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COMPUTABLE STARTING CONDITIONS FOR THE EXISTENCE OF
NON-UNIFORMLY HYPERBOLIC SYSTEMS

HIROKI TAKAHASI
GRADUATE SCHOOL OF SCIENCE, KYOTO UNIVERSITY

1. INTRODUCTION

We are interested in dynamical phenomena which are persistent under small perturbations
of the system. Here, the meaning of persistence should be interpreted from the viewpoint of
measure theory, and a positive Lyapunov exponent in one-dimensional system is our primary
concern. Namely, we address the question when

- . . 1 n
Ha € Q: hﬂg}f;longfa (co)] >0} >0

is satisfied for a given parameterized family of unimodal maps {f,}scn. There are numerous
results concerning this subject. [BC85,91], [Tsu93b], [Lu99], [Yoc99], [Sen] give alternative
proofs of the so-called Jakobson theorem [Ja81] on the quadratic family Q.: z — 1 — az?.
[TTY92], [Tsu93a],[MelStr93] extend these arguments to broader classes of families satisfying
certain conditions. However, these conditions are in general hard to be verified for a given family
{fa}acq, i.e. not computable in practice, and hence are serious obstacle to application of these
theorems. We intend to improve this point. We shall introduce computable (in principle, and
hopefully in practice) starting conditions that guarantee the persistence of chaotic dynamics.

This is a joint work with Stefano Luzzatto.

2. DEFINITIONS, NOTATIONS, AND PROPOSITIONS

To formulate our result, we introduce several definitions, notations, and propositions.

e Unimodal map: an interval map f: [-1,1] = [—1,1] is called unimodal if 0 is the unique
critical point of f, i.e. Df(0) = 0. A C? family of unimodal maps {f,}scq is a parameter-
ized family of unimodal maps such that (a,z) — f,z is C?. We use the following notation,
ci(a) := f2+1(0). _

e Collet-Eckmann condition [CE83]: We say a unimodal map f satisfies (CE)y, if we
have |Df¥(co)| > e* for any k < n.

e Essential return, Bounded recurrence: ' We say n is not an essential return for f, if
there exists ¢ < n such that

~logla(@)| 22 Y —logles(a)l
i+1<j<n ‘
Cj (a)E(—J,d)

Otherwise n is called an essential return.
We say f, satisfies (BR)y, o if the following is true for all k < n:

Z —loglcj(a)| < ak.

, 0<j<k
j:essential return

!We have temporarily and partly borrowed these formulations from [Tsu93b].
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e Cantor structure: We say a nested sequence { E®}77} of closed subsets of R has (N, 8)
- Cantor structure of length n if the following is true:
() |E®] > 0.
(ii) EO) - p) — ... ,E(N-1) 2 EN) 5 ...,
(iii) |[EW)| — |E*+D)| < ¢~Ak| EO)],
Notice that |Noc;cn—1 E®D| > |E®|(1 -2 e#) > 0 if we have 1 — Yo yePi>0.

e Proposition A(n): If f, satisfies (CE),, and (BR)n,q, then it also satisfies (CE)p+1,0-
e Proposition B(n): If f, satisfies (CE)y,, then we have

|Gacn+1(a)l
= [DfE*H(eo(a))]
e Proposition C(n): {Q(’)},_O has the (N, 8) - Cantor structure of length n + 1.

e (HYP): There exist A > 0 and § > 0 such that we have [Df"z| > e’ for any a € Q,
n > 1 and z € I such that z, foz,--- , f* 1z & (=4,4).
e (START): (i) N is the smallest mteger such that {cn(a);a € Q} N (=4, 6) # 0.
(i) {en(a); - € Q}I > o

(lll)l—l i‘—‘lm >0 Vac(.
(iv)1-281"t<e PN 0< i< 1.

3. REsuLT

Main theorem. Suppose (HYP) holds for given {f,}seq, a C? family of unimodal maps.
There exists a finite set of inequalities {*} := {(START), (A), (B),(C)} involving {f,}eecq and
(6,A\,N,a,B,t,v,D1,D5) such that the following flowchart does not stop forever provided that
{*} are satisfied.

Corollary. Suppose {fo}ecq satisfies (HY P) and {*}. Then

R TI 1 n X (n)
[{a € Q: liminf ~log |DfZ(co)] 2 v} 2 ITDOQ | > 0.
Ifa e Ny, QM) then f, has no periodic attractor. There exists a set AC I of positive Lebesgue
measure such that 1
.. n
hnn_%rgf'r—l log|Df2(z)] >0 for any z € A.

We remark that (HY P) is very crucial in our argument. This means that as far as derivative
growth along the critical orbit is concerned, we can restrict ourselves to take care of the time
when it falls inside (—9,4). It is reasonable to assume (HY P) at this moment due to ongoing
work by Kokubu et al. which will give a test algorithm in order to examine if a given {fs}ac
satisfies (HY P).

We believe that if we assume certain additional computable inequalities, f, will be shown to
be non-uniformly expanding, i.e. there exists A\¢ > 0 such that

e n
1111n—1>£fﬁ log|Dfz(2)| > Ae for ae z€l.

In particular, f, will admit an absolutely continuous invariant probability measure if f, is C3.
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0=00 =) =... = ¥-1)

Both B(N) and C(N) automatically true by (HYP) and (START).
(CE)n,, holds by (HYP) and (START).

n:i=N

No.
Is ) well defined? mppy End.
‘ Yes. ‘
n:=n+1

Define (") := U{w € P™ : w satisfies (BR)n }

'

Proposition B(n) is true? — End.

‘ Yes.
No.
Proposition F(n) is true? - End.

Yes.

4. PROOF OF THE MAIN THEOREM.

Due to the structure of the above flowchart, it suffices to show the next three:
Lemma 1. (HY P), (START), and (A) imply Proposition A(n) for anyn € N.
Lemma 2. (HY P), (START), (A), and (B) imply Proposition B(n) for any n € N.

Lemma 3. (HY P), (START), (A), (B), (C), A(n—1), and B(n) imply Proposition C(n) for
anyn € N.

We shall concentrate on the proof of Lemma 1, in which we will exploit the key notion of
binding introduced in [BC85,91].
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Abstract

We give a detailed proof of the Jacobson theorem by making substantial modifica-
tions of the argument recently developed by Stefano Luzzatto.

1 Introduction

In the study of dynamical systems, persistence of an invariant measure is an important

problem. More specifically, let f, : N — N be a map from a compact interval N to itself

which is parameterized by 4 € A C R One is interested in whether the set of parameter

values corresponding to maps which carry an absolutely continuous invariant probability

measure—a.c.i.p.—has positive Lebesgue measure.

2 A breakthrough in this direction is due to M. Jacobson [Ja] on the logistic family f.(z) =
-a.

Theorem (Jacobson). There exists a parameter set with positive Lebesgue measure for
which the corresponding map f, admits an absolutely continuous invariant pmbabdtty mes-
sure. In addition, a = 2 is a density point of such parameters.

The central part of the proof given in his paper is an inductive construction, for a posit.ive
measure set of parameter values, of an induced Markov map which implies the existence of
an a.ci.p. Since this pioneering work, the subject of persistence of an a.c.ip. in one-
dimensional families has been under intense research, and there are numerous alternative
proofs or generalizations of the Jacobson theorem available.

M. Benedicks & L. Carleson [BC85], [BC91] gave an alternative proof which involves
inductive parameter selection, aimed at attaining the Collet-Eckmann condition (CE), an
exponential growth condition of the derivative along the critical orbit [CE}, for the remaining
large parameter set.

On the other hand, J. Guckenheimer [Gu] and J-C. Yoccoz [Yoc91], [Yoc99] did not ask
for (CE). The proof of Yoccoz is similar in flavor to Jacobson'’s.

Contrary to these, M. Tsujii [Tsu93b] took a completely different approach. He aban-
doned the use of an inductive argument. Instead, he estimated the Lebesgue measure of
“bad sets” for which the corresponding maps violate (CE). Further, [Tsu93a] generalized
the Jacobson theorem to multimodal families with non-degenerate critical points.

The primary reason why vast attention has been given to just one theorem is that
necessary arguments are complicated and hence proofs cannot be simple, in spite of the
great importance of the statement.

1Thig paper was submitted as a master thesis of the author.
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Among those and other approaches, we would like to focus on the alternative recently
given by S. Luzzatto [Lu]. His philosophy resembles Benedicks & Carleson approach, in
the sense that it aims at attaining (CE) for a large set of parameter values by inductive
parameter selection. However, Luzzatto’s construction is both cleaner and more intuitive
than the original work of Benedicks & Carleson.

One key difference is the simplification of imposed conditions which selected parameters
are required to satisfy. To attain sufficient growth of the derivative along the orbit of the
critical point, we need to impose some conditions on selected parameters. In [BC91], they
require two conditions (BA) and (FA), which makes the inductive process considerably
complicated. On the other hand, Luzzatto imposes just a single condition (BR), which
effectively combines the previous two conditions.

Upon reading Luzzatto’s proof, however, the author was unable to reconstruct some of
the arguments not explicitly given in his paper. This read him to construct substantial
modifications of some portions of the proof.

The present paper provides these modifications of Luzzatto’s argument and establishes a
consistent proof. This attempt will hopefully help to clarify several works on Hénon family
[BC91], [WYO01], and reformulate their arguments in terms of Luzzatto’s approach.

The organization is as follows. §2 gives a statement of Luzzatto’s formulation of the
Jacobson theorem. §3 explains significance of revisiting one-dimensional argument in terms
of a future perspective. In §4, we briefly explain delicate issues in Luzzatto’s argument
as well as strategies for overcoming them. From §5 to §10, we basically follow Luzzatto’s
argument, but making substantial modifications. The entire proof is essentially divided into

‘two parts. In the first part from §5 to §7, we carry out inductive parameter selection to

obtain good parameter values satisfying BR(a,d). In the second part from §8 to §10, we
show that this parameter set has positive Lebesgue measure.

2 Statement of the result

We deal with the logistic family
fa(z) = 2% —a.

In what follows, we will introduce some system constants 0 < A< log2,a>0,:>0,k>0,
d > 0 and ¢ > 0, chosen in this order. For the parameter interval {2, := [2 —¢, 2] and each
j € N, define the map ¢; : 2, = [-2,2] by ¢;(a) := fi11(0) and let A := (-4,9).

Definition. a € 0, satisfies the bounded recurrence condition BR(a,d),, if

k
Y logla(a)™t < ak
im0

ci(a)EA

holds for all 0 < k < n. For convenience we also allow to say f, satisfies BR(a,d)n.

Theorem (Luzzatto). Define
0! := {a € O : f, satisfies BR(a,d)n for all n > 0}.
Then, for arbitrarily small a > 0, there exists § > 0 such that

0
imag =L

The Jacobson Theorem follows from this theorem, since BR(a,d) implies the Collet-
Eckmann condition as shall be seen later.




3 Historical developments surrounding the Jacobson the-
orem

One of the main branches in the theory of dynamical systems is to classify generic diffeomor-
phisms. In this direction, S. Smale conjectured in the early sixties that in any dimension,
the class of uniformly hyperbolic systems exhausts topologically almost all possibilities. But
it turned out to be false as proven by S. Newhouse [Ne70], J. Palis & M. Viana [PV] with
C?-topology, and M. Shub [S], R. Mafié [M], C. Bonatti & L. J. Diaz [BD] in any dimension
greater than 2 with C*—topology. Therefore, it becomes important to study the complement
of uniformly hyperbolic systems. Here, by uniformly hyperbolic systems, we mean a diffeo-
morphism whose non-wandering set admits an invariant splitting of the tangent bundle into
uniformly expanding and contracting directions.

One of the known mechanisms which destroy hyperbolicity is the presence of folding
where stable and unstable directions are mixed, or roughly speaking, homoclinic tangencies,
a counterpart of critical points in unimodal or multimodal maps.

In spite of the presence of the above mechanism, systems may support some degree of
hyperbolicity in terms of Lyapunov exponents and Oseledec decomposition. This broader
notion is called nonuniform hyperbolicity. In particular, the existence of a strange attractor—
a nonuniformly hyperbolic set attracting “many” orbits —implies sensitive dependence on
initial conditions in observable region, and hence an observable chaotic behavior. Such
systems are most likely meager in topological sense, due to C2-Newhouse phenomenon. This
means that measure theoretical persistence with respect to generic arcs of diffeomorphisms
should be discussed. In the famous case of Hénon families, many systems were shown to
have a strange attractor [BC91], [WY01]. However, as can be imagined from their works, it
is very hard in general to show this sort of persistence for given nonhyperbolic systems.

Note that the techniques developed in [BC91], [WYO01] are in many respects based on
one-dimensional arguments concerning the Jacobson theorem. This means one cannot com-
prehend their results without having one-dimensional techniques at one’s disposal.

4 Delicate issues to be considered

We mainly consider two delicate issues in Luzzatto’s argument. One is related to the induc-
tive construction of the nested sequence of parameter sets {£2(™ },>o and the other concerns
measure estimate of their intersection. For the sake of a precise description, some technical
terms shall be used prior to their definitions. In particular, the reader should be referred to
Lemma 5.3, 5.4 and §6.1, §6.2.

4.1 Return and escape, binding, bounded distortion

Let w®) € P®4), y;_; < v; be two consecutive (essential) returns or (essential or substantial)
escapes of w(*!). By the inductive construction, there exists a parameter interval wi-1)
P¥i-1) containing w(*). In other words, w(*) is obtained by deleting bad parameters from
w¥-1) which violate BR(a, 6),,. To conclude |(),, ™| > 0, it is crucial to estimate the
ratio |w(*)|/|w®-1)|. In general, the length of a parameter interval at n-th inductive step
gets smaller and smaller as the induction proceeds, and hence we need a bounded distortion
argument, concerning the map ¢; : Q. — [—2,2]. That is to say, the estimate of the above
ratio is reduced to considering the quantity

lej (w™))|
es O

for some appropriate j € N. By the construction, one can easily see that if v;_, is either
an essential return or an essential escape, then c,,_, (w*-*)) occupies an element of the
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partition Z+. Hence we can easily estimate the length |c,,_, (w(*-1))|. However, this is not
enough. |¢,,_, (w(*-1))] is too small to estimate the ratio.

In the case where v;_; is an essential return, Luzzatto has overcome this “small denom-
inator problem” by showing that the bounded distortion property holds until the end of a
binding period [Lu; Lemma 5.2], and by deriving a uniform expansion property during the
period [Lu; Lemma 4.3]. Now, a binding period p;_; is associated to the essential return
vi—1, and some derivative growth during the period contributes to uniform expansion of the
size of the image via ¢,,_,+p_,+1, Which is much greater than |c,,_, (wi-1))|. Namely, we
have .

|CV.--1+p.--1+1(W(”‘_1))| 2 ICV4_1(W(W_1))|8E > lewi, (‘*’(w—i))l,

where 8 = a/A K 1.
On the other hand, if v;_; is an essential escape, the same argument does not work in the
context of Luzzatto’s argument, since a binding period of essential escapes was not defined.
In order to fix this problem, we have defined a binding period of essential escapes and
modified the bounded distortion argument [Lemma 9.1] so that it can deal with essential -
escapes. What we want to concude is the following:

Proposition. Let w € P, v an essential escape, and p be the corresponding binding
period. Then, there exists a constant D = D(8) such that

1c4(a)]
1o <P

for anya,b€w and 0 < k <v+p+1. In addition, D stays bounded as 6 — 0.

There is no obstruction to defining a binding period of essential escapes, because the
notion of binding or a binding period, a replication process of the critical orbit introduced
in [BC85], is purely topological, and both return and escape are topologically equivalent in
the sense that at these times the orbit of the critical point comes close to the critical point.

There is, however, a serious obstruction to extending the bounded distortion argument
to essential escapes. To illustrate this, let ' < v the last free return before v and p' be its
binding period. We need to find a proper upper bound of the quantity '

~ lej(w)l
A e @

Suppose that c,(w) is very close to the boundary of At = (—¢*,4"), namely, |¢,(w)| ~

- (e~Tet —e~(rs++1)/r2, . Then, an upper bound of the numerator is given by

le;W)] < e, ()] ~ I (et — e (rer )y 2,

One can easily see that the right hand side has the order higher than 4, since d is taken after
¢ is specified. On the other hand, since » is a return, ¢;(w) may come close to the boundary
of A for some ' +p' +1 < j < v — 1, and hence the denominator is not compatible with
the numerator as § tends to 0, which lea.cls to failure of the argument.

This problem is overcome by specifying the above j as an inessential escape with its
binding period, and accordingly decomposing the above sum into pieces to estimate them
one by one. More specifically, let 41 < p2,--- , < py be all inessential escapes between ' +p/
and v and p, (k = 1,---,u) be the corresponding binding periods. The sum is decomposed
as follows: '



i W)l _ i ej(w)l

infaew |cj (a')l - infﬂEw Ic.‘i (a)l

j=v'+p'+1 j=v+p+1

P S R 10 I S 1))

inf,e. [ci(a)] infaew fej(a)]’

k=1 j=ps+pr+1 J=put+pu+l

which enables more detailed analysis to obtain a proper distortion constant.

However, we need to consider how other parts of the entire argument in [Lu] are affected
by these considerations. For example, there is a chance that what Luzzatto regarded as an
inessential return turns out to be a bound return associated with the previous essential or
inessential escape (we have observed that such cases do not happen in reality [Sublemma
7.1.3]). In all, it is necessary to examine how several types of these recurrent times are
distributed in the history of a time sequence. This shall be thoroughly discussed in §6,§7.

For convenience, we make it a rule to refer to both essential and inessential escapes as
escapes, in order to make clear the difference from substantial escapes.

These crucial arguments, together with other minor modifications, will allow us to deal
with escapes and returns similarly when estimating the Lebesgue measure of parameter sets.
It seems difficult to find another way to deal with escapes. Finally, we stress that substantial
escapes must be treated differently.

4.2 Extension of the period during which BR holds

Suppose that f, satisfies BR(a, 6); and ci(a) € (—24*,26*). After the recurrence, the orbit
keeps track of its initial piece during the binding period. Hence, it is expected that f, satisfies
BR(a,8)+p- This is, however, not true. Nevertheless, we can ensure that the period during
which BR holds is properly extended, in order to proceed the inductive argument. This is
formulated in Lemma 5.4. The difficulty for proving the lemma is to find a way to cope
with the situation in which two bound orbits fall separately, one inside the neighborhood A
and the other outside A. This can be manipulated by introducing the regularity of bound
returns and weakening the condition BR. More specifically, we treat both BR(a,d), and
BR(5a, §),, from gituation to situation.

We remark that a similar argument, suggested by a comment made by Luzzatto [Lu;
Sublemma 5.1.3] works. He argued that one can avoid the above problems, by slightly
modifying the definition of BR, namely one should shrink the critical neighborhood A as
the induction proceeds. However, even if this modification were valid, it does not work in
higher dimensional cases. For instance, consider the Hénon family

Hap(z,y) = (1 — az® + y,bz).

In order to have an analogy with one-dimensional argument, one must shrink the dissipation
b > 0 as much as necessary, keeping the size of a neighborhood of critical regions. These
arguments are seen in [BC91] and [WYO01].

5 Preliminary lemmas

Let B, denote one of the fixed points of f, bigger than the other. Put

K, := n fa_n([‘ﬁa,ﬂa])a

n>0

which equals [—8,, B,) if and only if a € [-1/4,2].

a3
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5.1 Hyperbolic behavior
Lemma 5.1. For all0 < A < log2 and § >0 small, there exist constants € > 0 and C5 > 0

such that the following hold for any a € Q.. If x € K, satisfies z, fo(z), -+, f7z) € A,
then
(F2)(2)] > Cse™ ¢)
In addition, if |f2(z)| < |z|, then
(f2Y @) 2 e @

Let . > 0 be such that + < 525~ < 1. If |z|, | f2(z)| < 26*, then we have

(Y @) > 5™ 3)
Proof. Let g; be a continuous map from [—1, 1] to itself defined by
g2(0) = sgn(6)26 — 1.
Then f; is conjugate to g2 via a homeomorphism

7o
2 )

i.e. g2 = h~'ofaoh. Let go = h~ o fy0h|s-1(x,). Then by the chain rule

ovia)) = (a2 (h ) G @))
(2 @) = g2 (h~ @) - et

hi[~1,1) = [-2,2] : h(6) = 2sin =

Now we estimate the first term. Define

D(e,d) = |J axh(Ka\A)
a€N,

and let G(a,0) be a C? map from D(e,d) to itself defined by G(a,8) = g.(f). For each
6 € h"1(K, \ A), we use the mean value theorem to obtain

aag,a) _aGg;’a) =1650) 5@ < sup (00046 € <eM,

a,0)€D(e,6)

where M > 0 is some constant. Hence, for any given 0 < X < log2, we can find € such that
log(2 — eM) > A. For such ¢ and a.rbltra.ry a € ., we have |(g,)' (0)] >2—-eM. On the
other hand, the assumption that z,--- , f*~(z) ¢ A means h~!(z),--- ,g" (A~ (z)) €
h~1(K, \ A). This fact and the chain rule give |(g7)'(8)| > e*". '

Next we estimate the second term. By the fact that A’ is an even function, A’'(6) > 0 on
(-1,1), A"(0) = 0 and A"(#) < 0 on (—1,1), we immediately get (2). Concerning (3), let §
be sufficiently small so that |h'(h=1(2))—A' (A= (y))| < n/4if |z—y| < 26*, and A'(h~1(z)) >
7/2 if |z| < §*. Then |f2(z)], |z| < 26* implies [h'(h~'(f7}(z))) — h'(h™(z))| < m/4. By the
triangle inequality we have

W' (g5 (A~ (2)))]

W@E-1@)] T2



It remains to show (1). One can easily see that there is nothing to prove if the orbit

stays in the region {|z| > e*/2}. Suppose that |fi(z)| < e*/2 for some i < n. Then we
clearly have |f?(z)| < 2 — 62. Therefore, by the properties of h as above, we can conclude

B (gz (@) o ['(h1(2 - 8)]
G C)! I LA G (V)]

As a consequence, we may set

= cos gh"l(2 - 82).

Cs = min{cos %h“(«i2 -92), 1/2},
which is equal to cos Fh~1(62 — 2) for small 4. O

The proof is very specific to the real quadratic family, but a similar conclusion holds for
maps whose critical point is non-recurrent. See [DV].

Corollary 5.1.1. For all sufficiently small € > 0, a € Q. and k > 1 such that f, satisfies
BR(a,6)i we have

[(FE+1Y (cola))] 2 XH+1)
where A := X — 2a.

Proof. Let N(e) € N be large so that we have C;(3.5/€*)V(©) > 1, and |(f3)'(co(a))| > (3.5)°
for any ¢ < N(e), a € Q.. Let 0 < N(e) < »; < --- < v, < k be the sequence of times such
that ¢,, (a) € A. By the chain rule

(a1 (co(@)) = () (co(@))(f2* M) (e (@))(£22 ") (cun (@) -+ -
s (f2e 1) (eve-r (@) (£ ) e, (a)).

Letting vy := N(€) we have

[(F2"2) (eny (@))] 2 =1+ D) £ (¢, (a))]

fori = 1,---,8, by (2) of Lemma 5.1. Concerning the last remaining part, we use (1) of
Lemma 5.1 to obtain

(FE+) (e, (a))] 2 CoeMbH =t fi(c,, ().

Putting these together yields

I(£5+1) (o(@))] 2 C5(35)¥ X M+1-N=+=D T | (e, (a)
j=0
S hlk+1) g=sh g—ak 5 A(k+1) g -2ak 5 o(A-20)(k+1)

where we have used the following:

=1

8
sh < slogé! < Zloglc.,J‘l < ak.

Corollary 5.1.2. For the system constants including €, we have
(F5+1Y (co(@))] > eA-10200k+),

provided f, satisfies BR(5a, ).
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5.2 Similarity between critical curves evolution and phase space
dynamics

Lemma 5.2. For all a € Q. and all k > 1 such that f, satisfies BR(5a,68); we have

1 |Chs1(a)]
2 S E Y @) =

Proof of Lemma 5.2. For each 1 < i < k+ 1, define a map F; : Qx K, = K, by a recursive
formula Fi(a,z) = fo(z) and Fi(a,z) = Fi(a, fi-1(2)). Letting z = co(a) we have

ci(a) = 8, Fi(a,c0(a)) = BuFi(a, £z (co())) = —1 + fo(ci-1(a))ci_y (a)-
Applying this equality recursively for i = 1,--- ,k + 1, we have

- 02+1 (a) =1+ fo(c(a)) + fa(ck(a))fa(ck—l(a)) +-
-+ fa (c,,(a))f' (ca-1(a))---fo(cr(a)) falco(a))-

By the Corollary 5.1.2, it is possible to divide both sides by (f*+!)'(co(a)) # O and we
obtain
k+1 1

ck+1 (@)
T Y@ T Z T (co(@)’

Recall that we have chosen a large number N (e) satisfying (f})'(co(a)) < —(3.5)* for any
i < N(¢). Therefore we have N(¢) < k + 1 and, if necessary, we can make N(e) larger by
letting € small 80 that
o0
e-(—da)i ¢ 1
. i=N(e)+1 10

Then

|ck+1(a)] plsy 1 AL, 1
[(£3¥1)" (co(a))] 2 Z (F1)(cola)) ~ 2 (f5)(co(a))

i=N(e)+1
Applying Corollary 5.1.2, the right hand side of the above can be estimated from below by

> 3 5% — e~
& (£ (i) (co(a)) =N (£3Y'(co(a)) i=N(e)+1
>1_235—‘l_ i e—A>1__2__..1_>1
21-2 3. SR R TE

i=N(e)+1

An upper bound is easily obtained by

1y () x
Y (@) +Ze <2

O

Corollary 5.2.1. Let w C 2, be an interval such that any a € w satisfies BR(5a,0)x. Then
foralllgingk+1thereexiatsféwmchthat :

U eo < 2 <o



Proof. This is an immediate consequence of the previous lemma and the mean value theorem.
By Lemma 5.2, the map ¢; is a diffeomorphism on w. Hence, we can consider the inverse
c; 1 and by the mean value theorem, there exists some &; € w; such that

lw;l = I(cies ™)' (€l lwsl-
Letting £ := ¢; ' (&) and by the chain rule we have
lwil _ 1€5¢€)]
lwsl — |e;(€)]
Applying Lemma 5.2 again and the chain rule gives the conclusion. O

Corollary 5.2.2. Suppose the system constants X, @, 1,0 have been specified. One can choose
€ > 0 in such a way that |cx(a)| > e~ holds for any a € Q. satisfying BR(a, ).

Proof. Let M(8) be the minimum integer such that e~*M(®) < 4. In other words, M(d) is

the first time when f, satisfying BR(a, ) (s) can have a return to A. According to this

M (§), choose € so that
2-2.4¢>e ™ for j=0,---,M(s) - 1.
One can check that this is always possible for arbitrarily large M (8). If i > M(J) and f,
satisfies BR(a, 8);, it is easy to see |c;(a)| > e~*%. Consider the case i < M(d). By the mean
value theorem ) )
|72(0) - £371(0)| = |ei(a) — ci(0)] < € sup |ci(a)l-
By Lemma 5.2, it holds that
e sup |c}(a)| < 2¢ sup |(f1) (co(a))| < 2- 4¢,
o€, aEQ,
and therefore we obtain
lei(a)] > Jei(0)] —2- 4e >2—2-Le > ™.

5.3 Binding

The next lemma introduces the notion of binding. This notion and Lemma 5.1 are key
ingredients to ensure derivative growth along the orbit of the critical point. The derivative
grows exponentially as long as the orbit stays outside A. Once the orbit falls inside A,
the derivative may become very small. However, loss of the derivative is to some extent

compensated by shadowing some initial piece of the orbit during which the exponential
growth has already been guaranteed.

Lemma 5.3. Suppose that cx(a) € (—26*,28*), and f, satisfies BR(a,d)s. Introducing new

system constant 0 < k < 1, we can specify some integer in the following way:
p(a, k) := min{i € N : |y| > xe~2%}.

Here, v := [0;ex(a)], v; = fit'(7) and we denote by [0;ci(a)] the interval whose two
endpoints are 0 and cx(a). Then p = p(a, k) has the following properties:

loglex(@)l ™ <p < Sloglea(@l™, @
1Y (@) 2 lex(@) P, (5)
(Y (@) 2 e R, (6)

where B := a/A.

a7



We call p(a, k) the binding period associated to the recurrence ci(a). A proof requires
the following distortion lemma during the binding period.

Sublemma 5.3.1. Suppose that cx(a) € (—24%,26*) and that f, satisfies BR(c,d). Then,
Jor all yo, 20 € 0o and 0 < i < p+ 1, we have

|(fa)'(z0)] 1 _
[(£3) (wo)| ~ e"p(u ‘—e-a)z) : Dy,
where $ := min{p — 1,k}.
Proof. The chain rule gives

14

[[CAREIR =SV ACH N~ I ACH R At
175 (o)l = <1l AN jI}o T i) |

On the other hand, by the mean value theorem, |f.(2;) — fi(y;)| < 2]v;|- Therefore we have
fa (zJ) f.. (v)

j=0

(<o 54 5500)
oo (ol ) (S

=0 §=0

It suffices to prove E,—o o < (1 — e=®)~2. On the other hand, by the definition of

the binding period, we have |v;] < xe % < e~2%/. Hence we have the conclusion if
ly;l > (1 — e *)e*. The last inequality easily follows from Corollary 5.2.2, because
il 2 les = wil 2 lej| = ly;| and ly;] > lej] = byj] 2 €79 — 7237 > e (1 - e79). 0

Proof of Lemma 5.3.

(4)
By the the mean value theorem, there exists £ € v such that

511
Ke=2 > | = |(F2)'(co)] - &‘-f’}—)),%mt > My (a)2D3".

Here, the first inequality follows from the definition of the binding period. The second is
by virtue of Corollary 5.1.1 and the distortion estimate of Sublemma 5.3.1. Taking the
logarithm we get

. _ 2log|ck(a)|?
< — N
P> T2

where the second inequality is true if 4 is taken sufficiently small. More specifically, it holds
as long as —2log8*(A~! — A~!) > logD, + log x — 1. Finally we obtain

2log |ex(a)|
<22 1<l .
< 3 1< Aak <k
For the lower estimate, note that p = $ + 1 by the above inequality. By the relation
lvp| > ke~29P, | f.(2)| < 4 and the mean value theorem we get

#cr(a)’Da 2 |(f2)'(c0)|Dalvo| 2 |79l 2 Ke™2®

+logD, + logk <

2log|ck(a)| !
——- 1,

Hence we have

5 2loglee(a)| ! —logD, + logx -1
> ogd + 2a > log [cx(a)| ™,

where the last inequality is true as long as —log26* > 51%3+3e_ . og Ba,




(5)

For the above £ € o, we have

(2 (ee(@)] = |(fa) (e (a))|}—§%';§—:§§—§}|(fz)'(ck+l<a))|

> 2en(@) g2 » 2 >
Do 7ol |ck(a)|D D,
where the last inequality holds because e=2°P > e’ loslex(®)™ = |¢,(a)|%’. Recall that

log |ck(a)|~t. Therefore, we obtain the formula as long as 4 is sufficiently small in
such a way that 2% > (264)%.

25 (@) 1,

(8)
Use |c(a)| ™" > Ap/2 to get

—2ap Ap/3—2ap
2xe 2ke o2

'(fﬁl) (c,,(a))l = Ic (a)lD 2 D, 2 ’

where the last inequality holds if —(3 — 2a)log26* > log Do —log 2k + §. m|

5.4 Extention of the period during which BR holds

Lemma 5.4. Suppose that ci(a) € (—26%,28*), f, satisfies BR(a,8)x and p be the corre-
sponding binding period. Then f, satisfies up to BR(5a,0)x+p-

This lemma is very crucial for our inductive argument. During the binding period, the criti-
cal orbit duplicates its initial piece. Namely, c¢(a) and c;—k-1(a) are very close to each other
for ¢ € [k,k + p]- Thus we are liable to argue that c¢(a) € A if and only if c¢—x-1(a) € A,
and as a result, the total sum of bound return depths is essentially almost the same as the
sum of return depths up to p, which implies BR(a, 0)+p. However, this argument is wrong.
Indeed, we have the case where c¢(a) € A, but c¢—k-1(a) € A. A way to overcome this
problem is to show that this kind of unfavorable situation does not occur so frequently and
when it occurs, the corresponding two bound orbits fall near the boundary of A. In other
words, it takes more than O(log §~!) times of iteration to go from one unfavorable situation
to the next one. If this is true, logé~! multiplied by possible times of the unfavorable sit-
uation gives an upper bound of the total sum of the bound return depths in question. To
illustrate this, let us make an additional classification of bound returns.

Definition. Let a € £, and k be as above. We say a bound return ¢ € [k + 1,k + p] is
regular if cc_x—1(a) € A. Otherwise we call it irregular.

By definition, irregular bound returns seem to be located near the boundary of A. This
observation is justified by the following

Sublemma 5.4.1. Let a € Q, ck(a) € (—248*,28"), f, satisfies BR(a, ) and { > k be the
first bound return. Then we have e~2¢(C—*%) < §2. Therefore, any irregular bound return is
located in the interval [6 — 62,68] or [-8,—5 + &2).

Proof. This is never an immediate consequence of the simple definition of irregular bound
returns, because 4 is taken sufficiently small after £ < 1 has been fixed. We must analyze
how small is the exponential term e~2%¢ contributing to an error bound during bound state.
For given a and appropriately chosen small 4, let € shrink so that, for any a € (2, a part of
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the critical orbit fi(0) (i = 1,---,—logd/a) stays in a neighborhood of 2. I the length of
the binding period associated to cx(a) is smaller than —logéd/c, there is no bound return
by the definition. Otherwise, we clearly have e=22(¢—k) < g=2a(-logé/a) — 42, O

Sublemma 5.4.2. For any a € Q) and z € (—26*,25*), let
s(a,z) := min{k > 2: f¥(z) < 1}.

—1lo
Then we have s(a,z) > —R-g-%ﬂ.

This sublemma was inspired by Tsujii [Tsu93b; Lemma 3.1], although the direction of the
inequality has been reversed. The critical orbit stays away from the critical point for a
while after any recurrence. How long it stays far away from the critical point is essentially
determined by the depth.

Proof. Note that —f,(2) > f2(z) > --- > £ 5 1 > 522 () and put J =
[f2(z), —fa(x))- Then it is easy to check that |J| < 422. On the other hand, by the definition -
of s(a, z) and using fa(z) = fo(—2), we have |f2**)-2(J)| > 1/2. Therefore we obtain

) a(a,z)—2
(s(a,z) — 2)log4 > log ﬁ-—‘—Jl——(ﬂ > —log 822,

which implies the inequality. 0
Combining these two sublemmas yields the following.

Corollary 5.4.3. The total number of possible irregular bound returns during [k + 1,k + p)

is less than 1.5 - [ﬁ%‘.—zr], where [ | denotes the integer part.

Proof of Lemma 5.4. We want to prove 35?1, (ci(a)) log |c;(a)|~! < 5a(k + p). By the

i=1

assumption BR(a,6)s, this is equivalent to showing

k+p .
> 1alei(a))logles(a)| ™t < Sap.
7 i=k+1
Divide the sum into two parts acdording to regular or irregular bound returns: .
ktp :
Y 1a(a(e)logla(a) ™ = Y la(ci(a)loglai(a) ™!
i=k+1 k+1<i<htp
k:regular .
+ Y 1a(cia)log les(a) .
M41Ki<h+p
k:irregular

First, we estimate the regular part. Take x := min{5%, 3}, where A := }_‘,?-20 e . By
the definition of the binding period, we have |ci(a) — ci—k-1(a)] < xe~22(=*-1) for all
k+1 < i < k+p. Using the triangle inequality and log(1 + z) < z for z > 0, we obtain
Kke—2a(i-k—-1) -1

lci—k—1(a)l
m—?a(i-—k—l)
b2 (@)] — R~ 20AD

10g (@) < Ioglei-a-1(@) " +logl1 -

<log|ci—k-1(a)| ™t +

By Corollary 5.2.2, we have |c;_x—1(a)| > e“"“%k‘l), and as a result,

loglc,-(a)|'1 <log lci—k—l(a)l_l + 2xe—o(i—k-1)
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Recall that only regular bound returns are now concerned. Hence we obtain

p—1
3 1a(a(@)loglei(@)| ™t £ 1alci(a) loglei(a)| ™t + 244,
B t1<ihtp =0

k:regular
which is less than a(p — 1) + a = ap. For the irregular part, it follows that

3aklog2

Y la(ei(@))loglei(a)| ™t < 1.5- plog2 < —)‘—g—
b+1<igh+p
k:irregular

from Sublemma 5.4.1 and Corollary 5.4.3. Putting these together yields

k+p
3aklog2
o Z 1a(ci(a))loglei(a)| ™ < ak + -q—;-)g— +ap < 5a(k + p).
i=1

6 Getting the induction started

Now the system constants \, @, ¢, & have already been fixed. The subsequent argument is
valid for any sufficiently small §. Without loss of generality, we may assume r; := log i le
N. Let rj+ := [tlogé™'] and A¥ := (—e~"s+,e "s+) ,where [ | denotes the integer part. .
0<:< g% <landé <1limply A* > A. Forr > rs+ > 0, define I := [e™",e™™],
I_, := —I, and subdivide each I., into r? intervals with equal length. They are denoted
by Iy s, where s € [1,7%]. Define ; '

Ti={lipe:r>r5,1<8<7%)

and
Tt i={Iips:r>15+,1<8< r?}.

Namely, Z+ and T are partitions of A* and A respectively.

We are going to construct inductively a nested sequence of parameter sets (¢ =: Q(® >
QW 5Q® 5 ... and partitions P(™ of (") with the properties that : '

e any a € Q™ satisfies BR(, 6)n;

e any P(™ has the bounded distortion property.

The procedure is carried out as follows. Suppose steps have been done up to n — 1.
Namely, we are given Q"1 and its partition P("~1) such that any a € Q("~1) satisfies
BR(a,6)n-1. Then, we define a refinement P of P"~1) via c,, according to the partition
T+, and from it discard bad elements with strong recurrence. Note that this refinement
process is justified by Lemma 5.2, which states that ¢, is a diffeomorphism, and hence
especially one to one on each element w € P("~1). The set of the remaining elements is
denoted by P{®). We put

0 .= U w.

weP)

6.1 Initial step

For fixed ¢, we call no(e) the first chopping time if it is the smallest integer such that ¢n, ()
contains at least two elements of Z+. We construct subdivision of ¢n,(f2) according to the
partition Z+. Pull back via ¢, of this subdivision induces the partition P() of Q.. For
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simplicity, ¢n,(w) is denoted by wn,.

Definition. We say ny is
(A) an essential return of w € P(™) if w, N A #0.
(B) an essential escape of w € P™) if w, NA = and wy,, NAT # 0.
(C) a substantial escape of w € PO if w, N A+ = .

Note that there still remains some ambiguity of the above subdivision, and hence we
need to set some rules:

(i) surplus treatment: As far as we are concerned with the case inside A¥, subdivision
is carried out in such a way that each subinterval produced by the subdivision of ¢, (Q,)
contains a unique element of Z*.

(ii) boundary treatment: There is no longer the partition Z+ defined outside A*. To
cope with the situation in which the image lies beyond the boundary of A+, we obey the
following rule. If the length of the connected component of ¢, (2¢) \ A* does not exceed &*,
then this part is glued to the adjacent marginal element of Z+. Otherwise, the component
is regarded as one independent element of the subdivision. :

In the cases (A) and (B), wn, contains a unique subinterval of the form I.,,. We call
this r the depth of w.

If there is no fear of confusion, we also allow to refer to w € P(™) as an essential return,
essential escape, and so on.

We discard elements Plno) with strong recurrence. This is done in terms of the cor-
responding depth. Namely, elements with their depth greater than ang / 16 are discarded.
Essential escapes are not thrown away as long as ¢ is so small that logd—! < ang(e)/16.

F)‘or later use, the function which corresponds to each w € P() its depth is denoted by
Eme), Put

Po) .= {oy € P ; £n0) () < ang/16}

and
Qo) = U w.
uE'P("O)

The binding penods are associated to both essential returns and essential escapes by the
following formula

b= p(wsnO) = infaewp(a, nO)
By definition, any a € w satisfies BR(a, d)n,, and hence up to BR(3a,8)n,+p by Lemma 5.4.

6.2 General step
We shall explain how to proceed the inductive step.

Definition. Let w € P(™). We say n > ng is the chopping time if the following are true:

(i) wn contains at least two elements of the partition Z+.
(ii) wn is not in a bound state.

Here, we say wy is in a bound stateif ng +1 < k < ng + p(w,ng). Suchkaswy NA #0is
called a bound return.



A non-chopping time means a time which is not a chopping time. At any non-chopping
time, no parameter needs to be excluded. We say n is an inessential return of w if n is a non-
chopping time, w, not in bound state and w, N A # @. Similarly, we say n is an inessential
escape of w if n is a non-chopping time, wy, not in bound state, wn C At but wa N A = 0.
To both inessential returns and inessential escapes, we also associate the binding period by
the above formula. Therefore the notion of a bound state and a bound return makes sense
in these cases. ’

At any chopping time, w, is again subdivided according to the given algorithm as above
and n is also called an essential return, an essential escape or a substantial escape accordingly.
Among the subintervals arising from the subdivision at the chopping time, those with weak
recurrence constitute P(™ and Q™. '

The binding period is again associated to each essential return or essential escape in P,
and hence the notion of a bound state, a bound return and a chopping or a non-chopping
time makes sense in the general case. Briefly, we have the following general expressions.

Definition. Let w € P{™. A time n is called:

(A) an essential return if there exists w' € P("~1) such that w arises out of the chopping
of w' € P at n with w, NA # 0.

(B) an essential escape if there exists w' € P(™1) such that w arises out of the chopping
of w' € P("1) at n with w, NA =0 and w, N AT # 0.

In both cases wy, contains a unique subinterval of the form I, ,. We call the associated
r the depth of w. If we want to be more specific, we say an essential return depth and so on.

(C) a substantial escape if there exists w’ € P»~1) such that w arises out of the chopping
of ' € P("1) at n with w, NAT = 0.

(D) an inessential return if w € P{»~1 (hence n is a non-chopping time of w) and wy, is
not in bound state, w, N A # §.

(E) an inessential escape if w € P("~1) (hence n is a non-chopping time of w) and wy, is
not in bound state, w, N A = @ but w, C A™. :

In the last two cases we also define the depth r of w to be r := max{i € N : I+;Nw, # 0}
An essential and inessential return are called a free return.

6.3 Structure of a time history

Each element w € P™ is associated with the time history up to time n, which consists
of several kinds of returns and escapes. This subsection gives a rough description of how
returns and escapes are distributed in the time history.

Between two consecutive escapes there is a sequence of essential returns. Moreover,
there are some inessential returns in a row between two consecutive essential returns. It
is possible to show that a return that can follow an essential or a substantial escape is an
essential return. This fact is crucial for inductive verification of BR(a, 8),, for 2. A formal
proof is given in Corollaries 7.1.1.1 and 7.1.1.2, and hence we sketch the proof for the time
being. Let w € P(™ and n be an escape of w. Then wy, occupies at least one element of the
partition Z+ \ Z, which grows exponentially in size until the next return (by Corollary 5.2.1)
to attain sufficient length extending across more than three contiguous partition elements
of Z. This implies no possibility of an inessential return. This observation is not true in the
case of inessential escapes. There is no particular rule governing an order relation between
inessential escapes and returns. The next return of inessential escapes can be an inessential
one. All we can say is that an inessential escape has no bound return.

103
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As an immediate corollary of the description given above, it follows that inessential re-
turns are forbidden between two consecutive escapes if there is no essential return between
them. Let us summarize some crucial facts on a time history:

e a return that follows essential or substantial escapes is an essential one — [Corollaries
7.1.1.1, 7.1.1.2]; A

e no bound return follows any essential escapes [Sublemma 7.1.3];

e no bound return follows any inessential escapes [—].

7 Verification of BR(q, ),
In this section we will verify that any a € Q(™ satisfies BR(c, &n , ﬁnder the next
Inductive assumption: Forall 0 < k< n—1, any a € Q¥ satisfies BR(a, 6)%.

First, let us recall the inductive construction of Q(™) and the associated partition P(").
Suppose steps have been done up to time n—1. Then, we define a refinement P of P(n—1)
via ¢n, and from it discard bad elements which have strong recurrence and possibly violate
BR(a,8)n+1- This is done in terms of the total sum of essential return depths. Namely, the
formal definition is

P = {w e P™ : €M (w) < an/16},

o .= U w,

weEPn)

and

where
| £® P N
is a function which corresponds to each w € P(™ the total sum of essential return depths
up to time n. Similarly, define Z("), B R(" ag functions which give the total sum of
inessential return depths, bound return depths and all return depths of each w € P
respectively. By definition
R(ﬂ) - g(ﬂ) + I(") + B(ﬂ)_

For our purpose it suffices to prove the abundance of essential return depths.

Proposition 7. Assume that any a € Q%) satisfies BR(c,8)i for i 0 < k <n—1. Then
we have
R®) (w) < 86®) (w)

for each w € P™ and 0 < k < n. In particular, any a € Q™ satisfies BR(a, 6)p -

That is to say, the value £*)(w) accounts for more than 1/8 of the value R*®)(w). It is
essential that this ratio is bounded away from zero.

7.1 Preliminaries on time histories
To prove the above proposition requires the following preliminaries.

Sublemma 7.1.1. Suppose a/A = < 1/36. Assume any a € Q¥) satisfies BR(a, 0) for
al0<k<n-1. Letwe PW,0<v<n—1 and suppose that v is an essential return or
an essential escape of w with the depthro. Set po:=v andlet po < p1 < < py <n -1



be the mazimal sequence of the inessential returns before the subsequent chopping time. Let
r1,--, Ty e the corresponding inessential return depths. Then

u

E ri < }-To.
£ 2
i=1

In particular, letting ¥ be an essential escape, we get the following

Corollary 7.1.1.1. The nezt return of any essential escape must be an essential return.
In addition, a similar conclusion holds for substantial escapes.

Corollary 7.1.1.2. The next return of any substantial escape must be an essential return.

Proof. of Corollary 7.1.1.2. This is an immediate consequence of the expansion outside
the critical neighborhood A (Lemma 5.1), and the definition of a substantial escape. Let
w € P™ and v be a substantial escape of w. Assume that g > v is an inessential return
of w. By Lemma, 5.1 and Corollary 5.2.1, we have |wy| > |w,|/4 > é'/4. However, the right
hand side exceeds the length of the union of the two contiguous marginal elements of Z,
which is a contradiction. O

Remark. As mentioned earlier, these corollaries are crucial in verifying BR(a, 6)n. They
mean that we can take into account all inessential returns by considering only all essential
returns. Recall that, logically, an inessential return can follow an essential return, an essen-
tial escape, or a substantial escape. But, we have guaranteed that the latter two possibilities
cannot occur in reality.

Proof of Sublemma 7.1.1. By (5) of Lemma 5.3, we have
I(F21) (Cpe (@))] 2 leui (@)|38E > 1080,

Now, clearly |cy, ., (a)| < |€u+pi+1(a)], and therefore we can use (2) of Lemma 5.1 to obtain

|(,f,‘,"'+‘"(‘“+"‘+1))'(c,,,.+,..+1(a))| 21

Putting these estimates together for i =0,--- ,u — 1 and using the chain rule give
u
(21 e @) 2 exp (1 - 68) )
=0

By the assumption p, < n — 1 and the Lemma 5.4, any a € w satisfies up to BR(3a,8) 4, +p.-
Thus we can use Corollary 5.2.1 to obtain

1 u
42 |wy4p+1] 2 zlw,.olexp((l —-68) E "i)-
=0

Shrink & > 0 in such a way that e"s+/4/rzi > 16. Since pq is either an essential return or
an essential escape, we have |w,,| > ™™ /r3 > 16e~57/4 and

16e™57/4 < || < 16 exp((Gﬂ -1) Zr.-).
=0
Taking the logarithm we obtain
= 5 3
ri £ =70 < 370,
;Z.; 4(1-68) 2

by using B < 1/36. m)
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Sublemma 7.1.2. Assume any a € Q*) sqgtisfies BR(a,0)x for all0 < k < n—1. Let
w € P and suppose that £ € [0,n — 1] is a return of w with the return depth r. Let p > 0
be the binding period of €, £ < (1 < --- < {, < €+ p be all of the bound returns of w, and
r1,-+-, Ty the corresponding bound return depths. Then

hd 4
Yom< (ma + -X)r < 3r.

i=1

Proof. Let w = [a1,a2]. The image ¢, (w) does not contain 0 because any a € w satisfies up
to BR(5, 0)¢+p by Lemma 5.4. In addition, by Lemma 5.2, ¢; is a diffeomorphism on w for
j=1,---,6+p+ 1. Hence, either ¢ (a1) or c¢(az) gives the corresponding bound return
depth. Which of the two actually gives the depth depends on the kneading sequence up to
¢;. From the proof of Lemma 5.2, we have

@) .
(5 (co(a))

if f, satisfies BR(5a,6);. Here, as is usual in the kneading theory, the symbol L denotes

the left side position relative to the critical point 0. By the above inequality, c¢, (a1) gives

the corresponding bound return depth if the kneading sequence up to ¢; has even L and

cc:(a) < 0, or the kneading sequence up to (; has odd L and c¢;(a) > 0 for @ € w. Namely
we have

0,

r; < lOg 'c(-' (al))l-1 +1< 2103 |cCa (al)l_l

in this case. Otherwise, ¢, (a2) gives the corresponding bound return depth; and similarly
we have r; < logeg, (a2))|~! + 1 < 2log|eg; (a2)|~!. For i = 1,2, put

A; := {1 < k < v:c¢(ai) gives the corresponding bound return depth}.

Putting these together yields
Y m< ) 2logleg(an) ™t + Y 2logleg (a2)
1<igy i€A; i€Ag
icregular

Applying the same estimates in the previous proof of Lemma, 5.4, we have

Y 2loglec (@)™ < Y 2logleg-g-1(a1)| ™t + 264,
i€A i€A;

and similarly

> 2loglec (@)l < Y 210g legu—¢-1(02)| ! + 26A.
€Az i€A;

Recall that we are concerned with only regular bound returns. Hence ¢c¢,_¢—1(a1) € A and
by BR(a,d), we have

Y ri<dop+4sA <85 +4xA.

, A
,1Kigv
ireg

If x is chosen as in the proof of Lemma 5.4, this implies

Z ri <8£;—+4~A<2a+8%‘r < 10ar.
1<i<y
k:regular

Concerning the irregular bound returns, we trivially have

Z r; < %r.

. 1Sige
f:irre;



Putting these together we obtain the conclusion. O

We can show that as far as bound returns are concerned, we only need to consider
essential or inessential returns.

Sublemma 7.1.3. A bound return follows neither essential escapes nor inessential escapes.

Proof. Let w € P®, k be either an essential escape or an inessential escape of w with the
depth r and the binding period p. By the assumption BR(a, d)i, we have

_ , 2a _
log|ei(a)] ™" < @ < ap < - log |ex(a)] 1

for any a € wand i = 1,2,--- , p, which in turn means |c;(a)| > |ck(a)| % . Therefore, we can
conclude that cg1(a),- -+ ,cr+p(a) € A, if J is small enough to satisfy d2e/x_g2>4 O

Sublemma 7.1.4. Assume any a € Q*) satisfies BR(a,0)x for all0 < k < n—1. Let

w € PM, 0<v<n-—1 and suppose that v is the last essential return of w before n with -

the return depth r, and n is an inessential return with the return depth p. Then we have
p<3r/f2. O

Proof. By the same reasoning in Sublemma 7.1.1, we obtain |ws| 2 |wy|/4. Since v is an
essential return, we have jw,| > (e~"+'—e~")/r?. Thus p cannot exceed such s > 0 satisfying

| | sl
2 (s — i)’

o2l 1|I|
(s—27 “472"

+

Even more strictly, p cannot exceed such s > 0 satisfying
—logl2+s—2+2log(s—2) >r+logr,
and therefore p < 3r/2. O

7.2 Proof of Proposition 7

We only need to prove the case ¥ = n by the inductive assumption. More precisely, we
already have
RE(w) < BEW (W)

fork=0,---,n—landwe€ P®), For k = n, the same inequality trivially follows if n is
neither an inessential return nor a bound return. In the case where n is a bound return, we
count on Sublemmas 7.1.1 and 7.1.2. Repeatedly applying Sublemma 7.1.2 yields

R (w) = E0-D(w) + I (w) + B (w) < 4(£D(w) + T (w)).
Then we successively apply Sublemma 7.1.1 to obtain
(D (W) + TD(w)) < 66D (w) < BEM (W),

If n is an inessential return, we count on Sublemma 7.1.4. Let p be the eorreépondihg
inessential return depth. Then we have

R (W) = D) + I D(w) + B (W) + o
gé‘ (=1 () + BOD(w) +p
< dern0) + 36 (w) + 0D W) + 2S£ (W),

<
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which is less than
88("“)(40) = 86" (w).

It only remains to verify BR(a,), for a € Q™. If v < n is a return with the return depth
r, we have ¢, (a)| > e~("*+1) by the construction. Therefore

- (g)~1 < R(™ on (n) on
2 _loglei(@)] ™ S R™ (@) + ooy < 86(a) + o7
=0 ?
1 1
< (5 + _logé-l)an < on.
_This completes the proof of Proposition 7. O

8 Combinatorial arghment

The estimate of the Lebesgue measure of the set 2! = (1,5, 2™ is a technical issue. This

is because parameter values for which the corresponding f, has a periodic attractor form an
open dense subset [GS], [Lyu], and hence Q; is nowhere dense. Therefore quite a delicate
analysis is required. In order for our conclusion, combinatorial and analytic arguments need
to work together. We remark that any subsequent part is irrelevant to the main induction
step of the proof discussed in the previous sections.

First of all, let us introduce some combinatorial notations. Two sequences are associated
to each w € P™. One is made up of all essential and substantial escapes of w , 0 = 19 <
M < ++- < ny < n, and the other is the sequence of corresponding escaping components
wlm) GA'P("‘)(O < i < g). Letting w™) = w for g+ 1 < i < n, we define a subset o of
Usrgn P® as

- QW = (W) ;) e PM}].

Intuitizr;aly, QY is the collection of the i-th escaping component of each w € P™. For
we QY put .
QU+ () = {w' € QY : ' Cc w})

and ‘
QU (w,R) = {w' € QM (W) : AEP (w,w) = R},

where the function AES (w,-) : Q¥+ (w) = N is defined by
ALY (w,w') = EM+1) (W) — £W)(w).
We clearly have

Qi (w) = |_l Qi+ (w, R).
R>0

Lemma 8.1. Forall0<i<n-1,we€ QSf) and R > 0, we have
#O$) (w, R) < AR,

Proof. Define a set of pairs of integers

t
Sp:={(r1,81),-- ,(rs,8) 1t 2> 1’2 Irs| = R, |rs| 2 IOgJ_lvai € [11"?]}'

i=1



We can define a map F . Qity (w,R) — Sg as follows. Suppose w € P®*), For any
w' € Q¥Y(w,R), there exists 741 > k such that o’ € P(+1) and 7;4; is either an

essential or a substantial escape of w'. Take all essential returns that occur between k and
ni+1. The place where each essential return has taken place is specified by the partition Z,
and hence by a pair of integers (r,s) with |r| > logé~! and s € [1,r?]. F(w') is defined as
the sequence of these pairs of integers. Then, we clearly have

Q4+ (w, R) < §Sg - sup §F 1 (z).

z€Sr
In fact, F is not injective. We estimate §Sg and sup,¢s, #F~'(z) one by one.
Sublemma 8.1.1. For R > 0 we have

iSr < #R/2.

Proof. Fixt < R/rs. The number of sequences of natural numbers ry,72,--- ,r with r; > 75
and o0, r; = R is less than
R+t-1
t—1 ’

which is the way of combinations of taking (¢ — 1) balls from (R + ¢ — 1) balls located in a
row. By using the Stirling’s formula

k! ~ V2rkk*e *e*

as k — 0o, we have

(R+t—1 _(R+t—1)! _ VI (R+t—1)RH-1
t—-1 )‘ R\(t —1)! 8 RR(t-—1)t-1

R+t-1\B/R+t-1\*"
<2( R )( -1 ) '
The first factor is, by srs < R, less than

(E(_lil_/ra_))l (1+2) " Rioni+d) B
R rs

For the second factor, we have
(R+t—1)‘“‘_ t-1 \~F R< t—1)"’(1+t-—1)£i*)“
t—1 T\\R+t-1 = R R ’

and hence we obtain o1
—_— < .
(B57) <

Putting these two inequalities together and recalling the definition of Sg, we have

R/rs t R/rs y y
#Sk < (2teﬁR/5 ,.’_2) < et 1082,BR/Bp2 . oBR/2

for sufficiently small é > 0. |
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Sublemma 8.1.2. For R > 0, we have

sup §F~1(z) < ePR/2.

2ESR

Proof. Let vy be the chopping time of w € Q% and suppose = {(r1,81), -,

(*m»8m)} € Sr, F~1(z) # 0. By the algorithm of the subdivision, if w' € F~1(z) then
¢y, (w’) is ‘contained in the union of the three contiguous elements of the partition 7 centered
on I,, ,,, which is denoted by I, ,,. By Lemma 5.2, ¢,, is a diffeomorphism on w, and hence

W) .= c;‘_l |i,1,.1 (f,,,.l)

is an interval which contains }"l(z) # 0. For i = 2,--- ,m, let v; be the chopping time of
w(®-1) and define w®) := ¢;}| I (I,.,,,‘) Then, by a recursive use of Lemma 5.2, one can

see that each w) is an interval and all preimages F~1(z) are contained in the set

n w("i) - w("ﬂ-)_

1<i<m

Here, the equahty is because the sequence {w("‘)}i_s is nested. By the rules of the subdi-
vision and Lemma 5.2, at the chopping time of w(*~) there can a.nse a number of escaping
components, whose total number is less than 2(rs — r5+)r2 +2 < r§ < #%/2, O

9 Analytic Arguments

The aim of this section is to develop key analytic arguments. A bounded distortion argument
and a uniform binding estimate are given.

9.1 Bounded Distortion Property

We are going to show that the partitions P(") P(no+1) ... have a nice distortion property.
The precise statement is as follows.

Lemma 9.1. Let w € P™), v be a free return, an essential escape, or an inessential escape
of w and p be the binding period. Then there exists a constant D such that

164(a)]
o® <P

for any a,b € w and 0 < k < v+p+1. Moreover, the distortion constant D remains bounded
as & tends to 0.

In terms of the probability theory, this lemma means that the conditional probability of
the critical orbit cx(a) falling into some subinterval J of c;(w) is essentially proportional to
the ratio |J|/|ck(w)|. In other words, if we consider cx as a random variable, its distribution
is essentially constant bounded away from zero. On the other hand, we cannot expect that
the same picture also holds in the case of substantial escapes, because in general the image of
substantial escapes can spread out by the definition of the chopping. They have substantial
length greater than 4¢, which leads to nonuniform variation of the distribution. However, if
we restrict ourselves to consider some small subinterval of a substantxal escape, we can also
have an analogue of the above lemma. Both types of distortion properties are indispensable
for our ultimate conclusion.



Lemma 9.2. Letw € P, v be g substantial escape of w and 1 > v be the next chopping
time of w. Then there erists a constant D > D such that for any subinterval & C w with
w; C At, we have )

@) < 3

LA

for any a,b €@ and 0 < k < 1. In addition, D also remains bounded as § tends to 0.

9.2 Preliminaries and proofs of the distortion lemmas

We need to classify essential escapes into two classes as follows.

Definition. Let w € P*) and k be an essential escape of w. k is said to be a boundary
essential escape if wi N OAT # @, or an interior essential escape otherwise.

Note that, from the proof of Sublemma 5.3.1, it suffices to find a constant D such that

v+p
Y Dj<log (%) '
i=0

where |
w.

D= ——

I inf, e, IcJ' (a)i

and w; = ¢j(w).

Sublemma 9.1.1. Forw € P™), let v be a free return, an essential escape, or an inessential
escape of w. Let 01 < 02 < ---,< 04 < v be the mazimal sequence made up of all returns,
inessential escapes, and interior essential escapes of w up to time v. Denoting the corre-
sponding binding periods and the depths by p; and r;, respectively, and letting oo +po+1 =0,

we have
Cit1+HPit1

3 Tid1
Y. D; < Dilweyle™
j=oi+pi+1

foralli=0,---,g—1.
Proof of Sublemma 9.1.1. We divide the sum into three parts:

oit1+Pisl Tig1—1 Oit+1+Pit+1
E DJ' = E Dj + Dg"+1 + E Dj
oi+pi+l Jj=o¢+pi+1 J=oiv1+1

and estimate one by one. For the first term, by Corollary 5.2.1, there exists some a € w;
such that |(f2*** 7Y (c;(a))||w;| € 4|we,,|- With a possibility of ws,,, Nw; # @ taken into
account, (3) of Lemma 5.1 can be applied to yield jw;| < Be—Mo1-d) |y, +1/- On the other
hand, inf,e, lcj(a)| > 8¢ — 2 |Ij+|/r3, > 6*/2holds forall oy +pi +1 < j < 041 — 1,
because there is no return, interior essential escape, nor inessential escape during this time
period (boundary essential escapes possibly exist). Therefore we obtain

< 16e—Moi+1—3) |Wosys |

o1t
3> o S 16e (0341 J)‘wcra+1|er‘+1’

and
Ci41—1

Z Dj S 166‘“0’.'4.1 len'ﬂ ’
Jj=oi+pi+1
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where © = 2j>oe‘5“.

The estimate of the second term is trivial. From |c,,,, (a)] > e~{"+1+1), we immediately
get Dy, iy < elwoyyylem+.

Concerning the third term, Corollary 5.2.1 yields

lw.il < 4""0‘;4-1 | iIElB I(-f¢';i—_m'+'1 )'(CU'H-I (a))l-

We need to find a proper upper bound of this supremum. By the chain rule we have

[(F3774Y (Cousa (a))| = |(F57 7Y (i s141 (@) || fa (Coira (a)]-

The first part of the right hand side can be estimated by the binding argument. Recall the
following notations : '

7 = 7(a) = [0;¢5,,, (a)]
Yo = fa()s i = i (0)-
By the definition of the binding period and the mean value theorem, we have
re~20U-ois1-1) 2 Wi—aipa-1 = l(fg""“_l)'(zo)ﬂ’)’ol

for some %o € o. Using Sublemma 5.3.1 yields
[(FA=7+ =Y (@o) 1wl > DA+ 71 (Corsarr(a))s
and therefore
W77 (orsar1(@))] < Dare™220=74170) flyo) < Domele2U=cm=Nedrun,

because |Yo| = [Co;,, (@)|2 > (e~ (r+2+1))2, Substituting this into the equality of interest and
using a trivial estimate |f;(cs.,,(@))| = 2|cs;,, (a)] < 2e7Ti+12e, we have

sup |(f47744*) (G2 (@)] < Damele~20—rissDtrvsgg=rise,

which implies
3, —2a(j—cis1—
|wj| < 8DKede~20U=0i+1-D)|y,  |gri+t,

The remaining task is to estimate the denominator of D;. Since there may be a bound
return during the time period under consideration, a rather delicate estimate is necessary.
In this part, the system constant x plays a crucial role.

Claim. |
lcf(a)l >(1- n)e—ﬂ(.?—w-g-x—l)'

Proof of the claim. By the definition of the binding period and the triangle inequality, we
have |¢;(a)| 2 |¢j—oip1—1(a)] — me~22U=4+1=1) Thus, it suffices to show |ci(a)| > e~*¢ for
each i € N such that f, satisfies BR(a,d);, which has already been proved in Corollary
5.2.2. ' - ‘ 0

As a consequence of this claim, we have

Cit11Pis1 i1 +Pit1 8D.xed 3
ake® _olj—air1—1 ~ 8Dyke® _ .
Y Di< Y Eerelmem Dy, e < T Bl le
j=oip1+1 J=0oi+1+1




where E = ¥, e = —== < D, for sufficiently small a. Fmally, combining these three
major estimates, we obtam :
Cip1t+Pit1
8D
Z DJ' < (16@ +e+ 1 QK: )| Woit1 lerH'l < Dalwa'..u |eﬂ+l
j=oi+pit+l

for sufficiently small a (hence large D). O

Sublemma 9.1.2. Let w € P®) and 0y < --- < 0, < k be all returns, inessential escapes
and interior essential escapes of w up to k that have an equal depth r. Then

1 Et o
3" el < 22

i=1

Proof of Sublemma 9.1.2. Let p; denote the corresponding binding period of o;. Now w
satisfies BR(a, 8)x and o, < k. Therefore, we can use the binding argument discussed in the
proof of Sublemma 7.1.1 to get

(g =Pty (g pira (a)] 2 1

fori=1,---,8—1. On the other hand, applying the chain rule gives

[(£2+17) (cay (a))] = |(f7H+ P 4Y (g 4 i+ (@R H) (i (a)))-
By the above inequality and the (5) of Lemma 5.3, we have

[(F24 7Y cou(@)] 2 oo, (a)[*P~" 2 el D=5
> ere++1)(1-80) 5 o~ logs' (1-58) _ §u(BB-1)

Then, by Corollary 5.2.1, we obtain |w,, | < 46*1~58) |y, .. |. Successive use of this inequality
yields |we,| < (46‘(1'5'5))"'|w |. Now, shrink 6 sufficiently small so that 46*(1~58) < 1/2.
Then we have

i |we, | < I‘%.'i(“‘(l_sm)i < |we. |

Hence, it suffices to prove lw,,] < 10e77/r2, thch is trivial. Recall that w,, possxbly spreads
across three contiguous partition elements of I+, O

Proof of Lemma 9.1. Let 01 < 02 < +-- < 0, < v be the maximal sequence made up of all
returns, inessential escapes and interior essential escapes up to time v. The corresponding
depth is denoted by r;. For the moment, we postpone the exceptional case where o, # v,
namely o, is a boundary essential escape. In the case where o, is not a boundary essentxal
escape, we can directly apply Sublemmas 9.1.1 and 9.1.2 to obtain

v+p g—1 ciy1tpi+1 g—1

Y D=3 3 Di<Dy} lwele™
=0 =0

=0 j=oi+p;+1

10D3 D*
= D3 Za
=D3 E e"( E |Waiya I) < m" < “_:.

r2r4 P11

In the exceptional case where v is a boundary essential escape, we need to estimate the
remaining sum
v+p v—1 v+p

Y. Dj= Y Dj+D.+ Y, Dj

j=oqtpe+1 j=0q+pg+1 j=v+1
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Note that, between o, + p, + 1 and v — 1, there is no return, inessential escape, nor interior
essential escape, all but boundary essential escapes. Hence we have inf,¢, |cj(a)| > 8 —
2:|Is+|/rs+2 > §*/2. On the other hand, Corollary 5.2.1 and Lemma 5.1, (2), (3) are used

to estimate the size of w;. Namely we have §* > |w,| > %e’.\("‘j) lwj|- As a consequence, we
obtain

—-A(v—j .
D; < 4&_6_(:’__].). = 4e~Av=7),

For the second term, we clearly have D, = |w,|/ inf,ew lev(a)] < 2.
For the third term, we similarly have

v+p
Z DJ 16Dane =

j=v+1
As a whole, we obtain
v+p
> D; 5@+2+———1611)°"°e -
J=0q+pg+l -
Hence, we may take .
D= 4exp(D°‘ +0+2+ ——-—16113‘1”: ").

O

Proof of Lemma 9.2. Let v, be the last free return, essential escape or inessential escape of
w before 1, and p, the corresponding binding period: By virtue of Lemma 9.1, we have

vg+pq Vq+pg D
E D; < Z Dj <log(—4-),
i=0 j=0

where D; = |w;|/infsew |cj(a)| and D} = [@;|/ infaez |cj(a)|- Hence, it suffices to find an
upper bound of the remaining part E,,q +p,+1 Dj- By the choice of v,, there is no return,
essential escape nor inessential escape (substantial escapes possibly exist). Hence we have

:gg lej(a)l 2 alfelf, lej(a)] > 6* —2- |Ir.;+‘V"52+ >é/2. |
Meanwhile, w survives as an element of P¢~1) due to absence of a chopping time between n

and ! — 1, and as a result, w and its subset & satisfy BR(a, 6)i—1. Then, by Corollary 5.2.1,
we have |@;| > e*(~9|w;| and the assumption &7 C A+ means |@| < 26, which implies

gte—du-9 o
Dj<——5—=8e Ad=9),
Finally we obtain
Y Dj<se.
ve+petl

We may set D = ¢*©D. O
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9.3 Uniform binding estimate

We are prepared to prove the following key ingredient on uniform parameter dependence
of the derivative recovery. This is essentially the same as (4), (5) of Lemma 5.3. But, we
need to take into account the variation of the binding period p{(a, k) as a varies in w. This
variation can be treated by the bounded distortion property given above.

Lemma 9.3. Let w € P, k an essential return or an essential escape of w, and let p be
the corresponding binding period. Then

(whtp| 2 fw|®.

Proof. Suppose that agp € w gives the minimum of p(a, k). That is to say, we have p =
P(ao, k) < p(a, k) for any a € w.

Sublemma 9.3.1. For any a € w, we have

(75 (cela@))| 2 I(F251Y (cx (ao))I-

16DD2
Proof of the claim. The chain rule gives

|2 (ex(@)] _ 1D (ersa(@))] ler(a)]
2T (er(a))|  1(F&) (ces1(ao))l [cx(ao)l

for any a € w, cp(a) = f5(0) € Yo = f2([0; cx(a)]). Hence, we apply Sublemma 5.3.1 to get

1(£2) (ex+1(a))] > DZ(F2) (col(a))l

and

|(#2,) (co(@0))| > D3*|(f%,) (ck+1(a0))l-
By Lemma 9.1, we have |c,(a)| > D~!|¢}(a0)| and by Lemma 5.2
2 (@i > 3072 (@)
Putting these three inequalities together, we obtain

|(72) (exa(@)] 1
|(f%) (cx+1(a0))| = 4DD%’

The remaining term can be easily estimated by |cx(a)|/|ck(ao)| > 1/4, since k is an essential
return or an essential escape for w. Hence we get the desired inequality. : d

Returning to the proof of the lemma, recall that w satisfies up to BR(5a, 6)k+p by Lemma
5.4. Then, applying Corollary 5.2.1 and the above sublernma, we have

|witps1] > MTD&'UZJI)' (ck(ao))|ws]-

Concerning the right hand side, the following holds.

_1- 58—-1 —(r+1)(88-1)
spprI U2 exlaollon] > grpplonlien(@)l®~ 2 grp g lonl

where the first inequality is due to (5) of Lemma 5.3 and the second by |ck(ao)| > e—(rt1),
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Claim.

Proof of the claim. This is trivial when k is not a boundary essential escape, due to
wg C [e~r+1) e=("—1)]. Otherwise we have |wi| < §* = ™75+ < e~ "5+ (e — 7). O

By the above claim,

58-1
|wy |~ (rH1I(EA-1) > 1 |w,,|( el ) e85+
= 64DD2

1
64DD2 e—e1

1
—(r+1)(58-1) 5

64D D1 Hle = $4DD?

> Iwklsﬁ .

jwhl®8-(e? — 1)t

Thus it turns out that the target mequahty |wk+p+1] > |wk|® holds as long as ¢ is taken
sufficiently small so that

2 -58+1
- 6_411))D_zﬂ > (et — e,
[« 3

It is possible to hold the last inequality because the distortion constant D stays bounded as
4 tends to 0. O

10 Metric Estimate, Conclusion

This section combines the previously discussed analytic estimate with the combinatorial
argument. In terms of the probability theory, we regard e£”'/? as a random variable of
the suitable probability space. For the conclusion, we need to estimate the conditional
probability |[Q(*=1)| — |Q()|. By definition, we have

®-1] 00| = |  J{w e P™ : £M(w) > an/16} | <eo/* e (/2dq,
Q(n~1)

where the inequality follows from

Tchebichev inequality. Let (2, F, u) be a probability space and X be a random variable.

Then for x > 0 we have

w1 2 z) < ZIXI,

Therefore we need to estimate the expectation E[ef ™ /2] = [, e ®)/2da. In fact,

this quantity is not too blg, because members of such w € P™ that takes on big value of
£ (w) constitute small portions of 2("~1). More precisely, elements of P with strong
recurrence (hence big £ (w)) are not too many (Lemma 8.1) and are not too large in size
(Lemma 10.1). Indeed, the following holds.

Proposition 10.
f e£(n)(¢)/2da < 33"/"|95|-
Q(n-1)

Suppose that this proposition is true. Then we have
|21 - [0 < exp(n(3/rs — a/32)) 0| < e~/ 900,
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which implies
lg(n)| > In(n—l)l _ e—an/4O‘Q€|.

To prove that a = 2 is the density point of €2, let us recall the definition of the first chopping
time no(e) € N. By definition, (9 = Q) = ... = Q(mo=1), Therefore we have

3 eo)ja,
=no—1 |

jo™) > (1 -

¢
and hence n
ol B (n) - —ai/40
021 = Jim 01> (1- 3 e4)ing >0
i=no—
Note that ng(€) = 0o as € tends to zero, which shows the desired density result

0z _,
e—0 Iﬂcl )

For the moment we postpone the proof of Proposition 10, since it requires an intricate
analytic estimate to be developed below.

10.1 Preliminaries
Lemma 10.1. Forall0<i<n-—-1l,we€ Qsli), R>0andwe Qﬁ.'.“)(w,R), we have

3] < e®8-DRY,).
Combining Lemmas 8.1 and 10.1 yields the foliowing

Lemma 10.2. Forall0<i<n—1,we Q¥ and R >0 we have

D 7 R
w'EQS.H'l)(u,R)

where 108 -1 < 0.

Proof of Lemma 10.1. Let w = w(). There are two possibilities. Either there exists a
nested sequence '
Gcw .o cw cw® =w

such that each w3 (j = 1,---,8) is an essential return at v;, or there is not an essential
return at all. In the second case, due to the property of time history, w(¥) experiences
no inessential return until the next chopping time [Corollaries 7.1.1.1, 7.1.1.2]. There are
possibly some inessential escapes, but one already knows no bound return follows them
[Sublemma 7.1.3]. As a result the inequality of the assertion trivially follows with R = 0.
Thus we consider the other case. It suffices to show the next :

Sublemma 10.1.1. For j =0,---,8 — 1, we have

|w(¥s+1)] P
|w(":‘)l -

where rg :=r; and r; is the depth at v;.

Proof of Sublemma 10.1.1. For the moment we postpone the exceptional case v}here j=0
and v is a substantial escape of w. By Lemma 5.4, w(*) satisfies up to BR(5a,0)y;p,-
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Then, Lemma 5.2 claims that ¢,,4p;+1 is a diffeomorphism on w(i), and hence there exists
some a € w(*) such that )
v; v
lwu,-fi-p,+1| = 'CL’.+pj+1(a)“w( J)l'
On the other hand, w(i+1) satisfies BR(,8)y;+p; because vj41 > vj + p;. Thus for some
b € wi+1) we have

W) | =l gy (B)] w40,

Combining these equalities and by virtue of Lemma 9.1 we obtain

s3] e 4p 41 (@) oyl oo
|w("5)| |c:,,.+p,+1(b)l |w,(,;"'+),,+1l |w,(,:i2p,+1|

The upper estimate of the numerator of the right hand side in terms of |w.(,;':”,,‘;‘)|, is not
trivial, due to possible existence of a sequence of inessential returns u, u2,--- , bm between
vj + pj and vj41. Let g; and p; denote the corresponding binding period and return depth
respectively. Then, we have

Wil _ oSl el i)
Wl Wl W WGl
ep(0-6)Thon)
> ex(l’d-n—nm—qm'—l)

256 2 256"
For details, the reader should consult with the proof of Sublemma 7.1.1 using the binding
estimate. In particular, we apply (3) of Lemma 5.1 instead of (2), in order to deal with

possible overlaps between w(i+1) and w‘(:i*:gm +1- On the other hand, Lemma 9.3 gives a
lower estimate of the denominator. Namely we have

e-aﬁri
165 °
T

Wy, 41l > w28 >

As a result we obtain

|w(”.i+1)| < 256De—-1‘5+1+8ﬁr,r]_-65 < e—fj+1+9ﬂfj

|w("i )l = 7 !
where it is possible to hold the last inequality by choosing sufficiently small J, because D
stays bounded as § — 0.

The exceptional case needs different analysis. A similar argument is invalid since a binding
period is not associated with substantial escapes. There are further two possibilities to be
considered according to the position of w®), namely, whether w C A+ or otherwise.
The distinction arises when applying Lemma 9.2. In the first case, we can take @ in the
statement as the whole w(*0). In the second case, @ is taken as the maximal subinterval of
w®) whose image via c,, is contained in A*.

First, we treat the case w.(,','°) C A+. There is no chopping time of w(*0) between vg
and 14, and hence w(*®) survives as an element of P(“:~1) and satisfies BR(, §),, 1. Then,
Lemma 5.2 claims that c,, is a diffeomorphism on w(*). By using the mean value theorem
and Lemma 9.2, we have ‘

w| _ @) Wi _ gl
weo] = e, O Wi T i)




for some a € w®) and b € w*1). Corollary 5.2.1 gives a lower estimate of the denominator
in the form of [w{®| > ilw,(,:”l > /4, and therefore

(ul) — (Vl) _ _
::("")1 < 4D lw'(';o): <De 6 < DeT§ 4P < e e,

|wse

as long as ¢ < 44. The last inequality follows by taking § sufficiently small so that D < s,
which is possible because D stays bounded as § tends to 0.

Next, we consider the case w.(,';°) ¢ At , which includes the case vp = 0. With a similar
argument and applying Lemma 9.2 with @ = &(*0) := ¢; (At N w®), we obtain

W] _ Wt _ o, (@)l wir?] _ pleis)|
o) = j@®)| e, O @l T )|

By definition, @{® intersects both JA* and HA. Thus [@4r)| > & — § > &*/2 holds and
we can proceed an estimate similar to the above. This completes the proof of Sublemma
10.1.1. 0

10.2 Proof of Proposition 10.
By definition, we have

£ (a)/2 3, _ EM (w)/2
e da = e wl,
[ Y »

we
and hence
ﬂ_l : .
Z es'(")(“’)/zlwl - H Z ) eAg(-)(u(()’u(|+l))/2|w(i+1)|’
wei =0 ,6+1) QY+ (D)

where w(©® := [2 — €,2]. Applying Lemma 10.2 to each factor yields

E eAED (@ W) 12|+ = Z D)
W+ e QU1 (i) wi+1) @+ (b1 ,0)
+ Z eR/Z Z Iw(t+1) |
R>r; Wi+ e Q) (W) . R)

< (1 + Z e(105—1/2)3) lw®| < (1 + e~ /3)|w| < 3/ ||
R>r;

for 0<i<n—1andw® e QY. Applying this formula to the above nested expression we
obtain

[ &7 T £V < i,
Q(n—-1)
we@l™
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