Problem B* forn =3 | shown affirmatively [Sa0] | shown affirmatively [Sa2]

Problem A forn =4 shown affirmatively [Sal]
Problem B’ forn =5 not yet | shown affirmatively {Sa3]
Problem A forn=26 not yet ’

Theorem. [Sa0, Sal, Sa2, Sa3] We can prove affirmatively Problem A for n = 4. Problem B’ for n =3
and for n =15, /g ¢ Q.
Remark. The autlior believes that we can prove the remained cases, Problem A for n = 6 and Problem

B forn=35, /7€ Q.
In this conference, the author talked about [Sa3], the case of n =5 and /7 ¢ Q.

Outline of the proof.
e We can assume that ¢ € N\ {0,1} and =°d € N\ {0.1} s.t. @%|q.
o We can fix a prime “p s.t. (£) = —1 and (3!) = 1 because of Satz 147 of [H] (or [Sa2]), which

implies Dirichlet's prime number theorem.
o Wecan fix b€ Zs.t. p|1+12

e Let
1412 0 0 0 0
1 0 1-b> -2 0 0
o= T—ﬁ 0 2b 1—b2 0 0 GSO5(Q).
+ 0 0 0 1-0® =2
] 0 0 2 1-p?
and
1-1 -2 0 0 0
1 26 1-0b% 0 0 0
A= T 0 0 1- -2b 0 € S0;(Q).
+ 0 0 % 1-K 0
0 0 0 0 1+ b?

Then we can prove that the group F; = {a, 3) satisfies required condition.
o Lemma 0 & Corollary 1.

m € N,
¢g T ¢(2Jm

¢ = E t-. ' € 502m+1(R)’
2m .. ¢2m
0_‘ 2m

ax(¢) #0

= {7 € R*™*!: ¢(7) = 7} = {a - ak(¢) : a € R}, where

( z \

m-1 ’

- 1 (#+1+8(21+1)) wod (21n+1) (3+1+8(2r)) wmod (2rn+1) .

ak(¢) = Z sgus H(¢(i+1+s(2r)) mod (zim+1)  — Plit1+a2rt1)) mod (2mt1)) (3)
* | s€82m =0
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and &a, = {5:{0,1,... ,2m — 1} = {0.1,... . 2m — 1}, bijection}, for example,

(952 ¢35 — ¢43) — (43 ¢4) + (45 — 65)(43 ¢3)

(d’z ( - (45 é3) + (45 — 83)(45 ¢4)

e SOLR) = () = | (4 - 6h)(o) - B i (65 - B b )(¢4 )
¢ (¢4 $5)(43 - ¢z) - (¢} ¢4)(¢2 ¢" )+ (4% ( ?)

(65 — d(3 — — (6F — #9)(8} — 63) + (95 — 83)(43 d’?)

¢ Lemmas 1 & 2.

Yw € Fy \ {id}. 3M € N\ {0}. 3P. Q. R. S € Z: such that
w=aqaf --af >

PS - QR =4M"" (mod p).

0 0 0 0 0 (1+¢%)/2
0 P —ePb R —&eRb 0
(140w =|0 &Pb —'ePb? ¢'Rb —e'cRB? |, so (1+b%)¥ W ax(w) = —4M 0 ,
0 Q —-eQb S —eSb 0
0 Qb —e'eQb?® €'Sb —¢'eS? 0
'w=a€'---/}6=>_
PS — QR = —4M (mod p),
0 0 0 0 0 1
P —é6Pb R —6Rb O —6b
A+®)w=| Pb —e'6Ph? &Rb —¢'6RV? 0 |, so(1+0?)™ak(w)=—4M]| ¢4
Q -sQb S8 -55b 0 —€'b
e'Qb —£'5Qb% 'Sb  —£'68h% 0 1
w=p" .0t >
PS - QR = —4M (mod p).
0 P —ePb R  -cRb 1
0 6'Pb —8cPb® &'Rb —8'cRW b
QA+®Ww=]0 @ —eQb S —eSb |, 80 (1402 ax(w)= —4M | 8¢
0 &§'Qb —8cQb® &§Sb —b6eSh? eb
0 0 0 0 0 1
w:ﬁs'-..ﬁ6:
PS — QR =4M"1 (mod p),
P -6Pb R —6Rb 0 0
8'Pb —8'6P¥ &'Rb —6'6RVE 0 0
1+ YWw=| Q —8Qb s ~88b 0|, s0 (14 b*)*¥ ak(w) = —4M 0
5'Qb —66Qb> 6'Sb —8'6SH2 0 0
0 0o 0 0 0 (1+66)/2

where (zj-)E( J)(ﬁva v],z _z (mod p) and (z;) "(z)@ i, z; = z; (mod p).

e Corollary 2. From Corollary 1 and Lemma 2, F;, = (a,3) is a free group and dim{# € R® :
w(@) =7} = 1 forw € F, \ {id}.

o Proof of “the action Fo ™ (‘/ES‘) NQ° is without fixed points”.
It is enough to show that Yw € Fy \ {id},

(the first letter of w) ™! # (the last letter of w) = =37 € (/gS*) N Q® s.t. w(¥) =7,
(w is said to be cyclically reduced)
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because ax(AwA ™) = A{ax(w)). For cyclically reduced w,

()l /i ¢ @

from q - (1 + b2)*™ |Jak(w)||® = ¢ - 16 (mod p) by Lemma 2. So the iutersection poiuts of the
axis of w and the complete sphere /gS*.

ax(w)
=V ]

are not included in Q°. O
Let

w~w' 8 37 e /g$t: st w(P) =7 =w'(¥),
€]

w~w & ww =vww.
def

Then ~ and =~ are equivalence relations on Fy \ {id} which satisfy
k 1! ' R
W ~w WA~ W S TUWW

l o
wEkrw'' o weew & dwd

b pw'w Tt

for Yk, ¥l € Z\ {0},
1 pw'ag?

we~ww & w~w & w~vw . . ,

, , , ifw™ #w.
wreww S wew & wrww

Lemma 3.

w, w' € Fp \ {id} of distinct types of the following siz kind,

Y+ ry, a‘l...ﬂ—I’ (}'_“1.../”
BB, a.../j-l'_ -,

w oL w,

Proof. Obvious from Lemma 2. O
Lemma 4.

w, w' € Fy \ {id} of same type of the above kind
w~w.

Proof. We denote w C w'’ e 34 s.t. wiw = w', without cancellation.

Let & and X be of {a~ 1,87 ,a,8} such that w = k--- A and w' = x---A. Then x™1 # A
Hw=g--or---Aandw' =f--a7 - A(T#7)thend wb =7 Ak--g 7 - -Af-- 0=
e S e N S e o | e et e et
w b w @' @ @ @' P

@ 1w'®w. a contradiction. So w C w' or w D w’. We can assume w C w'.
If w# w' then wib = g---As'--- A = w' without cancellation (so '"> # A). So k+--A = w ~
N o N, o

w W
@ =&'--- A By Lemma 3, @ = £--+ A. It reduces the proof for w and .
Hence, by induction, we can assume w = w'. w >~ w' is obvious. O

Lemma 5.

w=atfB° eitherw =af---a~¢ orw' =p-%...3%

=> wihw.



o Proof of “the action F; © /gS* is locally commutative”, that is. “w ~ w' =2 w > w
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Proof. For w' = af---a™¢,
ifwCw'.

w =af.. B2 af-.-a” = it reduces the proof for w and w™lw' = a®-- a7,
N’
w

w=aBac o w=0-B pataf = (w ') sow A w'.
N——r’
w
’ € 6 ;36 —€ € 6 € -4 -1, .1 ~-1 !
w=a-fpafarw=a--Ftat -0 =(ww)", sow o w'.
\-P/

w
If w D w (so0 neither w D w' ™ nor w C w' ™),

o BF=witww=at----- afaf..e B%. By Lemma 4, w # w'w.

-1 - -1
of B =wptw Tw=a-- a ot .- Bé. By Lemma 4, w £ w' " w.

cancellation

For w' = p~¢... 3%, similar. O

I

It is enough to show it for w = a, w = and w = - 3%. Let w’ = X’ --- . Then. for w = a,

| A=a? A=p"1 A=a A=p

AI
,\I
A’
AI

zallw~w wxw (4) woew (3) wtww ™  (3) wgw' (3)
= g1 wiw ! (3) wAw ™ (3) waw' ™t (3) weww (3)
=« w ob w'w* (3) wow 3) w~wDwo~w (4) wiw' (3)
=4 wobw ™! (3) wfww (3) wpw ! (3) wew' (3)

where w' = o1 gl forw ="l v = o pFlaF forw = a-- a7t Forw =4,
similar. For w = af--- 4°,

| A=a"¢ A=p8"¢ A=aof A =pb

A'
AI
AI
AI

[BaT]

(Bo]
[Dek1}
[Dek2]
[DelSu]

(H]
[Sa0]
{Sal)

[Sa2]

=a"° w b w " (3) wow (3) wobww (3) w At w (3)
=gt lw~rw s waw T (4) wew TN (3) wewT!(3) wpw (5)
=t w o w (5) wow (3) wohw (3) wr~wIwxw (4)
= ¢ whw™? (3) woww (3) wew ' (3) w o w' (3)

where (2) means that the proof requires Lemma z. O
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