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Abstract
We present a result on summability of power series in one variable, whose coefficients are holomor-

phic functions of several other complex variables. This result then is applied to the Cauchy problem
for the heat equation in several spatial variables.

1 Introduction
In very recent articles, formal power series solutions of partial differential equations in two variables have
been investigated: Some authors determined their Gevrey order, while others have been concerned with
their (multi-)summabll ity properties. Without claim of completeness, we here mention, in alphabetical
order, W. Balser [1,3,4], Balser and Kostov [5], Balser and Miyake [6], Chen, $Luo$, and Zhang [7], Gtrard
and Tahara [8], M. Hibino [9-13], K. Ich nobe [14], Lutz, Miyake, and $Scha^{w}fke$ $[15]$ , M. Miyake [17-20],
Miyake and Hashimoto [21], Miyake and Yoshino [22-24], S. Ouchi [25-28], and Plii and Ziemian [29].

A first attempt to generalize results from [3] to the case of more than two variables has been made
by S. Malek [16]. He considered a general PDE with constant coefficients, but required several technical
assumptions in order to be able to adapt the prooffi from [3] to this situation. In this paper we shall study
the heat equation in several spatial dimensions, but follow a different approach: First, we shall generalize
a lemma from [5] to the case of power series in more than two variables. Then we shall apply this result
and briefly indicate the chances as well as the technical difficulties arising in cases of more general PDE.

2 Summability of series with variable coefficients
In this and later sections we shall be concerned with holomorphic functions in several complex variables,
and it shall make sense to seperate these variables into two groups, denoted as $z$ $=$ Cll, $\ldots,z_{n}$ ) resp.
$to=$ $(w_{1}$ , ..., $w_{m})$ , with non-negative integers $n$ and $m$. While the case of $n=0$ shall not be of interest
here, it makes sense to allow that $m=0,$ in which case we should interprete functions of 2 and $w$ as
being independent of $w_{1}$ , . .. ’ $w_{m}$ .

Let $(x_{j}(z,w))_{j>0}$ be a given sequence of functions that are holomorphic in a polydisc $D$ $=$ $\mathrm{Z})_{1}$ $\mathrm{x}\mathcal{D}_{2}$

about the origin of $\alpha$ $\mathrm{x}\mathbb{C}^{m}$ , and let $k>0$ and $d\in$ R be given. Then the formal power series

$l(t,z, w)= \sum_{j=0}^{\infty}\frac{t^{j}}{j\mathrm{I}}x_{\mathrm{j}}(z, w)$ (2.1)
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is said to be $k$ -surnmable in the direction $d$, if the following two conditions hold:

(a) There exist $\rho$, $\mathrm{p}_{1}\in$ R such that the series

$y(t,z, w)= \sum_{j=0}^{\infty}\frac{t^{j}}{\Gamma(1+s_{+}j)}x_{j}(z,w)$ , $s_{+}=1+$ l/k,

is absolutely convergent for $||(z, w)||_{\infty}= \sup\{|z_{1}|, \ldots, |z \mathrm{J} |\mathrm{t}\mathrm{p}_{1} |, \ldots, |w_{m}|\}$ $\leq\rho_{1}$ and $|t|<\rho$.is absolutely convergent for $||(z,w)||_{\infty}= \sup\{|z_{1}|, \ldots, |z_{n}|, |w_{1}|, \ldots, |w_{m}|\}\leq\rho_{1}$ and $|t|<\rho$.
(b) There exists $\delta$ $>0$ such that, for all $(z,w)$ as above, the fimction $y(t, z, w)$ can be analytically

continued with respect to $t$ into the sector Sdts $=\{t\in \mathrm{C} : 2|d-\arg(t)|<\delta\}$. Moreover, for all
$\delta_{1}<\delta$ there exist $C>0$ and $K>0$ such that

$\sup$
$|y(t,z,w)|\leq C\mathrm{e}^{K|t|^{\mathrm{k}}}$ $\forall t\in S_{d,\delta_{1}}\mathrm{t}$

$|\mathrm{f}(" w)|[_{\alpha}\leq p_{1}$

Functions satisfying such an estimate in every such subsector $S_{d,\delta_{1}}$ of Sdis shall be said to be of
exponential with in Sdts at most of order $k$.

This definition of $k$ summability is slghtly modified to better suit the situation of formal solutions of
PDE. From the general theory of moment summability presented in [2, Section 6.5] one can deduce
equivalence of this and the standard definition of J.-P. Ramis $[30,31]$ . However, observe that with the
definition given here, the $\mathrm{A}$;-sum $x(t,z,w)$ of the formal series $\hat{x}(t, z,w)$ is not obtained as the Laplace
transform of index $k$ , with respect to $t$, of the function $y(t,z, w)$ ; instead, one has to use J. Ecalle’s
acceleration operator corresponding to the indices 1 and $1/s_{+}-$ this, however, shall not be of importance
here.

As the main tool ffir this article, we shall prove a lemma that rephrases $k$-summabilty of formal
series of the form (2.1) in terms of infinitely many formal power series whose cofflcients are independent
of the variables $z$ $=$ $(z_{1}, \ldots,z_{n})$ . To formulate this result, we shall use the ffillowing notation: By
$\nu=$ $(\nu_{1}, \ldots, \nu_{n})$ we always denote a multi-index; $\mathrm{i}$ . $\mathrm{e}.$ , the entries $\nu_{j}$ are non-negative integers. We shall
write $|\mathrm{P}\mathrm{j}$ $=\nu_{1}+\ldots+\nu_{n}$ for the length of $\nu$, and $\partial_{l}^{\nu}=\partial_{z_{1}^{1}}^{\nu}\ldots\partial_{z_{\mathrm{B}}^{n}}^{\nu}$ for the operator of partial differentiation of
orders $\nu_{1}$ , $\ldots$ , $\nu_{n}$ with respect to the variables $z_{1}$ , $\ldots$ , $z_{n}$ , respectively. In addition, we set $\nu!=\nu.$ .. .. $\cdot\nu_{\mathrm{n}}!$

Lemma 1 Let $k>0$ , $d\in$ R and $\hat{x}(t, \mathrm{z},\mathrm{w})$ as in (2.1) be given. Then the following statements are
$uu\dot{|}vilent$:

(a) The formal series $\hat{x}(t, z, w)$ is $k$ -summable in the dimtion $d$.
(b) There eist $\rho,\rho_{1}$ , $\delta>0,$ such that for $s_{+}=1+$ $1/\mathrm{k}$ and every multi-index $\nu$ the series

$\mathrm{y}\mathrm{v}(\mathrm{t}, n)$ $= \sum_{j=0}^{\infty}\frac{t^{j}}{\Gamma(1+s_{+}j)}x_{\mathrm{j},\nu}(\mathrm{t}\mathrm{t})$ , $x_{j_{\iota}\nu}(w)=\partial_{z}^{\nu}x_{j}(z,w)\}_{z=0}$ , (2.2)

converge for $|t|<\rho$ and $||w\mathrm{j}|\leq\rho_{1}$1 , and the $fimction\epsilon$ $\mathrm{y}\mathrm{v}(\mathrm{t}$, , for every such $w$ , can be holomorphi-
cally continued with respect to $t$ into the sector $Sa,s$ . Finally, for every $\delta_{1}<\delta$ , there exist constants
$C,K>0,$ independent of $\nu$ and $w$ , so that

$||w||\leq p_{1}8\mathrm{u}\mathrm{p}|y\nu(t, w)|\leq C^{|\nu|}\nu!\mathrm{e}$
”$|^{\mathrm{b}}$

$\forall t\in S_{d,\delta_{1}}$

(c) For every multi-index $\nu$, the formal series

$\hat{x}_{\nu}(t,w)$ $= \partial_{z_{1}}^{\nu}\hat{x}(t,z,w)|_{z=0}=\sum_{j=0}^{\infty}\frac{t^{\dot{f}}}{j1}x_{7,\nu}(w)$

all are $k$-summable in the direction $d$. Moreover, there exist a sectorial region $G$ unth bisecting
direction $d$ and opening greater than $\mathrm{n}/\mathrm{k}$ and a polydisc Z) about the origin of $\sigma^{n}$ which both are
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independent of $\nu$ , so that the sums $x_{\nu}(t, w)$ of $\hat{x}$y(t, $w$) all are holomorphic in $G\mathrm{x}D$ , and for every
closed subsector $\overline{S}\in G$ there eist constants $C$, $K>0,$ independent of $\nu$ , such that

$\sup$ $|C?jx_{\nu}(t, w)|\leq CK^{|\nu|+\ell}\nu!l!\Gamma(1+\ell/k)$ (2.3)
$t\in S_{w\in D}$,

for all multi-indices $\nu$ and all non-negative integers $\ell$ .

Proof: For the special case of $n=1$ and $m=0,$ aproof has been given in [4], and one can use the same
approach for the general case. For this reason, we shall restrict ourselves and only present the main ideas:
Assume that (a) holds, and let $y(t,z,w)$ be as in (2.2). Then $y_{\nu}(t,w)$ can be represented by the standard
multi-dimensional Cauchy formula for partial derivatives. Estimating this formula in a standard manner
then shows (b). For the converse implication, use the standard multi-dimensional Taylor expansion of
$y(t,z, w)$ with respect to $z$ $=(z_{1}, \ldots,z_{n})$ . Analogously one can prove equivalence of (a) and (c), using
the sums $x(t,z, w)$ and $x_{\nu}(t, w)$ instead of $y(t, z, w)$ and $\mathrm{x}\mathrm{v}(\mathrm{t},\mathrm{w})$ . $\square$

3 The heat equation in several spatial dimensions
In the ffillowing sections we shall apply Lemma 1 to the Cauchy problem for the heat equation in
several spatial variables, for which we shall use the following convenient notation: For $z$ and $w$ as in the
introduction, let $\phi(z,w)$ be a given function, holomorphic in a polydisc 7) about the origin of $C^{*}\mathrm{x}U^{*}$ .
Abbreviating

$\Delta_{f}=\sum_{j=1}^{n}\partial_{z_{\mathrm{j}}t}^{2}$ $\Delta_{w}=\sum_{\mathrm{k}=1}^{m}\partial_{w\mathrm{k}}^{2}$ ,

we consider the Cauchy problem for the heat equation in $n+m$ spatial dimensions, written as
$\partial_{t}u=\langle\Delta_{z}+\Delta_{w}$) $u$ , $u(0, z, w)=\phi(z,w)$ . (3.1)

This problem has a unique formal power series solution \^u$(t, z)$ which can be written as

\^u $(t, z)$ $= \sum_{j=0}^{\infty}\frac{t^{j}}{j!}u_{\mathrm{j}}(z,w)$ , $u_{\mathrm{j}}(z,w)=( \Delta_{z}+\Delta_{w})^{j}\phi(z,w)=j!\sum_{\mu_{1}\ell>0}\frac{\Delta_{z}^{\mu}\Delta_{w}^{\ell}}{\mu!\ell!}\phi(z,w)$ . (3.2)

$\mu+\Gamma--j$

For $n=1$ and $m=0,$ or in other words, for one spatial dimension, this formal series has been investigated
in detail in [15] and [1]: In general, its Gevrey order is equal to $s$ $=1,$ but for entire functions $s$ $<1$ may
occur as well. Moreover, it is shown in [15] that the series is 1-summable in a direction $d$ if, and only
if, the initial condition can be holomorphically continued into the union of two sectors with bisecting
directions $d/2$ and $\pi+d/2$ and is of exponential growth at most of order 2 there. An analogous result has
been obtained in [1] for the case of $k$-summability, with $k>1,$ however, in this situation the condition
for $k$-summability in a direction $d$ cannot be formulated in terms of the initial condition but involves its
Laplace transform of a corresponding order. Nothing was known so far about the summability of (3.2)
in the case of several spatial dimensions, since this case is not covered by the results obtained in [16].
Here, we shall prove results quite analogous to those in the one dime sional situation, except that the
conditions we obtain are less easy to verify.

Remark 1: Note that in (3.1) the essential quantity is the number of spatial variables $n+m,$ and it
is up to us to decide how to subdivide this number into $n$ and $\mathrm{r}\mathrm{r}\mathrm{g}$ . It shall turn out to be convenient to
choose $m=0$ when discussing matters where all spatial variables are of equal importance, while for the
question of summability we shall take $n=1.$ $\square$

Since the initial condition $\phi(z,w)$ is assumed to be holomorphic in a polydisc about the origin which
we shall, for simplicity of notation, assume to be the Cartesian product of discs of equal radius denoted
by $r>0,$ we see that the same holds for the coefficients $x_{j}(z,w)$ , for all $j\geq 0.$ Expanding these functions
with respect to $z=(z_{1},\ldots,z_{n})$ , we have

$\phi(z,w)=\sum_{\nu}\frac{z^{\nu}}{\nu!}\phi_{\nu}(w)$ , $u_{j}$ (z, $w$) $= \sum_{\nu}\frac{z^{\nu}}{\nu!}u_{j\nu}(w)$ $||(z,w)||_{\infty}<$ r, (3.3)
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where summation extends over all multi-indices $\nu$ in dimension $n$ . Observing $x_{0}(z,w)=\phi(z,w)$ and
Xj $(\mathrm{z}, w)=(\Delta_{z}+\Delta_{w})xq(z,w)$ , we find the following relations for the coefficients of these series, for all
multi-indices $\nu$ :

Ujv(w) $=$ Ujv(w), $u_{j+1,\nu}(w)= \Delta_{w}u_{\mathrm{j},\nu}+\sum_{k=1}^{n}u_{j,\nu+2\mathrm{e}_{h}}(w)$
$\forall||\mathrm{t}\mathrm{t}^{\mathrm{r}}||_{\infty}<r$ , $j\geq 0$ , (3.4)

with $e_{k}$ denoting the hh unit vector in dimension $n$ .

4 Gevrey estimates
The notion of Gevrey estimates that is discussed in this section is symmetric with respect to all spatial
variables, and for $\mathrm{f}\mathrm{f}\mathrm{i}\dot{\mathfrak{B}}$ reason we shall without loss of generality restrict to the case of $m=0;$ if this were
not so, we could set $z_{n+k}=w_{k}$ for $1\leq k\leq m$ and then replace $n$ by $n+m.$

Let $s\geq 0$ be given. Due to the form of the formal solution \^u$(t, z)$ , we set $s_{+}=\epsilon$ $+1$ and say that
such a series is (at most) of Gevrey order $s$ , provided that we can find constants $\rho,C$, $K>0$ such that

$|u_{i}(z)|\leq CK^{j}\Gamma(1+s_{+}j)$ $lj\geq 0$ , $||z||_{\infty}\leq\rho$ . (4.1)

Note that this definition, when the functions $x_{j}(’)$ all are constants, coincides with the standard definition
of the Gevrey order of power series. Moreover, observe that a series is of Gevrey order $s=0$ if, and
only if, it converges (for sufficiently small $|t|>0$). As we shall show now, the Gevrey order of (3.2) is
independent of the spatial dimension:

Lemma 2 For $m=0$ and arbitrary $\phi(z)$ , holomorphic in a polydisc $V$ $\subset\alpha$ about the origin, he
series (3.2) is of Gevrey order 1.

Proof: In the case $m=0,$ all functions Ujv(w) and Ujv(w), defined by (3.3), are constants which we
sffil denote as $u_{j\nu}$ and $\phi_{\nu}$ . We set

$c_{j\ell}= \sum_{|\nu|=\ell}\frac{|u_{j\nu}|}{\nu!}$
$\forall j,\ell\geq 0$ .

From (3.4) we conclude that

$c_{j+1,\ell} \leq\sum_{k=1}^{n}\sum_{|\nu|=\ell}\frac{|u_{j,\nu+2e\iota}|}{(\nu+2e_{k})!}(\nu_{k}+1)(\nu_{k}+2)\leq(\ell+1)(\ell+2)c_{j,\ell+2}$
$\forall j,\ell \mathit{2}$ $0$ .

Cauchy’s formula in several dimensions shows that $|\mathrm{c}_{0\nu}1$ $=|\phi_{\nu}|$ $\leq CK^{|\nu|}$ for every multi-index $\nu$, with
sufficiently large $C,K>0.$ Using this, one can show by induction with respect to $j$ the estimate
$c_{j\nu}\leq CK^{\mathrm{j}+\nu}(\ell+2j)!/\ell!$, from which follows that the series $\sum_{j},{}_{\ell j\ell\rho^{\ell}x^{j}/(2j)!}C$ converges for sufficiently
small $x,\rho$ $>0.$ This and the fact that

$|u_{j}$ ($z1$ $\leq\sum_{\ell=0}^{\mathrm{w}}\sum_{|\nu|=\ell}\frac{|u_{j\nu}|}{\nu!}|z_{1}|^{\nu_{1}}$
. ... $\cdot$ $|z_{n}1^{\nu}$” $\leq\overline{\sum_{\ell=0}}\rho^{\ell}c_{j\nu}$

$\forall||\mathrm{J}||_{\infty}\leq\rho$

complete the proof. $\square$

While the Gevrey order of \^u$(t,z)$ is never larger than 1, it may well be smaller, and in some cases the
series even may converge:

Lemma 3 Let $m=0$ and $0\leq s$ $<1,$ and assume that the initial condition $\phi(z)$ is could and, for some
$C,K>0,$ satisfies

$|\phi(z)|\leq C\alpha \mathrm{p}$ $(K\rho^{2/(1-\epsilon)})$ $i\rho>0$ , $||z||_{\infty}\leq$ p. (4.2)

Then \^u$(t, z)$ is of Gevrey order $s$ , and in particular converges for $s$ $=0.$
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Proof: Observe that Cauchy’s formula for the coefficients of a power series (in several variables) implies
that $|\phi$ , $|\leq\rho^{-1}$” $C\exp(K\rho^{2/(1-\epsilon)})$ for every $\rho>0$ and $z$ as in (4.2). Taking $\rho$ such that the right hand
side becomes minimal, one then obtains, with $C$, $K>0$ not necessarily the same as above:

$| \phi_{\nu}|\leq\frac{CK^{|\nu|}}{\Gamma(1+(1-s)|\nu|/2)}$

for all multi-indices $\nu$ . Proceeding exactly as in the proof of the previous lemma, using this
$\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{e}_{\square }\mathrm{d}$

estimate for the coefficients of $\phi(z)$ , one can complete the proof.

Remark 2: Observe that the proofs of both lemmata can be generalized to give the same result for
equations where $\Delta_{z}$ is replaced by $\sum_{j}a_{j}\partial_{z_{j}}^{2}$ , with arbitrary non-zero constants $a_{j}$ , or even more

$\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}1\square$

ones.

5 Summability of the formal solution
In Section 2 we showed that summability of a series of the form (2.1) i\S equivalent to that of the series
$\hat{x}_{\nu}(t,w)$ plus an estimate of the form (2.3) for their sums. To discuss summability of the formal solution
of the heat equation (3.1), we shall take $n=1$ and arbitrary $m\geq 0,$ and define $\hat{u}_{\nu}$ ($t$ ,to) as in (3.3),
observing that for $n=1$ multi-indices $\nu$ are just integer numbers $\geq 0.$ In this situation we prove the
following result:

Theorem 1 For \^u $(t, z,w)$ as in (3.2), with $n=1$ and arbitrary $m20$, we choose $d\in$ R $k$ $\geq 1,$ and set
$s_{+}=1+$ 1/fc. Then the following statements are equivalent:

(a) The formal solution \^u(t, $z$ , $w$) is $k$ -summable in the direction $d$.
(b) There exist $\rho,\rho_{1}$ , $\delta>0,$ such that for $\nu=0$ and $\nu=1$ the series

$v_{\nu}(t,w)= \sum_{\mathrm{j}=0}^{\infty}\frac{t^{j}}{\Gamma(1+s_{+}j)}u_{j}$, $\nu(\mathrm{r}\mathrm{p})$ , $u_{j,\nu}(w)=\partial^{\nu},u_{j}(z,w)|_{z=0}$ , (5.1)

converge for $|t|<\rho$ and $||w||_{\infty}\leq\rho_{1}$ , and the functions $v_{\nu}(t,w)$ , for every such $w$ , $ean$ be hold
morphiccdly continued with respect to $t$ into the sector $S_{d,\delta}$ and is of exponential order at most $k$

there.

(c) For $\nu=0$ and $\nu=1,$ the formal series

$\hat{u}_{\nu}(t,w)=\partial^{\nu_{1}}$, \^u(t, $z,w$) $|,=0= \sum_{\mathrm{j}=(\}}^{\infty}\frac{t^{j}}{j!}u_{j}$ ,v(w)

both are $k$ -summable in the direction $d$.

(b) their exist $\rho,\rho_{1},\delta>0,$ such that for $\nu=0$ and $\nu=1$ the series

$v_{\nu}(t,w)= \sum_{\mathrm{j}=0}^{\infty}\frac{t^{j}}{\Gamma(1+s_{+}j)}u_{j,\nu}(w)$ , $u_{j,\nu}(w)=\partial_{z}^{\nu}u_{j}(z,w)|_{z=0}$ , (5.1)

converge for $|t|<\rho$ and $||w||_{\infty}\leq\rho 1,$ and the fimctions $v_{\nu}(t,w)$ , for every such $w$ , $ean$ be hold
morphicdly continued with oespoet to $t$ into the sector $S_{d,\delta}$ and is of exponential oder at most $k$

there.

(c) For $\nu=0$ and $\nu=1,$ the formal $se;\dot{\backslash }es$

$\hat{u}_{\nu}(t,w)=\partial_{l1}^{\nu}$ \^u(t, $z,w$) $|_{z=0}= \sum_{\mathrm{j}=(\}}^{\infty}\frac{t^{j}}{j!}u_{j,\nu}(w)$

both an $k$-summable in Me direction $d$.

Proof: If (a) holds, then Lemma 1 can be applied and shows that (b) and (c) hold as well. Moreover,
by definition of $k$-summability we see that (b) is equivalent to (c). This leaves to show, $\mathrm{e}$ . $\mathrm{g}.$ , that (c)
implies (a). To do so, observe that for $n=1$ the relation (3.4) becomes

$\mathrm{u}\mathrm{Q}\mathrm{v}(\mathrm{w})=$ uQv(w), $u_{\mathrm{j}+1,\nu}(w)=\Delta_{w}u_{j,\nu}+u_{j,\nu+2}(w)$ $\forall||\mathrm{t}\mathrm{t}^{\mathrm{r}}||_{\infty}<$ $r$ , $\nu$

. $’ j$ $\geq 0$ . (5.2)

This shows that $\theta_{\nu+2}(t, \mathrm{J}\mathrm{j}7)$ $=$ $(\partial_{t}-\Delta_{w})\hat{u}_{\nu}(t, w)$ for $\nu\geq 0,$ and from this and the general theory of
$k$-summability we conclude that all $\hat{u}_{\nu}(t, w)$ are $k$-summable in the direction $d$. Moreover, if $\mathrm{u}\mathrm{v}(\mathrm{t},\mathrm{u}\mathrm{i})$ are
their sums, then they satig

uv { $\mathrm{t},\mathrm{w})=(\partial_{t} -\Delta_{w})\mathrm{u}\mathrm{u}(\mathrm{t},\mathrm{w})$ $\forall\nu\geq 0$ , $(t,w)\in G\mathrm{x}$ ?),
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with a sectorial region $G$ of opening larger than $\mathrm{n}/\mathrm{k}$ and bisecting direction $d$, and a suitably smal
polydisc $\mathrm{Z}$). Observe that this relation also guarantees that $G$ does not depend upon $\nu$ . Expanding

$u_{\nu}(t, n))$
$= \sum_{\mu}\frac{w^{\mu}}{\mu!}u_{\nu\mu}(t)$ ,

with summation over all multi-indices $\mu$ in dimension $m$, we obtain through differentiation with respect
to $t$ ($\ell$ times) the relation

$u_{\nu+2,\mu}^{(\ell)}(t)=u_{\nu,\mu}^{(\ell+1)}(t)- \sum_{k=1}^{m}u_{\nu,\mu+2e\iota}^{(\ell)}(t)$

for all $t\in G,$ all multi-indices $\mu$, and $\nu\geq 0.$ Choosing a closed subsector $\overline{S}$ of $G$ , we set

$@A_{\ell\nu j}$ $= \sup_{t\in\Xi}\sum_{|\mu|=j}\frac{|u_{\nu\mu}^{(\ell)}(t)|}{\mu!}$

and obtain $u_{l_{\iota}\nu+2,j}\leq u_{\ell+1,\nu.j}+(j+1)(j+2)e_{\mathit{1}}\mathit{4}\ell,\nu,j$42 for all $\ell$, $t,j\geq 0.$ By induction with respect to $\nu$,
this implies

$u_{\ell,2\nu,j} \leq\sum_{n=0}^{\nu}\frac{(j+2\kappa)!}{j!}u_{\ell}$
$1$ $\nu-\mathrm{n},0\mathrm{J}$ $\mathrm{j}2\kappa$ , $u_{\ell,2\nu+1,j} \leq\sum_{n=0}^{\nu}\frac{(j+2\kappa)!}{j!}e_{\ell f\nu-n}$,1,j $12\mathrm{s}$

with summation over all multi-indices $\mu$ in dimension $m$, we obtain through differentiation with respect
to $t$ ($\ell$ times) the relation

$u_{\nu+2,\mu}^{(\ell)}(t)=u_{\nu,\mu}^{(\ell+1)}(t)- \sum_{k=1}^{m}u_{\nu,\mu+2e\iota}^{(\ell)}(t)$

for all $t\in G$ , aU multi-indices $\mu$, and $\nu\geq 0.$ Choosing a closed subsector $S$ of $G$ , we set

$u_{\ell\nu j}= \sup_{t\in\Xi}\sum_{|\mu|=j}\frac{|u_{\nu\mu}^{(\ell)}(t)|}{\mu!}$

and obtain $ul_{\iota}\nu+2,j\leq u\ell+1,\nu.j+(j+1)(j+2)u\mathit{1},\nu,j+2$ for ffi $\ell$, $\nu,j\geq 0.$ By induction with respect to $\nu$,
this implies

$u_{\ell,2\nu,j} \leq\sum_{n=0}^{\nu}\frac{(j+2\kappa)!}{j!}u_{\ell+\nu-n,0.j+2\kappa}$ , $u_{\ell,2\nu+1,j} \leq\sum_{n=0}^{\nu}\frac{(j+2\kappa)!}{j!}u_{\ell+\nu-n,1,j+2\hslash}$

for aU $\ell,\nu,j\geq 0.$ The assumption of $k$ summability of $\mathrm{u}\mathrm{o}(\mathrm{t},\mathrm{i}\mathrm{u})$ , $\text{\^{u}}_{1}$ $(t,w)$ implies, with help of Lemma 1,
that $C,K>0$ exist for which $|u_{\nu.\mu}^{(\ell)}(t)|\leq CK^{\nu+|\mu|}\mu!\Gamma(1+s_{+}\ell)$ for $t\in\partial$ , $\nu=0$ and $\nu=1,$ and all $\mu,\ell$.
Using this, one can complete the proof, very much along the line of the proofs of Lemmas 2 and 3. $\square$

We can improve this result by setting

$\mathrm{v}(\mathrm{t},\mathrm{w})=\sum_{j=0}^{\infty}\frac{t^{j}}{\Gamma(1+s_{+}j/2)}\tilde{u}_{j}$(to), $\tilde{u}2\mathrm{j}(w)=u_{j0}(w)$ $\tilde{u}_{2j41}(w)=u_{j1}(w)$ . (3.2)

In terms of this audiary function, we can show:

Theorem 2 For \^u$(t, z,w)$ as in (3.2), with $n=1$ and arbitrary $m[succeq] 0,$ we choose $d\in$ R $k\mathit{2}1$ , and set
$s_{+}=1+$ l/k. Then the formal solution $\mathrm{O}(t,z,w)$ is $k$-summable in the direction $d$ if, and only if, there
$ex$ ist $\rho_{1}$ , $\rho_{2},\delta>0$ so that the series(5.3) converges for $|t|<\rho_{1}$ and $|\mathrm{t}\mathrm{t}^{\mathrm{z}}|<\rho_{2}$ , and the function $\tilde{v}(t, w)$ , for
fixed $w$ , can be holomorphically continued into the two sectors $S_{d/2,\delta}$ and $S_{\pi+d/2,\delta}$ , and is of exponential
grvywth at most of order $2k$ there.

Proof: The function $\overline{v}$i(t, $w$ ) has the properties stated if, and only if, the same properties hold for its
odd and even parts, and according to the definition of summability this is equivalent to $(2k)$ summability
in the directions $d/2$ and $\pi+d/2$ of the series

$\sum_{j=0}^{\infty}\frac{t^{2j}}{\Gamma(1+s_{+}j)}u_{j}$0(w), $\sum_{j=0}^{\infty}\frac{t^{2j+1}}{\Gamma(1+s_{+}(1/2+j))}u_{j1}(w)$ .

The general theory then implies that this is equivalent to condition (c) of Theorem 1. $\square$

Remark $: Using (3.2) for the case of $n=1,$ one can show that

$u_{j0}(w)=j! \sum$ $\frac{\Delta_{w}^{\ell}h\mu(w)}{\mu!\ell 1}$ , $u_{j1}(w)=$ ’ $\sum$ $\frac{\Delta_{w}^{\ell}\phi_{2\mu+1}(w)}{\mu!\ell 1}$ $\forall j\geq 0$ . (5.4)
$\mu l>0$ $\mu,\ell>0$

$\mu+\Gamma--\dot{g}$ $\mu+\Gamma--J$

$\mathrm{t}\mathrm{O}\phi(t)\mathrm{f}\mathrm{o}\mathrm{r}k=1,$

$\mathrm{i}.\mathrm{e}.,s_{+}=2.\mathrm{s}^{u}\mathrm{o}^{0_{\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{a}\mathrm{e}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{a}\mathrm{e}\mathrm{s},\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2}}\mathrm{H}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}n=1,m=0,\mathrm{w}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{d}=\phi_{2j},$
$u_{j1}= \phi_{2f+1},\mathrm{s}\mathrm{o}\tilde{v}(t)=\sum_{\mathrm{c}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{i}}d\mathrm{e}\mathrm{s}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{t}\mathrm{h}_{\mathrm{e}\mathrm{r}\mathrm{e}8}^{+s_{+}}t^{j}\phi_{j}/\Gamma$(ul/t:)$0’ \mathrm{b}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$ d$\mathrm{i}\mathrm{n}$ $[\mathrm{l}5]\mathrm{u}\mathrm{d}$

for $k=1,$ resp. in [1] for $k>1.$

The general theory then implies that this is equivalent to $\infty \mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$
$(\mathrm{c})$ of $\mathrm{T}\mathrm{h}\infty \mathrm{r}\mathrm{m}1$. $\square$

ffimrk $: $\mathrm{U}_{8}\mathrm{i}\mathrm{n}\mathrm{g}(3.2)$ ffir the case of $n=1,$ one can show that

$u_{j0}(w)=j! \sum$ $\frac{\Delta_{w}^{\ell}h\mu(w)}{\mu!\ell 1}$ , $u_{j1}(w)=j! \sum$ $\frac{\Delta_{w}^{\ell}\phi_{2\mu+1}(w)}{\mu!\ell 1}$ $\forall j\geq 0$ . (5.4)
$\mu l>0$ $\mu,\ell>0$

$\mu+\Gamma--\dot{g}$ $\mu+\Gamma--J$

$\mathrm{t}\mathrm{o}\phi(t)\mathrm{f}\mathrm{o}\mathrm{r}k=1,$

$\mathrm{i}.\mathrm{e}.,s_{+}=2.\mathrm{S}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{a}\mathrm{e}\mathrm{e}\mathrm{H}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}n=1,m=0,\mathrm{w}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{d}ug_{0}=\phi_{2j}$

,
$u_{j1}= \phi_{2f+1},\mathrm{s}\mathrm{o}\tilde{v}(t)=\sum_{\mathrm{c}\mathrm{c}\mathrm{a}\mathrm{a}\mathrm{e}\mathrm{s},\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{i}d_{\mathrm{e}\mathrm{s}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}8\mathrm{u}1\mathrm{t}\mathrm{s}\mathrm{o}\mathrm{b}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{n}[15]}^{t^{j}\phi_{j}/\Gamma(1+s_{+}j/2),\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}8\mathrm{G}\mathrm{q}\mathrm{u}\mathrm{a}1}}$

$\mathrm{f}\alpha$ $k=1,$ resp. in [1] for $k>1.$
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In the general case we can, in principle, compute the auxiliary function $\tilde{v}(t, w)$ in terms of the initial
condition $6(z,w)$ , and then verify whether or not the conditions for $k$-summability of \^u(t, $z$ , $w$) given in
Theorem 2 are satisfied. Vice versa, it it also possible to start with a function $\tilde{v}(t, w)$ that satisfies these
conditions, and from its coefficients Uj (w) find the functions $6_{\nu}(\mathrm{t}\mathrm{t}^{\mathrm{F}})$ , for $\nu\geq 0,$ using the relations (5.4).
Doing so, one can (theoretically) find examples of initial conditions $\phi(z, w)$ leading to $k$-summable series
\^u $(t, z,w)$ . Unfortunately, the authors have not been able (except for the case of $m=0$ and $n=1$) to
determine explicitely those cases of $\phi(z,w)$ for which $k$-summability holds. $\square$
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