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1. Introduction

In this talk, we will present some stationary solution for nonlinear partial differ-

ential equation called Mullins Equation which is occered in the theory of grain
boundary grooving.

Ug

up = ~Cf (w)(1 +U§)1/26xp(—cf(u)m) +Cf ()1 +ud)' 2 (1)

The main tool, which we can use, is the admissibility property between weighted

continuous function spaces for the integral operator,as follows.

Te(t) = - f " eI F(a(s), y(s))ds,

t

Tey(t) = €62 + / €2t~ F(z(s),y(s))ds. (2)

From this admissibility we can prove the existence theorem for the special si-
multaneous differential equation. This existence theorem can be applied for the
second order differential equation,

KT (u)(1 + u'2)3/2 ln(PO (u)

"o_ n—
u —f('u',u) ’U’Y Pc

). (3)

The solution of this equation is one of the stationary solution for Mullins Equa-
tion.
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2. Theorems
On the equation (1), we are interested in the stational solution. So we shall
consider the equation (3) which we can make by putting u; = 0 for the equation
(1). To prove the existence theorem for the stational solution, we use the next

two theorems.
Theorem1
For the second oreder differential equation,

u' = f(uau,)a (4)
suppose that the following hypotheses.

f(u,p) € CY(R?), z>0, INeR' st .f(),0)=0, f.(2,0)>0

Then there exits the solution on (0, 00) and it satisfies that

D >0 st |u(z) - A < Dezp(—7z),

where

0<T< lfp()‘ao)_\/fp()‘70)2+4fu(AaO) )

2

Theorem?2
On the differential equation,

w{ =§1w1 +F(Ld1,£d2), wé =C2w2+F(w1,w2), z >0,
where,
f(nlarh) € Cl (R2)7 F(O?O) = 07 F"n (O? O) = 07 Cl > Os C2 < 07
there exists some global nontrivial solution
w(z) = (w1 (z),w 2(z)), = >0,
for every 7,0 < 7 < |(2], and the next inequality is satisfied.
le™ w1 (z)| + |e"wa(z)| < 00, = >0.

At first we consider Theorem2. By using the addmissibility of the integral
operator(2), we can establish the proof of Theorem2. Let consider the integral
operator on the following function set B,

B = w(z) = (wi(z),wa(z)) € C°([0, 00)); ||wl] < 2/¢],

llwll = sup(e™ w1 () + €™ wy(z)).
x>0
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On this set the integral operator(2) satisfies the contraction princeple. Then
the operator Tz : B — B has the unique fixes point w(z) = (wi(z),w2()).

Theorem3
On the set B the integral operator(2) satisfies the contraction princeple. Then

the integral equation which is made by the integral operator(2) has unique

solution in the set B.
The proof of this threorem3 is essentially depended the following inequalities.

™ Teen (@) = fe7* [ " ¢ =9 F(uy (y), wa (9))dy]

T

< [ e B, v ) - F(0,0)\dy

- / " DBy (B (1), B ) (9)e ™

+Fpo (8w (y), 0wz (y))wa (y)e ™ |dy

<m [ ” e (e wy ()] + e wa (W) )y,
|7 Tewn ()] = €7 (Ee + /0 " 6209 Py (y), wa (3))dy)

T
< me(r+@)x+/ eTT T2z —Cy—Ty
0

x|e™|F(wi(y),ws(y))|dy
= |¢[e(TH¢2)= 4 /m e(T+¢2)(z—y)
0
x|e™|F (w1 (y),w2(y))|dy
M
< 1€+ 2ol
where

0<0< 1,7+ (<0,74+( =—7.

Hence we can prove Theorem2. Next we treat Theorem1, by using the results of
Theorem2. Let define the function F(w;,ws;) in Theorem2 by the next equation,

M=ty QM- Czﬂz)__ﬂl —mfu(,\,())—(ml =

= Gm = G
Fowum) = {20 =4 ) o g o= MO

where

G = f»(%,0) + \/fzo()z\,())2 +4£(X0) 0,
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_ A0 = VAW +4£A.0)

- )

2

where the function f as in Theorem1. By the result of Theorem2 there exists
the solution w(z) = (w;(z),ws(z)). Define

w1 (z) — wa(x)
G — ¢
This function u is the solution in Theoreml. At last, we can apply Theoreml

for the equation (3), we get the stational solution of (1).
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