A condition for two words being powers of the same word The theorem Fine and Wilf is well known ([1]). They gave a condition for two word being powers of the same word. A condition which is weaker than the condition is given in this paper. Let Σ be a finite set usually called *alphabet* and Σ be the free monoid generated by Σ . We use the notation $\Sigma^+ = \Sigma^* - 1$, where 1 is the empty word. The *length* of a word $x = a_1 a_2 \cdots a_n$, $(a_1, a_2, \dots, a_n \in \Sigma)$ is the number n and is denoted by |x|. A word u is said to be a *prefix* of a word x if there exists a word y such that x = uy. We denote the prefix of length n of x by $\operatorname{pref}_n(x)$. A word y is said to be a *suffix* of a word x if there exists a word y such that y = uy. Let x be a word of length n > 0. For any positive integer i, there exists an integer i_0 such that $i = qn + i_0$ ($1 \le i_0 \le n$). We denote by $P_i(x)$ the i_0 -th letter of x. We define a mapping Shift: $\Sigma^* \to \Sigma^*$, inductively as follows: $$Shift^{i+1}(x) = Shift(Shift^{i}(x))$$ $$Shift^1(x) = Shift(x) = a_2 \cdots a_n a_1$$ It is clear that $(Shift^i(x))^j = Shift^i(x^i)$ for all positive integers i, j. By the proof of Proposition 1.3.5 of [2], we have the following proposition 1. **Proposition 1.** Let $p, s \in \Sigma^+$, |p| + |s| = n, gcd(|p|, |s|) = 1. If $Pref_{n-1}(sp) = Pref_{n-1}(ps)$, then there exists a letter a such that $ps = sp = a^n$. Although the following proposition is obtained immediately by Proposition 1, the result is essential. **Proposition 2.** Let $p, s \in \Sigma^+$, |p| + |s| = n, gcd(|p|, |s|) = 1. If there exists $j \in \{1, 2, \dots, n\}$ such that $P_i(ps) = P_i(sp)$ for $i \neq j$ $(1 \leq i \leq n)$, then there exists a letter a such that $ps = sp = a^n$. **Proof.** Let $ps = a_1 a_2 \cdots a_n$, $sp = b_1 \cdots b_n$, $Shift^i(ps) = a'_1 a'_2 \cdots a'_n$, $Shift^i(sp) = b'_1 b'_2 \cdots b'_n$. We have $a'_i = P_i(Shift^i(ps)) = P_{i+j}(ps)$ for $i \in \{1, 2, \dots, n-1\}$. Since $i + j \not\equiv j \pmod n$, we have $a'_i = P_i(Shift^i(ps)) = P_{i+j}(ps) = P_i(sp) = P_i(Shift^i(sp)) = b'_i$ for every $i \in \{1, 2, \dots, n-1\}$. On the other hand, let |p| = m, $a'_1 \cdots a'_m = p'$, $a'_{m+1} \cdots a'_n = s'$, then $b'_1 \cdots b'_n = Shift^i(sp) = Shift^i(a_{m+1} \cdots a_n a_1 \cdots a_m) = Shift^i(Shift^m(ps)) = Shift^m(Shift^i(ps)) = Shift^m(a'_1 \cdots a'_n) = a'_{m+1} \cdots a'_n a'_1 \cdots a'_m = s'p'$. Therefore, we have $Pref_{n-1}(s'p') = Pref_{n-1}(p's')$. It is obvious that $ps = sp = a^n$. **Proposition 3.** Let $p, s \in \Sigma^+$, |p| + |s| = n, gcd(|p|, |s|) = d. If there exist $j, k \in \{1, 2, \dots, n\}$ such that $P_i(ps) \neq P_k(ps)$ and that j - k is divisible by d, then there are no word x such that p, s are powers of the word x. **Proof.** Suppose that p, s are powers of the same x and ps = x'. Since |x| is divisor of d, for every integers j, $k \in \{1, 2, \dots, n\}$ such that j - k is divisible by d, $P(ps) = P(x') = P_k(x') = P_k(x') = P_k(sp)$. **Theorem 4.** Let $p, s \in \Sigma^+$, |p| + |s| = n, gcd(|p|, |s|) = d. Words p, s are powers of the same word if and only if there exists a subset $J = \{j_1, j_2, \dots, j_k\} \subset I = \{1, 2, \dots, n\}$ such that (1) for $i \in I - J$, we have $P_i(ps) = P_i(sp)$, (2) for $j, j' \in I - J$, j - j' is not divisible by d. Then we have $p = x^{|p|/d}$ and $s = x^{|s|/d}$ where $x = \operatorname{Pref}_{a}(ps)$. **Proof.** By Proposition 3, the condition is necessary. We prove that the condition is sufficient. Let $ps = a_1 a_2 \cdots a_n$, |p| = m. For $k \in \{1, 2, \dots, d\}$, we denote $a_k a_{k+d} \cdots a_{k+(m-d)}$ and $a_{k+m} \cdots a_{k+(q-1)d}$, by p_k and s_k , respectively. Since $k \equiv k + d \equiv \cdots \equiv k + (q-1)d \pmod{d}$ and the condition of J, the set $\{k, k+d, \dots, k+(q-1)d\} \cap J$ contains only one element, say j_k . We then have $P_i(p_k s_k) = P_i(s_k p_k)$ for $i \in \{k, k+d, \dots, k+(q-1)d\} - \{j_k\}$. It is easy to see that $\gcd(|p_k|, |s_k|) = 1$. By Proposition 2, there exists a letter c_k such that $p_k s_k = s_k p_k = c_k^q$ for $k \in \{1, 2, \dots, d\}$. Therefore, we have $p = x^{lp/ld}$ and $s = x^{ls/ld}$ where $x = (c_1 c_2 \dots c_d)^q = \operatorname{Pref}_d(ps)$.. **Example 1.** Let $ps = c_1c_2c_3?c_5c_6c_7c_8?c_{10}c_{11}c_{12}c_{13}?c_{15}$, $sp = c_1c_2c_3?c_5c_6c_7c_8?c_{10}c_{11}c_{12}c_{13}?c_{15}$, and |p| = 9. The set $J = \{1, 2, \dots, 16\} - \{4, 9, 14\}$ satisfies the conditions of the theorem. Therefore, we have $p = (c_1c_2c_3)^3$ and $s = (c_1c_2c_3)^2$. **Corollary 5.** Let $p, s \in \Sigma^+$, |p| + |s| = n, gcd(|p|, |s|) = d. If there exists integer k such that $Pref_{n-d}(Shift^k(ps)) = Pref_{n-d}(Shift^k(sp))$, then we have $p = x^{p \vee d}$ and $s = x^{ls \vee d}$ where $x = Shift^{n-k}(Pref_{\mathcal{L}}(Shift^k(ps)))$. **Proof.** Let $ps = a_1 a_2 \cdots a_n$, then there is an integer $t \in \{1, 2, \cdots, n\}$ such that $a_t = P_{n-d}(\operatorname{Shift}^k(ps))$. Since set $J = I - \{t+1, t+2, \cdots, t+d\}$ satisfies the conditions of Theorem 4, we have $ps = sp = x^{n/d}$ where $x = a_1 a_2 \cdots a_d$. On the other hand, we have $a_1 a_2 \cdots a_d = \operatorname{Pref}_d(ps) = \operatorname{Pref}_d(\operatorname{Shift}^{n-k}(\operatorname{Shift}^k(ps))) = \operatorname{Pref}_d(\operatorname{Shift}^{n-k}(\operatorname{Shift}^k((a_1 a_2 \cdots a_d)^{n/d}))) = \operatorname{Pref}_d(\operatorname{Shift}^{n-k}(\operatorname{Shift}^k(a_1 a_2 \cdots a_d))) = \operatorname{Shift}^{n-k}(\operatorname{Pref}_d(\operatorname{Shift}^k(a_1 a_2 \cdots a_d))^{n/d})) = \operatorname{Shift}^{n-k}(\operatorname{Pref}_d(\operatorname{Shift}^k(a_1 a_2 \cdots a_d)^{n/d}))) = \operatorname{Shift}^{n-k}(\operatorname{Pref}_d(\operatorname{Shift}^k(a_1 a_2 \cdots a_d)^{n/d}))) = \operatorname{Shift}^{n-k}(\operatorname{Pref}_d(\operatorname{Shift}^k(ps)))$ **Example 2.** Let $p, s, x, y, u, v \in \Sigma^{+}$, ps = vxu, sp = vyu, |p| = 9, |x| = 3, |u| = 5, $Pref_3(u) = abc$. Since $Pref_{12}(Shift^{10}(ps)) = uv = Pref_{12}(Shift^{10}(sp))$. On the other hand, $Shift^{15-10}(Pref_3(Shift^{10}(ps))) = Shift^5(Pref_3(uv)) = Shift^{10}(Pref_3(uv)) = Shift^{10}(abc) = Shift^{10}(abc) = bca$. Hence, Corollary 5 shows that $p = x^3$ and $s = x^2$ where $x = Shift^{15-10}(Pref_3(Shift^{10}(ps))) = bca$. Therefore, we have $p = (bca)^3$ and $s = (bca)^2$. ## References - [1] N. J. Fine and H.S. Wilf, Uniqueness theorem for periodic functions, Proc. Am. Math Soc., (1965), 109-114. - [2] M. Lothair, Combinatrics on Words, Cambridge Univ. Press, 1983.