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1 Introduction

In this paper we study a competitive market model with a finite number of agents for

trading various indivisible commodities. Commodities can be desirable such as houses or
cars, or undesirable such as aging nuclear plants. Each agent is initially endowed with

several units of each commodity and some amount of money. Agents’ preferences depend

on the bundle of commodities and the quantity of money they hold. As most of the recent

literature does, we also focus on a particular but important case in which all agents have

quasi-linear utilities in money. This model is fairly broad. Its related examples include the

models in Bikhchandani and Mamer (1997), Ma (1998), Bevia, Quinzii and Silva (1999),

Gul and Stacchett (1999), Yang (2003), and the assignment models in Koopmans and

Beckman (1957), and Shapley and Shubik (1972). It should be aware that the models in

Kelso and Crawford (1982), Laan, Talman and Yang $(1997, 2002)$ , Yang (2000), Danilov,

Koshevoy and Murota (2001), Fujishige and Yang (2002), allow for somehow more general

situations in the sense that quasi-linearity in money is not required.

It is well-known that there exists a Walrasian equilibrium under rather mild condi-

tions in any model in which every agent demands only one indivisible object but has

preferences over different objects. See e.g., Quinzii (1984), and Kaneko and Yamamoto

(1986). Unfortunately, the existence of a Walrasian equilibrium is not guaranteed any-

more even under many familiar standard conditions if agents are allowed to demand more

than one indivisible object. In a seminal article, Kelso and Crawford (1982) introduce the

gross substitutes (GS) condition for the existence of a nonempty core (and equilibrium)

in a fairly general tw0-sided matching model with money. This condition has become

a benchmark condition for the existence of equilibrium in matching, equilibrium, and

auction models where agents are allowed to demand as many indivisible objects as they

wish. Gul and Stacchetti (1999) present two new and interesting alternative conditions,

the single improvement (SI), and no complementarities (NC) conditions, and have shown

that these conditions are equivalent to the gross substitutes condition. Nevertheless, the
$\mathrm{G}\mathrm{S}$ , SI and NC conditions are not conditions on the primitive characteristics of the econ-

omy (the utility functions) but conditions on the derived demand correspondences. This
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raises a natural question. What kind of functions satisfy the $\mathrm{G}\mathrm{S}$ , or equivalently, SI, or

NC condition7 Three special classes of functions satisfying the GS conditions are given

by Kelso and Crawford (1982), Bevia, Quinzii and Silva (1999), and Gul and Stacchett

(1999).

In an apparently unrelated development, Murota $(1998, 2003)$ and Murota and Shioura

(1999) have recently developed an interesting theory of discrete convex analysis in the field

of discrete optimization. This theory could play an important role in solving problems

of efficient allocation of indivisible resources. Danilov, Koshevoy and Murota (2001),

and Fujishige and Yang (2002) have applied this theory to the equilibrium models with

indivisibilities and established the existence of equilibrium. Fujishige and Yang (2003)

have shown that a utility function satisfies the GS condition if and only if it is an $\mathrm{M}^{\mathfrak{h}_{-}}$

concave function introduced by Murota and Shioura, and thus bridged the gap between the

two quite different identities, the GS condition and the $\mathrm{M}^{\mathfrak{h}}$ -concave functions. Subsequent

to Fujishige and Yang (2003), Danilov, Koshevoy and Lang (2003), Murota and Tamura

(2003) have independently shown that the $\mathrm{G}\mathrm{S}$ , SI, and NC conditions and their relation

with $\mathrm{M}^{\mathfrak{h}}$-concave functions can be analogously extended to more general situations.

In this paper we demonstrate through the $\max$-convolution approach that the market

has a Walrasian equilibrium if and only if the potential market value function is concave

with respect to the total initial endowment of commodities. We then identify sufficient

conditions on each individual agent’s behavior. In particular, we introduce a class of

new utility functions, called the class of $\max$-convolution concavity preservable utility

functions. This class of utility functions covers both the class of functions which satisfy

the gross substitutes condition of Kelso and Crawford (1982), or the single improvement

condition, or the no complementarities condition of Gul and Stacchetti (1999), and the

class of $\mathrm{M}^{\mathfrak{h}}$-concave functions of Murota and Shioura (1999). Compared with the exist-

ing approaches, the approach provided here has some advantages: First, it enables us

to establish a very natural and intimate relationship between equilibrium and concavity

and also helps us better understand what are the fundamental differences between the

indivisible goods market and the divisible goods market in term of existence conditions.
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Second, its argument is more transparent and it also allows us to derive the existing exis-

tence results, including the well-known gross substitutes condition of Kelso and Crawford

(1982), from a unifying perspective. Third, this approach leads to a natural application

of the discrete concave functions introduced by Murota $(1998, 2003)$ , Murota and Shioura

(1999), and also indicates a new way of generating more general utility functions -for the

existence of equilibrium.

This paper is organized as follows. In Section 2 we introduce the market model. In

Section 3 we establish two necessary and sufficient conditions for the existence of an

equilibrium in the model. In Section 4 we identify sufficient conditions on the behavior

of each individual agent and also make a comparison of the indivisible goods market with

the divisible goods market.

2 The Market Model

First, we introduce some notation. The set $I_{k}$ denotes the set of the first $k$ positive

integers. The set $\mathrm{R}^{n}$ denotes the $n$-dimensional Euclidean space and $\mathrm{Z}^{n}$ the set of all

lattice points in Rn. The vector 0 denotes the vector of zeros. The vector $e(i)$ , $i\in I_{n}$ , is

the zth unit vector of Rn. Furthermore, $x\cdot y$ means the inner product of vectors $x$ and $y$ .

Consider a market for trading various indivisible commodities. In the market there

are $m$ agents, $n$ indivisible commodities, and money. The set of all agents will be denoted

by $T=\{1,2, \cdots, m\}$ . Each agent $i$ is initially endowed with a bundle $\omega^{\dot{\iota}}\in \mathrm{Z}_{+}^{n}$ of goods

and some amount $m_{i}$ of money. Let cy stand for the total initial endowment of indivisible

commodities in the market, i.e., $\omega$ $=\Sigma_{i\in T}\omega^{i}$ . Thus, for each commodity $h=1,$ $\cdots$ , $n$ ,

there are $\omega_{h}$ units available in the market. It is understood that $\omega_{h}>0$ for every $h=1,$

$|$ $\cdot\cdot$ , $n$ . Each agent $i$ ’s preferences over goods and money are quasilinear: that is, the

utility of agent $i$ holding $c$ units of money and the bundle $x$ of goods can be expressed

as $Vi(x)c)=$ $\mathrm{Z}(x)$ $+c,$ where X4(x) is the reservation value, the quantity of money that

agent $i$ valuates the bundle $x$ of goods. For each $i\in T,$ the reservation value function

$V_{i}$ : $\mathrm{Z}^{n}\vdash*$ Et is assumed to be bounded from above. Furthermore, each agent $i$ is assumed

to have a sufficient amount $m_{i}$ of money in the sense that $m_{i} \geq\sup_{x\in t^{n}}V_{i}(x)$ -Vi(ul).
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Since $V_{i}$ is bounded above, $m_{i}$ is finite. This market model will be represented by $\mathrm{A}/[=$

(Vi, $m_{i},$
$\omega^{i},$ $i\in T,$ $\mathrm{Z}^{n}$ ). Note that we do not require any monotonicity in this model. So this

model covers the cases where some agents want to get rid of their commodities (namely

economic bads) such as used cars or aging nuclear plants.

A family $(x^{1}, x^{2}, \cdots, x^{m})$ of bundles $x^{i}\in \mathrm{Z}^{n}$ is called a (feasible) allocation if $\Sigma_{i\in T}x^{i}=$

$\omega$ . An allocation $(x^{1}, x^{2}, \cdots, x^{m})$ is (socially) efficient if it is an optimal solution of the

following problem:

$\max$ $\sum_{=1}^{m}\dot{.}V_{i}(y^{i})$

s.t $\Sigma_{\dot{\iota}=1}^{m}y^{i}=\omega$ (2.1)

$y^{i}\in \mathrm{Z}^{n}$ , $i=1,$ 2, $\cdots$ , $m$ .

A price vector $p\in$ $\mathrm{R}^{n}$ indicates a price (units of money) for each good. Given a price

vector $p\in \mathrm{R}^{n}$ , the demand of goods by agent $i$ is defined by

Di(p) $= \{x|(V_{i}(x)+p(\omega^{i}-x))=\max\{V_{i}(y)+p(\omega^{i}-y)|p\cdot y\leq m_{i}+p\cdot\omega^{i}, y\in \mathrm{Z}^{n}\}\}$ .

Note that $m_{i} \geq\sup_{x\in 2^{n}}$ I4(x) $-V_{i}(\omega i)$ for every $i\in Tr$ This implies that the budget

constraint $p\cdot y\leq m_{i}+p\cdot\omega^{i}$ is redundant. Thus, the set $D_{i}(p)$ can be simplified as

$D_{i}(p)=$ {$x|$ Vi $( \mathrm{x})-p\cdot x)=\max\{V_{i}(y)-p\cdot y|$ $y\in \mathrm{Z}^{n}\}$ }.

A tuple $((x^{1}, x^{2}, \cdots, x^{m});p)$ is a Walrasian equilibrium if $p$ is a vector in $\mathrm{R}^{n}$ ; and if

$x^{i}\in D_{:}(p)$ for every $i\in T;$ and if $\Sigma_{i\in T}x^{i}=\omega$ . The allocation $(x^{1}, x^{2}, \cdots, x^{m})$ will be

called an equilibrium allocation. Thus, in equilibrium, each agent gets his best bundle of

goods under his budget constraint and moreover market is clear. The following simple

lemma indicates that a free market mechanism will lead to a socially efficient allocation

of resources.

Lemma 2.1 Suppose that the allocation $(x^{1}, x^{2}, \cdots, x^{m})$ is an equilibrium allocation.

Then it must be socially efficient

The lemma shows that the equlibrium concept is indeed interesting and appealing. It

is well known from Debreu (1959) that for market models with divisible goods there
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exists an equilibrium if every agent’s utility function is concave and weakly increasing.

Unfortunately, with indivisibilities, an equilibrium may not exist under similar conditions.

Recall that a function $f$ : $\mathrm{Z}^{n}$ -$ $\mathrm{R}$ is said to be (discrete) concave if, for any points
$x^{1}$ , $x^{2}$ , $\cdots$ , $x^{l}$ in $\mathrm{Z}^{n}$ with any convex parameters $\mathrm{X}_{1}$ , $\mathrm{X}_{2}$ , $\cdot\cdot$ , $\lambda_{l}$ satisfying $\sum_{h=1}^{l}\lambda_{h}x^{h}\in \mathrm{Z}^{n}$ ,

it holds

$f( \sum\lambda_{h}x^{h})\geq\sum\lambda_{h}f(x^{h})ll$ .
$h=1$ $h=1$

In particular, given an integral vector $\overline{y}\in \mathrm{Z}^{n}$ , a function $f$ : $\mathrm{Z}^{n}\mapsto t\mathrm{R}$ is said to be

(discrete) concave with respect to $\overline{y}$ if, for any points $x^{1}$ , $x^{2}$ , $\cdots$ , $x^{l}$ in $\mathrm{Z}^{n}$ with any convex
parameters $\lambda_{1}$ , $\lambda_{2}$ , $\cdots$ , $\lambda_{l}$ satisfying $\overline{y}!=\Sigma_{h=1}^{l}\lambda_{h}x^{h}$ , it holds

$f( \overline{y})\geq\sum_{h=1}^{l}\lambda_{h}f(x^{h})$ .

Clearly, if $f$ is a concave function, then $f$ must be a concave function with respect to $\overline{y}$ .

The other way around is not true.

Here we slightly modify the example of Bevia, Quinzii and Silva (1999) to demonstrate

that a simple modification of concavity to the indivisibility case is not sufficient to ensure
the existence of an equilibrium. In an indivisible goods market, there are three agents 1, 2

and 3, and three indivisible goods. Agent 1 initially owns one unit of good 1 and 20 dollars,

agent 2 owns one unit of good 2 and 20 dollars, and agent 3 owns one unit of good 3 and 20

dollars. Let $B^{3}=\{x\in \mathrm{Z}^{3}|0\leq x_{i}\leq 1, i=1,2,3\}$ . Their reservation value functions are
given by $V_{1}(0,0,0)=0$ , Vl (x) 0, $0$) $=10$ , $V_{1}(0,1,0)=8$ , $V_{1}(0,0,1)=2$ , Vl(x) 1, $0$ ) $=13,$

V2 $(1, 0, 1)=11$ , Vl (x) 1, $1$ ) $=9$ , V2 $(1, 1, 1)=14$ , Vl (x) $= \max\{V_{1}(y)|y\in B^{3}, y\leq x\}$

for $x\in \mathrm{Z}_{+}^{3}\backslash B^{3}$ , and Vl(x) $=$ $-\mathrm{o}\mathrm{o}$ if $x_{i}<0$ for some $i;V_{2}(0,0,0)=0$ , $V_{2}(1,0,0)=$

$8$ , V2 $(1, 1, 0)=5$ , $V\mathit{2}(0,0,1)=10$ , V2 $(1, 1, 0)=13$ , V2 $(1, 0, 1)=14$ , V2 $(1, 1, 1)=13,$

V2 $(1, 1, 1)=15$ , $V_{2}(x)= \max\{V_{2}(y)|\mathit{1}\in B^{3}, y\leq x\}$ for $x\in \mathrm{Z}_{+}^{3}\backslash B^{3}$ , and $V_{2}(x)=-\infty$

if $x_{i}<0$ for some $i;V_{3}(0,0,0)=0,$ V2$(1, 0, 0)=1$ , $V_{3}(0,1,0)=1$ , V3(x) 0, $1$ ) $=8,$

I4 $(1, 1, 0)=2$ , $V3(1,0,1)=9$, V3(x) 1, $1$ ) $=9$ , V2 $(1, 1, 1)=10$, $V_{3}(x)= \max\{V_{3}(y)|y\in$

$B^{3}$ , $y\leq x\}$ for $x\in \mathrm{Z}_{+}^{3}\backslash B^{3}$ , and $V3(x)=-\infty$ if $x_{i}<0$ for some $i$ . Clearly, $V_{1}$ , $V_{2}$ , and
$V_{3}$ are weakly increasing, (discrete) concave and bounded ffom above, and their marginal

returns are decreasing. Although the reservation value functions seem to be extremely
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plausible, yet there is no equilibrium in this market. In fact, in this market, there is only

one efficient allocation, namely, agent 1 gets (0, 1, 0), agent 2 gets (1, 0, 0), and agent 3
gets (0, 0, 1). Unfortunately, it can be shown that this allocation is not be an equilibrium

allocation. See Bevia et al. (1999) in detail. We will come back to this example later.

3 Equilibrium Existence Theorems

In this section we will establish existence results for the market model. Define the following

potential market value function on $\mathrm{Z}^{n}$ :

$R(x)= \sup\{\sum_{i\in T}V_{i}(x^{i})|\dot{.}\sum_{\in T}x^{i}=x, x^{i}\in \mathrm{Z}^{n}\}$ .

$R(x)$ is the maximal market value that can be achieved by all the agents with the re-
source vector $x$ . The function $R$ is also called the $\max$-convolution function generated by
$V_{1}$ , $V_{2}$ , , . ., $V_{m}$ and the analysis based upon this function is called the max-convolution

approach. We point out that this approach is somehow related to Negishi (1960) but

differs considerably from his in that here $R(x)$ is the maximal market value under the

resource $x$ and is a function of the social endowment $x$ , whereas Negishi defined a social

welfare function as the weighted sum of utility functions where weights are variables and

the social endowment is not treated as a variable but a given constant. His approach

works for economies with divisible goods.

Our first result gives a necessary and sufficient condition for the existence of a Wal-

rasian equilibrium. Recall that $\omega$ is the total initial endowment of indivisible goods.

Lemma 3.1 Given a market model $\mathcal{M}$ $=(V_{i}, m_{i}, v^{i}, i\in T, \mathrm{Z}^{n})$ , there exists a Wal-

rasian equilibrium if and only if the following system of linear inequalities has a solution
$p\in \mathrm{R}^{n}$

$p\cdot(x-\omega)$ $\geq$ $R(x)-R(\omega)$ , $lx$ $\in \mathrm{Z}^{n}$ .

In the above lemma, the equilibrium price of each good may be postive, zero, or even
negative. The following lemma gives a rather weak condition to ensure that all goods

have positive equilibrium prices.
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Lemma 3.2 Suppose that the market $\Lambda 4$ $=(V_{i}, m_{i},\omega^{i},$i $\in T, \mathrm{Z}^{n})$ has a Walrasian

equilibrium. If $R$ ($\omega+$ e(z)) $>R(\omega)$ for all $i\in I_{n}$ , then the equilibrium prices for all goods

are positive.

Now we are ready to present our main result which establishes a natural and intimate

connection between Walrasian equilibrium and local concavity.

Theorem 3.3 Given a market model A $\mathrm{f}$ $=$ $(V_{i}, m_{i}, \omega^{i}, i\in T, \mathrm{Z}^{n})$ , there eists a Wal-

rastan equilibrium if and only if the market potential value function $R$ : $\mathrm{Z}^{n}\vdasharrow \mathrm{R}$ is $a$

discrete concave function with respect to $\omega$ .

We now return to the previous non-existence example. For this example, the reser-
vation value functions Vi, $V_{2}$ , and $V_{3}$ a $\mathrm{e}$ discrete concave functions on $\mathrm{Z}^{3}$ . We have

$R(1,1,1)=24$, $\mathrm{R}(\mathrm{u})0,1)=$ 20, and $R((1,2,1))=29$. Because $R(1,1,1)=24<$
$(R(1,1,1)+R(1,2,1))/2=$ 24.5, the function $R$ is not concave with respect to $\omega=(1,1,1)$

and thus the market has no equilibrium.

Note that the conditions stated in both results above are imposed on the collective

behaviors of all agents. In the next section we will provide sufficient conditions on the

behaviors of each individual agent.

4 ${\rm Max}$-convolution Concavity Preservable Functions

In this section we will identify agents’ reservation value functions for the existence of Wal-

rasian equilibrium and discuss the difference between the divisible goods market and the

indivisible goods market. For this purpose, we will introduce a class of max-convolution

concavity preservable functions.

In the following, we assume that every function under consideration is bounded from

above. Let $f_{1}$ and $f_{2}$ be functions mapping from $\mathrm{Z}^{n}$ to R. Define $f_{1}\oplus f_{2}$ : $\mathrm{Z}^{n}$ }$arrow \mathrm{R}$ by

$f_{1}\oplus$ fa $( \mathrm{x})=\sup\{f_{1}(x^{1})+f_{2}(x^{2})|x^{1}+x^{2}=x, x^{1},x^{2}\in \mathrm{Z}^{n}\}$.

Definition 4.1 A class $\mathrm{i}$ $=\{f|f : \mathrm{Z}^{n}\vdasharrow \mathrm{R}\}$ of functions is said to be $\max-$

convolution concavity preservable if the following conditions are satisfied:
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(i) For every $f\in F,$ $f$ is (discrete) concave;

(ii) For every $f$ and $g$ in $\mathrm{i}$, we also have $f\oplus g$ in $|$ .

A function $f$ is said to be $\max$-convolution concavity preser vable if $f$ is a member of some
class of $\max$-convolution concavity preservable functions. Similarly, functions $f_{1}$ , $\cdots$ , $f_{m}$

are said to be $\max$-convolution concavity preservable if they belong to the same class of

$\max$-convolution concavity preservable functions. 4 A function $f$ : $\mathrm{Z}^{n}\vdasharrow \mathrm{R}$ is said to be

a WMCP-concave function if both $f$ and $f\oplus f$ are concave. One can analogously define

the above concepts for the continuous case.

It follows immediately from Theorem 3.3 and Definition 4.1 that given a market model
$\mathcal{M}$ $=$ $(V\dot{.}, m:,\omega^{i}, i\in T, \mathrm{Z}^{n})$ , if reservation value functions $V_{i}$ , $i\in T,$ are max-convolution

concavity preservable, then the market has a Walrasian equilibrium. In the following, we
will offer several case studies.

When the commodities space is $\mathrm{R}^{n}$ (the divisible goods space), then we have the

following simple lemma; see e.g., Rockafellar (1970).

Lemma 4.2 If $V_{i}$ : $\mathrm{R}^{n}\vdasharrow$ $\mathrm{R}$ , $i=1_{f}2$ , are concave, then the function $V1$ $\oplus V_{2}$ is also

concave.

Let $7=$ {$f|f$ : $\mathrm{R}^{n}\vdasharrow$ R is concave }. Then $F$ is $\max$-convolution concavity preserv-

able. As a consequence, we have that every divisible goods market has a Walrasian

equilibrium if reservation value functions $V_{i}$ : $\mathrm{R}^{n}\mapsto$’Et, $i\in T,$ are concave.
When the commodities space is $\mathrm{Z}^{n}$ (the indivisible goods space), things become much

more complicated. The fundamental difference between the indivisible goods market and

the divisible goods market lies in the fact that for the divisible goods market all concave

functions are $\max$-convolution concavity preservable, whereas for the indivisible goods

market, not all discrete concave functions are $\max$-convolution concavity preservable.

The non-existence example in Section 2 will help illustrate this point. Clearly, functions

$4\mathrm{W}\mathrm{e}$ have carried out investigation on this new class of functions and will report the results in a
separate paper.
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$V_{1}$ , $V_{2}$ and $V_{3}$ are discrete concave functions on $\mathrm{Z}^{3}$ . But, the $\max$-convolution function $R$

generated by $V$), $V_{2}$ and $V_{3}$ fails to be discrete concave as shown above.

Murota and Shioura (1999) have introduced a class of discrete concave functions which

are $\max$-convolution concavity preservable; see also Murota $(1998, 2003)$ . A function

$f$ : $\mathrm{Z}^{n}\mapsto\neq \mathrm{R}$ is said to be $M$ -concave if for every $x$ , $y\in \mathrm{Z}^{n}$ and every $k\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}^{+}(x-y)$

with $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}^{+}(x-y)\neq\emptyset$, it holds

$\mathrm{f}(\mathrm{x})+f(y)$ $\leq$ $\max[f(x- e(k))$ $+f$($y+$ e(l)),

$\max_{1\in\sup \mathrm{p}^{-}(x-y)}\{f(x-e(k)+e(l))+f(y+e(k)-e(l))\}]$

where $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}^{+}(x-y)=\{k\in I_{n}|x_{k}>y_{k}\}$ and $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}^{-}(x-y)=\{k\in I_{n}|x_{k}<y\mathrm{J}.$

The functions $f$ : $\mathrm{Z}^{n}\vdasharrow$ R given as $f(x)=a$ . x-l- $c$ with $a\in \mathrm{R}^{n}$ ., and as $f(x)=$

$\Sigma_{\dot{\iota}=1}^{n}$ 9i(xi) where $g_{i}$ : $\mathrm{Z}\vdasharrow$ R, $i\in I_{n}$ , are discrete concave, are all simple examples of
$\mathrm{M}^{\mathfrak{h}}$-concave function. Note that an $\mathrm{M}^{\mathfrak{h}}$-concave function is also discrete concave. The

following result is due to Murota (2003).

Theorem 4.3 If $V_{i}$ : $\mathrm{Z}^{n}\mapsto\neq$ R, i $=1,$ 2, are $M$ -concave functions, then the function
$\mathrm{y}$ $\oplus V_{2}$ is also $M^{\mathfrak{h}}$ concave.

Thus the class of $\mathrm{M}\#$-concave functions is $\max$-convolution concavity preservable. As a

consequence of Theorems 3.3, 4.3, we have that every indivisible goods market $\mathrm{y}$ $=$

$(V_{i}, m:,\omega^{i}, i\in T, \mathrm{Z}^{n})$ , has a Walrasian equilibrium if reservation value functions $V_{i}$ : $\mathrm{Z}^{n}\vdasharrow$

$\mathrm{R}$ , $i\in T,$ are $\mathrm{M}^{\mathfrak{h}}$-concave. Danilov et al. (2001), Pujishige and Yang (2002) derived a

similar result using more sophisticated techniques.

Applying Theorems 3.3, 4.3 and a discrete separation theorem in Murota (2003), we

have

Theorem 4.4 Given a market model $\mathcal{M}$ $=(V_{i}, m_{i}, \omega^{i}, i\in T, \mathrm{Z}^{n})_{f}$ there exists a Wal-

rasian equilibrium with an integral equilibrium price vector $p^{*}\in \mathrm{Z}^{n}$ , if $V_{i}$ : $\mathrm{Z}^{n}\vdasharrow$ Z,

$i=1,2$ , $\cdots$ , $m$ , are integer valued $M$ -concave functions.

Note that in the theorem all functions $V_{i}$ are integer valued and the equilibrium price

vectore $p^{*}$ is integral. So this model is more realistic in the sense that money can be also

modeled as an indivisible good.
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Finally, we discuss the well-known Kelso and Crawford’s gross substitutes condition,

which is widely used in the literature on equilibrium, matching and auction models.

Consider a market with $m$ traders and 77 indivisible objects (or goods), denoted by

$N=\{1,2, \cdots, n\}$ . Note that when there are identical objects, one may use different

numbers to differentiate them. It is easy to show that at equilibrium, identical objects

all have the same price. Each trader $i$ has a reservation value function over the objects,

denoted by $V_{i}$ : $2^{N}arrow$ R, where $2^{N}$ is the collection of all subsets of $N$ . In other words,

$V_{i}$ is a function mapping from the set $\{x\in \mathrm{Z}_{+}^{n}|x\leq\Sigma_{i\in I_{n}}e(i)\}$ to R. It is assumed that

$V_{i}(\emptyset)=0$ and $V_{\dot{l}}$ is weakly increasing. Given a price vector $p\in \mathrm{R}^{n}$ , the demand set $D_{i}(p)$

of trader $i$ is defined as

$D_{i}(p)= \{S|V_{i}(S)-Lh\in s p_{h}=\max\{V_{i}(T)-\sum_{h\in T}p_{h}| T\subseteq N\}\}$ .

For the existence of an equilibrium, Kelso and Crawford (1982) introduced the following

condition with respect to the demand set $D_{:}(p)$ : known as gross substitutes (GS).

(i) For any two price vectors $p$ and $q$ such that $p\leq q,$ and any $A\in D_{\dot{\iota}}(p)$ , there exists

$B\in D_{i}(q)$ such that $\{k\in A|p_{k}=q_{k}\}\subseteq B.$

Gul and Stacchetti (1999) introduced two alternative conditions equivalent to $\mathrm{G}\mathrm{S}$ , called

single improvement (SI) and no complementarities (NC). Note that the $\mathrm{G}\mathrm{S}$ , SI and NC

properties are not conditions on the primitive characteristics of the economy (the reser-

vation value functions) but conditions on the derived demand correspondences.

Fujishige and Yang (2003) have proved

Theorem 4.5 A reservation value function $V$ : $2^{N}\vdash+\mathrm{R}$ satisfies the gross substitutes

condition if and only if $V$ is $M$ -concave.

So this result has identified the complete set of reservation value functions having the GS

or SI or NC property. Three special classes of reservation value functions in this complete

set were previously discovered by Kelso and Crawford (1982), Bevia et al. (1999), Gul and

Stacchetti (1999). Subsequent to Fujishige and Yang (2003), Danilov et a1.(2003), Murota

and Tamura (2003) have independently shown that all these results can be analogously

extended from $2^{N}$ to $\mathrm{Z}^{N}$ .
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Note that when $\mathrm{M}^{\mathfrak{h}}$ -concave function is specified on a set function, it reads as follows:

A set function $f$ : $2^{N}arrow$ R is an $\mathrm{M}^{\mathrm{Q}}$ -concave function if for each $S$, $T\subseteq N$ and $s\in S\backslash T$

with $S\backslash T\neq\emptyset$ the function $f$ satisfies

$f(S)+f(T) \leq\max[f(S-s)+f(T+s),\max_{t\in T\backslash S}\{f((S-s)+t)+f((T-t)+s)\}]$ .

In the above formula, we read $S-s$ and $T+s$ as $S\mathrm{s}$ $\{s\}$ and $T\cup\{s\}$ , respectively.
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